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Recently we found that, among recursive digital filters using satu-
ration arithmetic to contend with overflow, a fundamental difference
exists between second and higher order filters: the latter may sustain
large-amplitude overflow oscillations. In this paper we have derived
a new criterion expressly designed for determining when a given
high-order recursive system using saturation arithmetic is free of ov-
erflow oscillations. The new criterion, which is easy to use, follows from
this result: we associate with the given system two trigonometric
polynomials in 0 of degree equal to the order of the given system; if any
linear combination of the polynomials with nonnegative weights is
positive for all 8in [0,x] then the system is free of all nontrivial periodic
oscillations. We prove that the new criterion subsumes certain well-
known criteria, such as Tsypkin’s criterion, from the literature on
nonlinear systems. To illustrate, three classes of special systems are
investigated, and in each case the new criterion gives substantial im-
provements. Finally, the new test is applied in the synthesis of high
order sections for a realistic eighth-order system.

I. INTRODUCTION

Recently! we made the unexpected observation that, among recursive
filters employing saturation arithmetic, a fundamental difference exists
between second and higher order filters, namely, the latter may sustain
large-amplitude overflow oscillations. This observation proved to be
timely since it coincided with the awareness that economies of scale
coupled with various recent developments make highly attractive the
use of high-order sections in filter realizations. It has also come to light
that the problem of possible large-scale oscillations is of interest not only
in data filtering but in other areas where the natural structure is a
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high-order recursive system, e.g., code converters (DPCM — PCM) and
speech synthesizers.

The economies of scale derive from the fact that the overflow detection
and correction circuits, an expensive part of present-day filters, are as
many as the number of sections employed; thus if a realization is com-
posed of fourth-order sections rather than the conventional second-order
sections, then the number of such circuits may be expected to be halved.
The recent developments alluded to earlier refer to the almost simul-
taneous developments of inexpensive, lower-power-consuming semi-
conductor read-only memories, and the concept of distributed arithmetic
blocks?? in which ROMs are used to implement digital filters. In a pi-
oneering study R. B. Kieburtz* recently estimated that in a particular
application a saving of about 30 percent in parts may be achieved over
the conventional design through the use of fourth-order sections using
saturation arithmetic and implemented by ROMs.

Thus there is much to be gained if high-order sections can be used,
and for this to happen it is first necessary to ensure that the highly de-
structive overflow oscillations are not present in a particular design. It
is apparent that there is a useful role for an effective criterion for de-
lineating stable systems employing saturation arithmetic. It is possible
to conceive of the situation where such a criterion is incorporated in the
early design, i.e., the criterion is introduced as a constraint in the ap-
proximation problem. The other possibility of an arithmetic different
from saturation arithmetic to contend with overflow is not pursued in
this paper.

There do exist many such criteria in the literature on the stability of
a class of nonlinear feedback systems (i.e., the systems in the Lurie
problem?#) of which the one under consideration here is a member5-11;
the reader may consult Ref. 8 for a comparative evaluation of some of
these criteria. These criteria are in some sense generalizations of Ny-
quist’s criterion for linear feedback systems. The reader will find in Sec.
5.2 a statement, in the context of the present problem, of Tsypkin’s
criterion and the discrete circle criterion, two well-known examples of
such criteria. Unfortunately it is known that when the nonlinearity in
the system is the one associated with saturation arithmetic then these
criteria, including Barkin’s criterion,”8 are of limited utility since they
are excessively pessimistic. Examples to this effect may be found here.
Also telling is the fact that these criteria do not predict that all second-
order systems using saturation arithmetic are free of oscillations,® a fact
proven in Refs. 12-14 by arguments special to second-order systems. This
is not totally unexpected in view of the fact that the systems-theoretical
criteria apply to large classes of systems and nonlinearities and, con-
comitantly, use relatively little information (restricted to the sector in-
formation, symmetry, and monotonicity) about the nonlinearity.
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Fig. 1—Schematic of unforced high-order filter employing saturation arithmetic.

In this paper we have derived new criteria expressly designed for the
system employing saturation arithmetic. Underlying the new criteria
is the observation that certain unique passivity conditions are operative
in the case of saturation arithmetic. Both the observations regarding the
passivity conditions as well as the technique we use for deriving the
criterion are believed to be new. The main ingredient in the derivation
is the observation that the expressions associated with the passivity
conditions in periodic solutions possess remarkable structure; namely,
they are quadratic forms involving circulant matrices.

