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An automatic numerical quadrature routine (ANQR) attempts to

evaluate
b
f f(x) dx

to absolute accuracy ¢ given only ¢, a, b, and a user-supplied subroutine
which calculates f(x) for any x in [a,b]. An ANQR which guarantees
success is impossible to construct, even disregarding the effects of finite
computer precision, but the problem is nonetheless of interest. A reli-
able and efficient ANQR is a necessary part of any mathematical sub-
routine library. New single- and double-precision ANQRs, QUAD and
DQUAD, have been constructed and tested. They are based on adaptive
Romberg extrapolation, with cautious error estimation. An important
practical feature is the automatic recognition of endpoint singularities,
and a change of variable to handle them. QUAD and DQUAD also rec-
ognize the presence of noise in the function being integrated, and limit
the attempted accuracy accordingly. Since guaranteed ANQRs are
impossible, extensive testing of DQUAD is presented to demonstrate
its efficiency and robustness. Comparable testing is not available for
competitive ANQRs, but performance on a standard set of test integrals
is presented for DQUAD and nine other ANQRs. DQUAD is generally
better. QUAD and DQUAD are written in PFORT, a subset of American
National Standard (ANS) Fortran. Machine-dependent constants are
obtained from the PORT library machine-constants programs. A por-
table package of storage allocation routines is used.

I. INTRODUCTION

The development of automatic numerical quadrature routines
(ANQRs) has been a popular research topic for many years (see refs. 1-6,
8,9, 11,13, 14). An ANQR is a routine which attempts to calculate



with absolute error, or perhaps relative error, no larger than ¢, given e,
a, b, and a procedure which calculates f(x) for any desired x in the in-
terval [a,b]. It is assumed that no other information about the function
f is available. The problem is perhaps the more interesting for being an
impossible one. Any numerical quadrature routine must estimate the
integral by sampling the function f at a finite number of x’s. A guaran-
teed automatic integration algorithm is clearly impossible for general
f, even for analytic f. For example, given any deterministic rule for nu-
merical quadrature, one can readily find constants « and 3 so that the
quadrature rule calculates

1
Va f e~alx—h)? dx
0

to be close to zero. (Choose « to be large and positive, and 3 to be between
sampling points.)

Although the general problem is impossible, one feels that an ANQR
which works for “reasonable” functions should be feasible, and much
work has been directed at this goal. There has been great confusion and
difficulty in comparing the various candidates for ANQRs, partly because
the domain of the problem is undefined; a reasonable definition of a
“reasonable” function is itself difficult.

In constructing an ANQR, an author is forced to make decisions about
the class of “reasonable” functions, in effect to define what is a “rea-
sonable” function. These decisions strongly affect the efficiency and
robustness of the ANQR. For example, to avoid completely missing an
isolated peak in f(x), the interval [a,b] must be sampled finely. However,
a fine sampling is inefficient for easy functions. Another example is a
function which is flat over 99 percent of the interval, and which has 200
oscillations in the remaining 1 percent. If an ANQR is able to distinguish
this function from one which is merely noisy over 1 percent of the in-
terval, the ANQR is likely to be inefficient on easy functions and very
inefficient on noisy functions. An ANQR which gives up relatively quickly
on this function, calls it noisy, and returns an error message, may be
preferable, especially since many such functions are the result of a user’s
programing errors.

A compromise strategy, used by QUAD, is to isolate all assumptions
about the “reasonable” class of functions in a few parameters. Default
values of these parameters can be chosen which will be suitable for most
users. More knowledgeable users can use other values. With the default
values, QUAD strikes what the author considers to be the proper balance
between efficiency and robustness.

Since no a priori information about f(x) is available,

j; * f(x) dx
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must be evaluated by sampling f in [a,b]; the error in the calculated in-
tegral is usually estimated by comparing two or more calculated values
for the integral. ANQRs typically have a sequence of quadrature rules
Q,, depending on a, b, and the function f, such that

lim@Q, = fbf(x) dx
n—o a

if the calculations are done in infinite precision, and if f is at least
piecewise continuous. Most ANQRs have no better error estimation
procedure than to accept @, whenever |Q,_; — @,| < ¢, a procedure
fraught with danger. QUAD has a much more stringent error estimation
procedure, described in Section IL

Many functions to be integrated are easy to integrate over some parts
of the interval and difficult over other parts. It is frequently more effi-
cient to sample more densely in the difficult regions, if possible. ANQRs
which attempt to do this are called adaptive—the points at which f is
sampled depend on the function being sampled. An adaptive ANQR must
include some strategy for how to concentrate the sampling points. Es-
sentially all competitive ANQRs are adaptive.