The systems considered in this paper are of the form (see Figs. 1 and
2)

m

x,,=F(z a,-x,,_,-), n=01,... (1)

J=1

Fio)

1
q

14+

Fig. 2—The saturation arithmetic nonlinearity.
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where m is the order of the system, {a;} are the coefficients, and F(-) is
a nonlinear function associated with saturation arithmetic, namely

Flo)=0¢ if|o| <1
=sgnoif|s| =1 (2)

It is tacitly assumed that the underlying linear system in eq. (1) is ab-
solutely stable, i.e.,

A — f‘,l a;jAmi = O forall |A| = 1. (3)
=

Thus any nontrivial solution of eq. (1) will necessarily have either 1 or
—1 as an element and consequently such solutions are referred to as
overflow oscillations. Note that we are following convention in ignoring
quantization effects in the description of the filter in eq. (1); in investi-
gations of large-scale oscillations it is natural to focus on the gross non-
linearity.

The main result of this paper (Sec. 2.4) is simply stated: for a given
system of order m with coefficients {a;}, we associate two polynomials
of degree m in cos 6, namely,

p1(6) =1—cosf — f‘, aj{cos jO — cos (j —1)6} (4)
=1
and
p2(f) =1+ cosf — f ajicos jO + cos (j — 1)6}. (5)
j=1

If any linear combination of the polynomials with nonnegative weights
is positive for all f in [0,7] then the system in eq. (1) with arbitrary initial
conditions does not admit any nontrivial periodic solutions. Certain
generalizations of this criterion are derived in Sec. VL.

In Sec. 2.5 (“How To Use The New Test”) we show that the criterion
may be used in a straightforward manner by one of two methods. The
first method calls for plots of p1(8), p2(#) and p1(8)/p2(8) for @ in [0,x].
The second requires the consistency of a set of linear inequalities to be
checked. The second method may also be used for the generalized cri-
terion in Sec. V1.

In Sec. III we examine three classes of special systems in detail. The
results for the following canonical example! are typical: in a fourth-order
system the poles are taken to be all real and repeated at p where |p| <
1. For |p| = 0.669 overflow oscillations are proven to exist. Tsypkin’s
criterion and the circle criterion guarantee the absence of oscillations
for | p| <0.384. The new test guarantees the absence of oscillations for
|| < 0.610.
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In Sec. IV we apply the test to an eighth-order filter in the TDM-FDM
translator, an extensively studied application of digital filtering. We find
that this system can be lumped into two fourth-order sections employing
saturation arithmetic, neither of which can sustain overflow oscillations.
Both sections fail Tsypkin’s criterion and the circle criterion tests.

Finally, in Sec. V we prove that the new criterion (i) easily gives the
well-known result that overflow oscillations do not exist in second-order
sections, and (ii) subsumes Tsypkin’s criterion.

Il. THE CRITERION
2.1 Passivily properties

On account of the special form of the nonlinearity F the system in eq.
(1) possesses certain simply stated but important properties which we
interpret as passivity properties. The criterion we derive is a direct
consequence of these properties.

We may write eq. (1) as a linear system with a forcing sequence present
by defining

m m
en 2 F (z ajx,,_,-) -~ (z ajx,,_,-), n=01,... 6)
1 1
so that, from eq. (1),

m
Xp= 2 ajxp-jte, n=01,... (7
j=1

The above nonhomogeneous linear recursion is used throughout the
paper. Our procedure is to translate the important features of F(-) into
tractable constraints on {e,|.

Every solution of eq. (1) possesses the following properties.

Proposition 1:

ep(xn —xn-1)<0, n=12,... (8)
and

en(xp +x,-1)<0, n=12,... (9)
For proof we observe that if | £ ajx,—;| <1 then e, = 0 and both condi-

tions are obviously valid. If

m
3 ajx,—j>1 then x,=1from (1)
j=1

and e, <0 from (6)

and, of course, |x,—1| < 1. Thus, in this case egs. (8) and (9) are valid.
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Similarly, if Zajx,—; < —1thenx, = —1,e, > 0 and as |x,-1| <1, the
relations remain valid.