The usual adaptive procedure is to integrate an interval with quad-
rature rules @, forn =1,2,..., N, where N is fixed. §, may be, for ex-
ample, Simpson’s rule with 2N intervals, or Gauss-Legendre quadrature
with n sampling points. If convergence has not been obtained, the in-
terval is divided in half, and each half considered separately. For effi-
ciency, one wants quadrature rules for which all sampling points for the
whole interval are also used for the half-intervals. If the value of N used
depends on the results @, for n < N, the method is sometimes called
doubly-adaptive.

Most ANQRs do not do well on integrals with endpoint singularities,
but users’ integrals are frequently of this type. QUAD has a provision
for recognizing endpoint singularities and for making a change of variable
to facilitate the integration. This feature also works well on another
important class of functions, those decaying steeply away from one or
both ends of the integration interval. This automatic change of variable
technique is a significant improvement over previous ANQRs.

Most ANQRs cannot cope with noisy functions; if there is too much
noise in f, most ANQRs fail in an unpleasant, uneconomical way. Con-
vergence will be at best very slow, so that the ANQRs will stop only when
their predefined limit on calls to the function evaluation procedure has
been exceeded, with no indication that the problem is noise rather than
a noise-free but unruly function f. QUAD recognizes noisy functions, sets
a warning flag, and integrates only to an accuracy commensurate with
the estimated noise.

Finally, there is a large difference between an algorithm for numerical
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quadrature and a properly-written ANQR suitable for a program library.
Provision must be made, for example, to stop trying to integrate a
function if it has been sampled more than some user-defined number
of times. The finite machine precision of the computer involved must
be taken into account. Temporary storage must not be allowed to over-
flow. Provision for error returns must be made.

The basic idea behind QUAD is adaptive Romberg extrapolation®
combined with cautious error estimation®. The first such combination
was the program CADRE, written by deBoorf. CADRE and QUAD are su-
perficially similar, but differ in almost every detail. The major im-
provements incorporated in QUAD include the following, which will be
covered fully in Section II.

(i) Noise. QUAD detects noisy functions and quits gracefully.

(ii) Endpoint singularities. QUAD detects singularities in f(x) at the
endpoints, a and b, and automatically makes a change of variable to
reduce the strength of the singularity.

(iii) Mesh sequence. QUAD uses the mesh sequence 1, 2, 3, 4, 6, 8, 12,
16,..., instead of 1, 2, 4, 8, 16, . . ., giving a higher effective order of
convergence.

(iv) Portability. QUAD is written in PFORT,!® a portable subset of ANS
Fortran. Machine-dependent quantities are defined with the PORT?
machine constants. A portable Fortran stack” is used for temporary
storage.

Section IT discusses the algorithm of QUAD and DQUAD more fully.
Section III compares the performance of DQUAD and nine competitive
ANQRs on a standard set of test integrals, and also presents the results
of some more serious testing of QUAD. Section IV discusses the imple-
mentation of QUAD, including portability considerations.

il. QUAD
2.1 Romberg extrapolation

QUAD is based on Romberg extrapolation of the composite trapezoidal
rule.5 The formulas are standard, but will be repeated here for com-
pleteness. Let ny, no, . . . be an increasing sequence of positive integers,
and let h; = (b — a)/n;. Then the composite trapezoidal approximation

to
I= fbf(x) dx

T(h) = éhf[f(a) +FB)] + R gll fa+ mhy)

is
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If f has 2k + 1 continuous derivatives in [a,b], then the Euler-Maclaurin
sum formula shows that

k
T(hi) =1+ 3 cph?™+ O(h¥+)
m=1

where the ¢, depend only on a, b, and f, not on k;. A higher-order, al-
though not necessarily more accurate, estimate may be obtained by
combining two trapezoidal estimates via Richardson extrapolation,
eliminating the c;h? term. Let T§ = T'(h;).
T — T
hi/hi-1

=T+ O(hihd)
Still higher-order estimates may be generated recursively. The general
formula for generating T’} is

T{l) = TBZ) +

_ _ T+D — 7
T4 = T+ 4 Zh-l T k-l
B T ht, -1
It is customary to think of the T-values as a table, viz.
T
T62) Til)
T&S) TF) T&l)
T64) TiS] T§2) T:SI)
TH TH T TR TP

The classical Romberg method uses the sequence 1, 2, 4, 8, . . . for the
n;’s.