Equation (8) may be viewed as stating that the forcing term e,, has
opposite sign from (x, — x,—1) which we may interpret as the discrete
analog of “velocity.” Thus locally the forcing term acts to reduce the
velocity. Similarly interpreting (x,, + x,—1)/2 as the local “distance,”
eq. (9) states that locally the forcing term also acts to reduce the distance.
For these reasons we view egs. (8) and (9) as passivity properties.

Note that the two above conditions imply the following weaker con-
dition:

enxn <0, n=12,... (10)

We find upon reflection that the latter condition is completely equivalent
to the nonlinearity F in eq. (1) lying in the sector bounded by lines of
slopes 0 and 1:

0<F(o)/o<1 forallo. (11)

This sector information is exploited in various criteria®1! but the ad-
ditional information in eqs. (8) and (9) is not.

2.2 Equations for an oscillatory solution

We state the equations associated with every oscillatory solution of
period N of the nonhomogeneous recursion in eq. (7). We find that the
equations in matrix form involve a circulant matrix. We put into per-
spective some well-known results on circulants which are assembled in
Appendix A.

A periodic solution of eq (7) with period N has associated with it the
following set of N equations involving the coefficients {a;}, the elements
of the solution X,X5,...,Xn and the corresponding forcing terms
El,Ez, e ,EN:

Xl = a1XN +02XN_1 + ---+amXN_m+1 +E1

12
X2=a1X1+azXN+---+amXN_m+2+E2 ( )
XN = ‘IIXN—l + 02XN_2 + e+ amXN_m + EN
In matrix form, _
MX =E. (13)

The interesting feature of the N X N matrix M is that it is a circulant15-17
since it is the following polynomial in the primitive N X N circulant
matrix P (see Appendix A for definition of P):

M=I-3% qPi (14)
j=1
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The circulant matrices have been extensively studied in the past and we
are in the fortunate position of knowing a great deal of their eigens-
tructure.t In particular, the eigenvalues of M are

1- Y aje-iik2w/N, k=12 . N (15)
j=1

The eigenvectors of circulants are also known. The following remarkable
property of the eigenvectors of circulants is of utmost importance in the
paper (see next section): all N X N circulants have an identical set of
eigenvectors, i.e., the eigenvectors do not depend on the constituents of
the matrix. Thus, the eigenvectors of any N X N circulant aret:

u = 1 [e—ik(@r/N) o=i2k(x/N) _  o=i(N-1k@r/N) 1}*  (16)

k=12,...,N. Thus the real and imaginary components of the elements
of each eigenvector are sequences of equiseparated samples of a sine
function. Although these are complex vectors and circulants are not
generally symmetric, the eigenvectors of circulants share an important
property with eigenvectors of symmetric matrices in that they form an
orthonormal set, i.e.,

ll;llg = 5},[. (17)
In matrix notation,
U*U =1 (18)

where the eigenvectors {u,} have been arranged as columns of the matrix
U.

2.3 Another representation of the passivity properties

We combine the above information with the passivity properties stated
in Proposition 1 to obtain a compact and useful representation of the
passivity properties that are valid if an oscillatory solution to (1) exists.
As in the preceding section an oscillatory solution is assumed to be of
period N.

Note that we may write

(XN’XL e ;XN—I) = (XlsXQJ e ’XN)P’ = X’Pf (19)

t Recently we have had another occasion'® to use the eigenstructure of the matrix M.
Willson!® investigates the matrix M from a different angle.

I We denote the conjugate transpose by the superscript *. In the case of real matrices it
is also denoted by the superscript .
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where P is the primitive N X N circulant. Thus

3 (X = Xny) = X'(I - P))E

n=1
= X'(I - P)MX, from (13)
=X’ [I— 3 a;Pi—PN-14 %" a,-Pf—l] X (20)
=1 j=1

where in the final step we have used, in addition to the expression for
M, the relations P’ = PN~1 and PV = I. The key observation about eq.
(20) is that the matrix there, being a polynomial in P, is a circulant.