Since at any time the right-most element, the “tip,” of the T table is
of highest order, it is expected to be most accurate, and frequently is so.
Early Romberg programs! tested for convergence only by checking
successive tip elements of the table. There are several arguments against
this practice. Firstly, for the tip there is no way to obtain an error esti-
mate with any theoretical foundation. Secondly, highest-order is not the
same as most accurate. Even for analytic functions, if the step size used
at the beginning of the T table is too large, the tip of the table may not
be the most accurate value. Thirdly, for functions f(x) which do not have
enough derivatives, the tip of the T table is not of higher order than the
elements to the left. For example, if f(x) = x2, for 0 < a < 1, the low-
est-order term in each column of the kth row is O(he*1). In practice it
is frequently found that lower-order columns are more accurate than
the tip element.

AUTOMATIC NUMERICAL QUADRATURE 1655



2.2 Cautlous error estimation

The idea of cautious error estimation comes from Lynch.? It is a simple
and seemingly unobjectionable idea, but is not adopted by most authors
of ANQRs. A cautious error estimation procedure believes an error esti-
mate only if there is some evidence that the convergence rate of suc-
cessive quadrature rules is close to the theoretical rate. Cautious error
estimation is particularly easy for Romberg extrapolation. The two were
first combined by deBoor.® QUAD’s version of catious error estimation
is similar in spirit to deBoor’s, but is more cautious and is different in
all details.

It has been proven! that, if f is merely Riemann-integrable, each col-
umn of the T table converges, as does each diagonal. If f has enough
continuous derivatives,

TP =1+0(h?... hi)

These theoretical results provide a basis for cautious error estimation.t?
Lynch’s suggestion was to consider three successive trapezoidal rule
estimates, and form the ratios

Tg) —_ T6i+1)
TéH—l) _ T‘(’i+2)
= h2 !+1 + O[ h2 + hl+1)2]
h’H‘] - h’e+2 + O[(h'1+1 1+2)2]

If the step sizes are small enough, the higher-order terms are small
compared to the second-order terms, and

h ht+l
h’H-l h1+2

The calculated R§” being close to this theoretical value is good evidence
that the convergence rate of the column is proper, and that the error in
T§ is dominated by c,h?. Then the Runge estimate of the error,3

I T(Si+2) _ T6i+l)
!+1/h‘1+2

is likely to be a good estimate. If the calculated R§ is not close to the
theoretical value, the Runge estimate of the error is likely to be an un-
derestimate.

Similar calculations are done in higher columns. The general formula
for R} is

R((}i) =

RB:')

|T6:'+2) -1 = |T3i+2) - Tii+1)|

B TLi) - T£i+1)
L - T};‘H) _ TL[+2)
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As all the h’s approach zero,

2 2 2
(i) ~ i+1 h; - h:‘+k+1
Ry =

2 2 2
h£+k+1 hH—l - hi+k+2

The Runge estimate of the error in T is

T};’+2) — T};"H]

T2 — [ ~
1T} | hi?/hiyp+® — 1

A more conservative estimate of the error in T} *?,
|+ — 1| ~ | T+ — T+

is often used.

QUAD calls column k asymptotic if R} is close enough to the theo-
retical value; the tolerance is 5 percent of the theoretical value for k =
0, 10 percent for k = 1, 15 percent for k = 2, and so on. Column k is al-
most asymptotic if R} is between 0.25 and 4.0 times the theoretical
value, except for column 0, where the criteria are 0.75 and 1.25.

If columns 0 through k are asymptotic, QUAD believes the Runge es-
timate for the error in the kth column. If columns 0 through & — 1 are
asymptotic and column % is almost asymptotic, QUAD believes the
conservative estimate for the error in the kth column, but no higher
columns are believed. (The only exception is that, if the column 0 is only
almost asymptotic, the next column is believed if it itself is asymptot-
ic.)