We undertake a convenient change of coordinates to diagonalize the
matrix in eq. (20). Let

Z£U*X (21)

where U is, as in Sec. 2.2, the unitary matrix of eigenvectors of N X N
circulants. Denoting the known eigenvalues (see Appendix A) of the
matrix in eq. (20) by uy, k = 1,...,N, we obtain

N N
2 En(Xp — Xp) = kgl |Zk|% Re ux (22)

n=1

Now,
Re ur, =1 — cos {k(27/N)} — § aj[cos {jk2mw/N} — cos {(j — 1)k2x/N}]
j=1

(23)

To put eqgs. (22) and (23) into the most convenient form, define the
polynomial p,(-) where

p1(#) £ 1 —cosf — };1:1 aj{cos j# — cos (j — 1)} (24)
i=1
We then have
N N
;1 E.(Xn — Xn-1) = kgl |Z|2p1(k2x/N). (25)

We proceed in identical fashion to obtain a similar expression corre-
sponding to the other passivity condition in Proposition 1. Note that

m

N
> En(Xp+ Xpo1) = X’ [1 _ § 4,pi4 PN-1
n=1

j=1
> a,-Pf—l] X (26)
j=1
Because of the previously mentioned (and crucial) property that all N
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X N circulants have identical sets of eigenvectors, the diagonalizing
transformation is same as the one undertaken previously in eq. (21).
Hence

N N
L EX,+Xp-1)= 2 IZklzRe Ak (27)
n=1 k=1

where we have denoted the eigenvalues of the matrix in eq. (26) by {Az}.
Here

Re A\;, =1 + cos {k27/N} — E aj[cos {jk2r/N} + cos {(j — 1)k2x/N}]
j=1

28
k=12,..., N. Thus for the final form we obtain )
T EnXy+ Xomt) = 3 |Za|palk2/N) (29)

where the polynomial p(-) is defined to be
pa2(@) =1+ cosb _jil ajicos jf + cos (j — 1)6} (30)

Now certainly Proposition 1 implies that
N N
> E(Xp—Xp-1)$0 and Y E (X, + X,-1)) <0 (31)
n=1 n=1

The above, together with eqs. (25) and (27), yields:

Proposition 2: If a periodic solution of period N with elements
(X1,Xs,...,Xn) exists for the recursion in eq. (1) then

N
L 124]%p1(k2n/N) <0 (32)
and

3 12| patk2n/N) <0 (33)

where Z, as given in eq. (21), is a transform of X and p(f) and ps(#), given
in egs. (24) and (30), are two polynomials in cos 0 of degree equal to the
order of the system of eq. (1).

For a fourth-order system (m = 4) the two polynomials are

p1(®) =1 +ay)—(1+a;—as)cosd — (as — as) cos 26

—(ag — ay) cos 30 — aygcos 460 (34)
and
p2) =(1—ay) + (1 —a;—ay) cosd — (az+ ag) cos 20

— (a3 + a4) cos 30 — a4y cos 40  (35)
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The polynomials for second- and third-order systems are obtained from
the above by setting a3 = a4 = 0 and a4 = 0, respectively.

In Fig. 3a and b we have plotted p,(f) and ps(#) for a particular
fourth-order system.
2.4 The main result

It is only a short step from Proposition 2 to the main result which
is
Theorem 1:If for any o; = 0 and s = 0,

alpl(ﬂ) + agpz(ﬁ) >0forall 8in [O,TF] (36)

then nontrivial periodic oscillations do not exist as solutions to eq. (1).

Proof: The proof is by contradiction. Suppose a nontrivial (i.e., X = 0)
periodic solution of period N exists and also that the hypothesis of the
theorem is valid. Then for such a solution

N N
a1 3 |Z]|?pa(k27/N) + a2 3. |Z4]*pa(k2n/N)

= £ 12| %aipi(k2n/N) + aspa(k2e/N)|

>0 (37)
from the hypothesis. However, from the passivity conditions summarized
in Proposition 2,

N N
a1 % |Ze|?pr(k2x/N) + 0 3 |Z4]%patk2n/N) <0 (38)
=1 k=1

which is a contradiction. QED.

Note that if it is desirable to know only that oscillations of a particular
period N do not exist for eq. (1) then the following is a sufficient condi-
tion:

There exist
(431 = O, s = 0 such that C!lpl(kg‘n'/N) + ang(kZW/N) >0 (39)

fork=1,2,...,N.

2.5 How lo use the new test

Given an mth-order system, there are two simple and straightforward
ways in which the above result may be used to determine whether the
system does not admit overflow oscillations.

The first method requires p1(8), pa2(f), and p1(8)/p2(8) to be plotted
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Fig. 3—Plots of polynomials p,(6), p2(8), and a;p(f) + aspa(f) for the following
fourth-order system: a; = 1.1015710, a» = —1.6571120, a3 = 0.7733805, a5 = —0.45135546.
In (c), @y = .92348761, ap = .16965636

for @ in the interval [0,7]. When such plots are available the first step is
to see if there is any 6 for which both p;() and ps(f) are negative; if this
is the case the hypothesis of Theorem 1 obviously cannot be satisfied and
the test is automatically failed. Assuming that this is not the case we find
upon reflection that the hypothesis of Theorem 1 is satisfied if and only
if

max [p1(6)/p2(0)] < min [p1(6)/pa(6)] (40)
{0] p1(6)>0,p2(6) <0} {01 p1(6)<0,pa(8) >0}

In fact, if the above is true the interval defined by the left- and right-hand
sides of (40) is not empty and the hypothesis of Theorem 1 is satisfied
by taking a; = 1 and —as to be any value in the interval.

In summary the procedure is as follows: first check to see if p; and ps
are both negative at the same point. If so, then the test is failed; if not,
proceed to determine the intervals where {p,() > 0,p2(0) < 0} and where
{p1(0) < 0,po(f) > 0}. The test is passed (i.e., no overflow oscillations exist)
if and only if the maximum of p,(#)/p2(6) in the first interval is less than
the minimum of p;(6)/p2(6) in the latter interval.

In the second method we finely discretize the interval for 6, [0,7], and
evaluate p;(f) and p3(0) at all the discrete points {6;}. Testing for the
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hypothesis of Theorem 1 then amounts to testing for the consistency of
the following set of linear inequalities

@ap [} ¢ PO) a0 pule)
“lo 1 pa(61) pa(fa) - - - pa(w)

(There is no loss of generality in assuming that the right-hand side is as
specified above.) There are standard procedures20:2! for testing for
consistency of linear inequalities. In any case, Phase 1 of any commer-
cially available linear programming package does precisely this. If a linear
programming package is used then the following (dummy) functional
may be used in the program: minimize (a; + as).

The above method is easily adapted to the generalization of the cri-
terion which is developed in Sec. VI.

]?(11...1) (41)

ll. EXAMPLES

We consider three classes of examples in some detail. In each case we
tested the criterion by following the second method outlined above. We
used a linear programming package (written in machine language) made
available to us by A. M. Odlyzko; the interval [0,7] was subdivided into
100 intervals. In every case the computation time was of the order of a
second.

3.1 Example 1: third-order system with repeated real roots

In this class of examples we take the coefficients to depend on a real
number p, |p| < 1, in the following manner:

a = _Bp! as = _3p21 az = _pH (42)

A third-order system with the above coefficients corresponds to an
underlying linear system with characteristic polynomial (A + p)3, i.e.,
the linear system possesses three real roots all repeated at —p. In the
investigation reported in Ref. 1 we found this class of systems to be in-
teresting for various reasons. Also, for |p| close to 1 the behavior of the
system is to some extent representative, at least with respect to oscilla-
tory behavior, of low-pass systems and high-pass systems, depending
upon whether p is negative or positive respectively.
In Ref. 1 we showed for system (1) that

|p| = 0.858 = period-3 oscillations exist (43)
Tsypkin’s criterion and the circle criterion (see Sec. 5.2) give
|p| < 0.500 = no overflow oscillations exist (44)
An application of the new test yields

|p| <0.785 = no overflow oscillations exist
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Thus, in this class of examples the new test makes a substantial contri-
bution in reducing the indeterminate region to 0.785 < |p| < 0.858.

3.2 Example 2: fourth-order system with repeated real roots

The class of examples considered here is a natural extension to a higher
order, m = 4, of the class considered in the previous example. Again all
the coefficients are determined by one real parameter p where |p| <
1:

a; = —4p, as=—6p% az=—4p°, az=—p! (45)

Thus in this example the underlying linear system possesses four real
roots, all repeated at —p.