This describes the basic cautious error estimation procedure for QUAD.
There are a few more details, however. QUAD does not believe any answer
based on less than two extrapolations, or five sampling points, per in-
terval. If two successive entries in a column give the same value to within
a few rounding errors, as occurs when integrating a constant function
or in doing very accurate integration, then the column does not appear
to be asymptotic. The conservative error estimate for the column is be-
lieved anyway. If an interval has a singularity, either real or due to
rounding errors or truncation errors in the function subprogram for f(x),
no column will appear asymptotic. Then a nonasymptotic answer in the
first column will be accepted after several extrapolations, with the very
conservative error estimate

|T6¢'+2] _ Il ~ 21T6i+2) _ TSHUI + 2|T6i+1) — Téi)l

Finally, at any stage one column of the T table has only two entries in
it, and cannot be judged to be asymptotic or nonasymptotic. The con-
servative error estimate is accepted for such a column if the previous
column is asymptotic.
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2.3 Step size sequence

The above discussion applies to any sequence of step sizes. The clas-
sical Romberg sequence uses step sizes (b —a)/n, withn =1, 2, 4, 8, 16,
. . ., halving the step size and doubling the number of sampling points
at each new extrapolation. Several alternative sequences have been
suggested which do not cause the number of sampling points to rise so
rapidly. QqUAD uses n’s of 1, 2, 3, 4, 6, 8,12, . . .; another reasonable pos-
sibility is 1, 2, 8, 4, 5, 6, 8, 10, 12, . . . . These sequences double the number
of sampling points every second and third extrapolation, respectively.
The classical sequence has the advantages that the bookkeeping is very
easy and that all old sampling points are reused if the interval is divided
in half. The latter is essential for efficiency.

QUAD’s sequence uses fewer sampling points to get the same accuracy,
as suggested by Bulirsch and Stoer.2 The bookkeeping is more compli-
cated than for the classical sequence. For example, it is only convenient
to divide the interval in half after the fourth, sixth, eight, . . . extrapo-
lations if all the old sampling points are to be reused.

2.4 Adaptive procedure

For an adaptive Romberg extrapolation routine, it is necessary to
decide when to do another trapezoidal rule and another extrapolation,
and when to divide the interval. The minimum number of extrapolations
for QUAD is 4, using step sizes (b — a) down through (b — a)/6, and a
total of 9 sampling points. This default lower limit may be raised by the
user (see Section IV). Because of roundoff, unlimited extrapolations are
impractical—the highest-order columns will not be asymptotic and will
not be believed. The maximum number of extrapolations allowed by
QUAD is 6; DQUAD allows 8. The default limit may be changed by the user
(see Section IV).

If the requested error tolerance for an interval has not been achieved
after 4 extrapolations, QUAD goes on to 5 and 6 extrapolations if the first
column is asymptotic; after 6, it goes on if the second column is also as-
ymptotic. This procedure is biased in favor of doing more extrapolations,
and trying to get higher-order convergence, for smooth functions.
Functions which are not smooth, or which do not appear asymptotic
because of too large a step size, have the interval divided instead of
having more extrapolations done. If QUAD decides to divide an interval,
the lower half is stacked, and the upper half is attempted next.

2.5 Change of variable

Functions with singularities are expensive to integrate without special
methods. Since the interval containing the singularity will have a
nonasymptotic T table, convergence will be limited to the first column.
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For example, it can be shown!? that for

1 1
I= j; f(x) dx = f xag(x) dx 1)
0
where g is smooth, and f(0) is set equal to zero,

Tih)=I+ ¥ c,h?2m+ 3} d,hmta (2)
m=1 m=1
The dominant error term for the first column of the T table is likely to
be the d,h 1+« term, so convergence is slow. If f(0) is not zero, another
infinite sum is added to (2), like the second sum, but with « = 0.

For such an endpoint singularity, the error is of a simple form. It is
feasible to recognize this type of singularity in the same way that the
cautious error estimation procedure recognizes asymptotic, or h2™ be-
havior. De Boor€ does exactly this, estimates an a, and then extrapolates
using eq. (2). The success of this procedure depends critically on how
accurately a can be estimated. If f(0) is not set equal to zero, de Boor’s
method will not work well. For logarithmic singularities, the error ex-
pansion corresponding to eq. (2) is more complicated; de Boor makes
no attempt to recognize logarithmic singularities.