By examining the natural set of four equations associated with a pe-
riodic solution of period 4, see eq. (12), it is easy to see that a periodic
solution with elements (1,1,—1,—1) exists if and only if

(ag—as) =1+ |a; — ay| (46)
Thus, we find on substituting for the a’s that
|| = 0.669 = period-4 oscillations exist (47)
Tsypkin’s criterion and the circle criterion give
|p| < 0.384 = no overflow oscillations exist (48)
Application of the new criterion gives
|o| < 0.610 = no overflow oscillations exist (49)

Thus we find that in this example too the new criterion makes an ef-
fective contribution in determining the region of stability.

3.3 Example 3: fourth-order filter for sample rate conversion

The example we consider now, a fourth-order system, was designed
originally for interpolation and filtering for a terminator in a local digital
switch.4 We have reported previously that in its original form the filter
using saturation arithmetic sustained overflow oscillations. Here we vary
one of the parameters in the design in order to estimate the modification
required to guarantee the absence of oscillations. We find that the req-
uisite variation is large. However, in the process we obtain a measure of
the effectiveness of the new criterion.

The example we consider has two pairs of complex poles

A2 = p1e*i®,  Ngq = poeti®2 (50)

(The coefficients of the system are not of much interest; however, they
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may be obtained from the information given below.) Also

p1 = 0.786427817, 6; = 37.309784226 degrees (51)
and
f> = 39.675296075 degrees

We vary p; keeping p;, 8, and 6 fixed at the above values; in the original
design p = 0.952851183.

In (46) we have given a condition for the existence of limit cycles of
period 4 with elements (1,1,—1,—1). Translating (46) to the present ex-
amples gives

p2 = 0.671 = period-4 oscillations exist (52)

Tsypkin’s criterion and the circle criterion give
p2 < 0.070 = no oscillations exist (53)

An application of the new criterion gives
p2 < 0.665 = no oscillations exist (54)

This is a rather striking example of the effectiveness of the new criteri-
on.

IV. AN APPLICATION

Here we examine a particular eighth-order system* which has been
used in an applied research project?? on a TDM/FDM translator.23 The
latter, a system for translating between analog frequency-division and
digital time-division signals, is an extensively studied application of
digital filtering. The eighth-order system has been designed to function
as a low-pass filter with a sampling frequency of 8 kHz and a cutoff fre-
quency of 2 kHz. Our object here is to demonstrate through an applica-
tion of the new criterion that it is possible to design the filter as a cascade
of two fourth-order sections both employing saturation arithmetic such
that no overflow oscillations are sustained in either section. At least as
far as overflow oscillations are concerned the margin of safety is adequate
so that small changes in the coefficients due to quantization of coeffi-
cients, for example, are not going to cause overflow oscillations to appear.
It should be emphasized that the result here is not a substitute for a
design study and the structure suggested may well turn out to be unac-
ceptable on grounds not related to overflow oscillations.

The system has four pairs of complex poles; the modulus (p;) and

* I am grateful to V. B. Lawrence for bringing this system to my attention.
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argument (£0;) of each pair is as follows:
p1 =0.5115846 , 0, = 32.870 degrees
p2 = 0.980274196, 02 = 80.828 degrees
p3 = 0.75259969-, 03 = 64.482 degrees
ps = 0.892679, 6, = 75.297 degrees

We group the first and second pairs of poles together to form one
fourth-order section and the remaining pairs to form the second
fourth-order section. The resulting coefficients of the two sections are,
respectively,

a; =1.1718731, ap= —1.4912153, a3 = 0.9075846,
ay = —0.2514954 (56)

ay = 1.1015710, as = —1.6571120, a3 = 0.7733805,
ay = —0.45135546 (57)

Both sections pass the new test. For the first section it may be ascer-
tained that with

a; = 6.0819413 and as = 0.07538601 (58)

the hypothesis of Theorem 1 is satisfied. In fact, the polynomial p1(6)
is itself positive everywhere except at 6 = 0, where its value is 0. However,
p2(0) > 0. Thus, any positive choice of a; and a; chosen suitably small
will satisfy the hypothesis of Theorem 1.