After recognizing an endpoint singularity, QUAD uses a different
procedure. Suppose that the integral is as above, where g is well-behaved.
Then the leading error term is O(h!*<) if =1 < a < 1. In the second and
higher columns, the O(h2) term is gone, so the leading term is O(h!**)
for —1 < « < 3. QUAD looks at ratios of T table entries in the second and
third columns to recognize x@ behavior, and estimates the value of a.
QUAD then makes a change of variable x = u", where n is the closest
integer to 6/(1 + @), giving for eq. (1)

1 1
f nu™"1f(un) du = ‘f nun(+e)—lg(yn) du
0 0

(The change of variable is somewhat more complicated if the limits of
integration are not 0 and 1.) The new integral has a singularity of the
form uf, where £ is between 4.5 and 5.5, if @ is close to the true a. The
singularity in the transformed integral is lessened, allowing convergence
in the second or third columns of the T table. Convergence is likely to
be much quicker. For rapid convergence, the method does not rely on
the estimated & being close to the true « or upon eq. (2) holding, or indeed
on there being any singularity at all at the endpoint.
Steeply decaying integrands such as

1
100 f e=100z dx
0
look like step functions when coarsely sampled. A step function is an x°
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singularity, since f(0) = 0, so a change of variable is made with n = 6.
Singularities of the form x? log (x) will look sufficiently like x* singu-
larities for some a, so that the transformation will be made. (It is not
obvious that this is true, but tests have strongly indicated that it is.)

If @ is close to —1, n can become large. QUAD requires n to be less than
a maximum value determined by the precision of the computer; this
value was 22 for tests reported in Section III. The change of variable is
not made if « is less than —0.99.

To facilitate the change of variable, QUAD starts by dividing the in-
terval [a,b] into three equal intervals, and reverses the upper third.
(Three is the default number, and may be changed by the user—see
Section IV.) On the lower third and the reversed upper third, a left-hand
endpoint singularity is recognized by a pattern of “fail on whole interval,
succeed on right half-interval” twice in a row, and is followed by the
estimation of a. If the two estimated values for @ from the second and
third columns of the T table do not agree to within 0.1, no change of
variable is made. No change of variable is attempted except at the two
endpoints of the originial interval.

2.6 Noisy functions

All procedures for evaluating f(x) are inherently noisy, since they are
implemented on finite-precision machines. The value returned is not
the exact f(x), but f(x) [1 + ri(x)] + ra(x), where r1(x) and ro(x) are noise
functions. Ideally, r, could always be no larger than a few rounding errors,
and ry could be no larger than a few times the smallest positive ma-
chine-representable number. Noise of this size should not affect the
performance on an ANQR unless ¢ is very small, of the order of ra(x) or
flx)ri(x).

Protecting against this magnitude of noise is quite easy, although few
ANQRs bother to do so. QUAD estimates a priori the sizes of ry and ro,
based on the machine precision, and requires all error tolerances to be
at least as large as the estimated rounding error.

Protecting against significantly larger noise is more difficult. A suc-
cessful ANQR should recognize the presence of noise, estimate its mag-
nitude, and evaluate the integral in a “reasonable” number of function
evaluations with an accuracy which is “nearly” as good as possible.
(There is of course a trade-off between “reasonable” and “nearly.”) If
typical values of ro(x) or of f(x)ri(x) are much larger than ¢/|b — a|, most
ANQRs will fail in an unpleasant, uneconomical way. Convergence will
at best be very slow, so that the ANQRs will stop only when their prede-
fined limit on calls to the function evaluation procedure has been ex-
ceeded, with no indication that the problem is noise rather than a
noise-free but unruly function f.
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SQUANK!! makes a reasonable effort at recognizing noise. However,
it attributes any nonstandard behavior to noise, so that some unruly but
noise-free functions are called noisy.

Qualitatively, one may say that a function is noisy if, on a “sufficiently
small” interval, the values of the samples of f are “not smooth enough.”
An algorithm consists of the defining of “sufficiently small” and “not
smooth enough,” followed by estimation of the magnitude of the noise
and by further action to avoid using an excessive number of function
values.

In QUAD, no answer is believed unless the function has been sampled
with adjacent samples no farther apart than h,|b — a|; h; is supposedly
small enough so that all structure may be seen by sampling with this
spacing (h, is parameter HSAMPL of Section IV). The default value of
hs is V5. Noise is not estimated unless adjacent samples are no farther
apart than h,|b — a|, with h,, = h,/32. Choosing h, smaller would re-
quire more function values; choosing h, larger would increase the risk
of calling a function noisy when it is noise-free but rapidly varying.