For the second section (57), a choice of a; and a3 for which a;p,(6) +
aspo(f) > 0 for all 0 is

a; = .92348761 and ay = .16965636 (59)

Plots of p1(0), p2(8), and a1p1(0) + azp2(f) for the second section are
displayed in Fig. 3.

It is noteworthy that both sections fail Tsypkin’s criterion and the
circle criterion.

V. SOME IMPLICATIONS OF THE MAIN RESULT (THEOREM 1)
5.1 Overflow oscillations do not exist in second-order systems

It is well known!213.14 that when the order of the system in eq. (1) is
two, then overflow oscillations are not sustained. The proofs of this result
are rather special to second-order systems and to the saturation arith-
metic. On the other hand, there are the frequency-domain criteria®-1!
for stability which are systems-theoretical results applicable to large
classes of nonlinearities and systems of arbitrary order. However, we may
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infer from the results in Ref. 8 that these criteria do not give the result
that all second-order systems are free from overflow oscillations.

We show that the criterion in Theorem 1 does give the well-known
result on second-order systems. Our result is given in Proposition 3. [It
is assumed that |as| < 1 and 1 — |a;| — az > 0; these relations are
equivalent to eq. (3), i.e., the underlying linear system is stable.]

Proposition 3: Let m = 2 in eq. (1). Also let
ar=(1+a;—as)>0andas=(1—a;—as) >0 (60)
Then,
a1p1(f) + aspa(6) > 0 for all 6 (61)

The proof of this result is in Appendix B. The above in conjunction
with Theorem 1 shows that oscillations are not sustained in second-order
systems.

5.2 Tsypkin’s criterion and discrete circle criterion are subsumed by new
criterion

The object here is to show that the new criterion subsumes both
Tsypkin’s criterion® and the discrete circle criterion!! when the latter
criteria are used to determine the nonexistence of oscillations in eq. (1).
The two closely related frequency-domain criteria are identical when
applied to the system in eq. (1).

Tsypkin’s criterion® is as follows in applications to systems like eq.
(1) where the nonlinearity F satisfies

Knin<F(0)/o € Kpax forall o (62)
If
(i) X ajz277/[1 — Kpin 3 ajz 7] is finite for all |z| = 1 (63)

(i) m —Re [Y aje/(1 — Knin 3 aje~/%)] > 0 for all

fin [0,27] (64)

then lim x, = 0; in particular, oscillations do not exist.

n—o

In the case of eq. (1) where F is the saturation nonlinearity,
Kpin=0 and Kpui=1 (65)

so that the effective restriction is (64) which reduces to

1- f; ajcos j0 >0 forall 6 (66)
j=1
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When (65) holds the discrete time version of the circle criterion!! is
identical to the above condition.

In Theorem 1 let a; = g = 5. Then from the defining relations for
p1(0) and ps(8) in (24) and (30) respectively, we find that

a1p1(8) + axp2(8) =1 - Zl a; cos jb (67)
=

Thus, as previously asserted, if either Tsypkin’s criterion or the circle
criterion is satisfied, i.e., (66) is valid, then the hypothesis of Theorem
1 is also satisfied.

VI. A GENERALIZATION OF THE MAIN RESULT

The reader will recall that the main result, Theorem 1, is a direct
consequence of the rather special passivity properties, stated in Sec. 2.1,
which are implied by the special features of the saturation nonlinearity
F. Another key ingredient is that the passivity conditions imply ine-
qualities on quadratic forms involving circulants. We show here that
many conditions akin to the ones in Proposition 1 are valid by virtue of
the properties of the saturation nonlinearity. All or some of these may
be used to augment the passivity conditions used so far so as to obtain
improved criteria for the nonexistence of oscillations.

The following generalized passivity conditions exist* for any [ = 1:

en(xpn —x,-) <0 n=LI1l+1,... (68)
enltn +x,-) <0 n=0L1+1,... (69)

where {x,,} is any solution of eq. (1) and {e,} is obtained from the solution
through eq. (6). The proof is similar to that of Proposition 1. Thus in
Proposition 1 we have used only a very small subset (I = 1) of all the
above conditions.

The interesting fact is that each of the expressions in the above con-
ditions summed over N, where N is the period of any periodic solution
of (1), is equivalent to a quadratic form involving a circulant. Thus if X
= (X1,Xs,...,Xn) are the elements of the periodic solution and
(E1,Es, . . . En) are the corresponding forcing terms, see egs. (12) and
(13), then

N m m
Z En(Xn - Xn—[) = X’ [I - Z a}PJ -_— P_l — Z ajP—l+j] X
n=1 =1 -

Jj=1

(70)

* The generalized passivity conditions are also valid for negative values of [ although we
do not make any explicit use of this fact.
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N m m
YE (X, +X,-)=X [I - Y aPi+ P+ Y ajP"”f] X
n=1 j=1 Jj=1

(71)

for! =1,2,....Hence by transforming X to Z where Z = U*X, U being
the unitary matrix of eigenvectors of N X N circulants, we obtain for [
=12,...

N N
gl E,(Xp—Xp1) = kgl |Zk | 2pi(k27/N) (72)
and
N N
Z:l En(Xn+Xn—I) =k¥1 |Zk|2p’t(k2ﬂ'/N) (73)
where
pi(®) 21 —cos 16 — 3 a;{cos jo + cos (j — )6} (74)
i=1
and
pi(8) £ 1+ cos 16 — E ajfcos jO — cos (j — )6} (75)
j=1

Thus p;(f) and p2(f) defined in Sec. 2.3 correspond to p1(f) and p;(6)
respectively in the present notation.

Certainly the generalized passivity condition in (68) and (69) imply
that the expressions in (72) and (73) are nonpositive. We thus arrive at
the following generalization of Theorem 1:

Theorem 2: If any convex linear combination of
p1(60),p1(6),p2(8),p5(8), . . . is positive for all 8 in [0,x], then the system
in eq. (1) does not have any nontrivial periodic solutions.

In experiments involving fourth-order systems of practical interest
we have not found the use of the above generalized criterion to make any
material difference in delineating the stable systems. In these investi-
gations we used a linear programming package (Sec. 2.5) to apply the
test in Theorem 2 with up to six polynomials (the leading six polynomials
of Theorem 2) being used. However, it is quite possible for substantial
improvements to exist in other cases.
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APPENDIX A
Circulant matrices

For completeness we collect here some of the well-known properties
of circulants which are used in the paper. The interested reader may refer
to Muir!6 and Grenander and Szego!7 for further details and applica-
tions; Ref. 15 concisely lists some of the main properties.

We let P denote the primitive N X N circulant:

0 — — — — 0 1
1 0 — — — — 0
P= 0 1 0 — — — 0 (76)
0 — — — — 1 0
Note that
PN=] (77)
and that
P =PN-1=pP-1 (78)

A polynomial of arbitrary degree in P is a circulant. An N X N circulant
C,

N-1 _
C= % P (79)
i=0
has as its eigenvalues
N-1 ..
> cje kN | =12, ...,N (80)
j=0
All N X N circulants have as eigenvectorsug, k =1, ... ,N, givenineq.
(16). The matrix U with the eigenvectors as columns is unitary, i.e.,
u*u =1 (81)
APPENDIX B
Proof of proposition 3

We prove here the assertion in Proposition 3, namely, for second-order
systems

Q(B) & (1 + a; — ag)pl(ﬂ) + (1 —ay— ﬂ,g)pg(g) >0 for all 6 (82)
For second-order systems

pi1() = (1 +ay) — (1 +a;—as) cos f§ — ascos 20 (83)
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and,
pa(@) = (1 —ay) + (1 —ay; — as) cos § — as cos 28 (84)
We find upon substitution that
q(0) = —4as(1 — ag) cos? 0 — 4a:(1 — az) cos 8 + 2(1 + a? — a?) (85)
First observe that at the corner points g is positive:
g(0)=2(1—-a;—az)?>0and q(r) =2(1+a; —az)?2>0 (86)

Through differentiation we find that minima of g(6) occur in the interior
of the region [0,7] if and only if

lai| <—2as (87)
and that at a minimum ,
cos f = —a,/2a, (88)
Evaluating g at such a point we obtain

g ="9F9D (501 +ag) + (40l - ad)] (89)

ag
>0
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