When a function is noisy, QUAD will usually fail on large intervals, and
then attempt smaller and smaller subintervals. When integration on a
subinterval has failed, and adjacent samples are no farther apart than
h,|b — a|, the noise in f is estimated. First, the second differences of the
samples of f on the subinterval are formed, e.g. f(x) — 2f(x + h) + f(x
+ 2h). If the sequence of second differences has no more than two sign
changes, noise is not assumed to be present. If there are three or more
sign changes, noise is assumed to be present, since the function has too
much structure over too small an interval, and the estimated answer and
error for that subinterval are accepted as being as good as possible.

When noise has thus been found to be present, the second differences
are assumed to be essentially all noise, and the magnitude of the noise
is estimated as the average of the absolute values of the second differ-
ences. All succeeding subintervals are attempted with accuracy not ex-
ceeding the estimated noise magnitude times the length of the subin-
terval. If other subintervals are found to be noisy, the largest noise
magnitude is used.

2.7 Error allocation

QUAD attempts to integrate the upper one-third of [a,b] with error
tolerance ¢/3. Then the following procedure is used to assign an at-
tempted accuracy for each interval. When integration on an interval is
attempted with error tolerance ¢, and fails, the upper half is attempted
with error tolerance ¢;/2. When integration on an interval succeeds, the
absolute value of the estimated error is added to a running sum, and the
top interval is the stack is attempted. If the top interval is of length éx,
the total length of intervals remaining to be integrated is x,, and the sum
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of the absolute values of the error estimates so far is ¢;, then the error
tolerance assigned to the top interval in the stack is (e — €;) 6x/x1.
However, the error assigned to any interval is required to be at least as
large as ¢/1000.

If an answer is returned for an interval with an error estimate which
is larger than the requested error, but less than the estimated roundoff
or noise, that answer and error are accepted, and a warning flag is set.

. TESTING AND COMPARISON OF ROUTINES

Testing is necessary to evaluate the efficiency and robustness of an
ANQR. T'ypically the proposer of an ANQR generates an algorithm, codes
a simple program, and tests the routine on a few integrals of the pro-
poser’s own choosing. It is not unusual for all the test integrals to be done
well by the ANQR. As a reqult, the prospective user has no way of eval-
uating the quality of the ANQR without performing extensive testing.

Some improvement was evidenced in the work of Kahaner,® who tested
many ANQRs on the same set of 21 test integrals. The same set was used
by de Boor® for testing his ANQR. At least three of the 21 are not appro-
priate test integrals, however, because the results are algorithm-de-
pendent in an unrepresentative way.

Two examples will make this clear. First consider

J;l f(x) cos (amx) dx

where f(x) is any smooth function. QUAD, which divides according to the
1, Ys, Ya, Y4, Y5 sequence, will fail for « near 36, but not for « near 32. [For
a near 36, the regular sampling procedure of QUAD samples only near
the peaks of the cosine, so the integrand looks like f(x).] CADRE,® which
divides according to the 1, 15, Y/, Y5 sequence, will fail for « near 32, but
not for a near 36. A single test integral with a large @ may not compare
ANQRs fairly. Test integrals 13 and 17 of Kahaner (see Table I) are of
this type, each having about 50 full cycles.
Second, consider

1
vVa f e—a(x=B)? dx
0

for a large and positive. Depending on the choice of 3, this can be either
easy or hard for a particular ANQR. If the peak comes sufficiently near
a sampling point, adaptive ANQRs can zero in on the peak and integrate
it accurately, although many sampling points will be necessary. If the
peak does not come sufficiently near a sampling point, the integrand
looks like zero, and the ANQR fails. For proper comparison of ANQRs, any
single « is insufficient. Test integral 21 of Kahaner is of this type.
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Table | — Kahaner’s 21 Test Integrals

No. a b answer f(x)
Easy
12 0 1 +0.7775046341 xf(e*=1)
11 0 1 +0.3798854930 1/(1 + e*)
1 0 1 +1.7182818284 ex
10 0 1 +0.6931471806 1/(1 + x)
4 -1 1 +0.4794282267 0.92 cosh (x) — cos (x)
8 0 1 +0.8669729873 1/(1 + x*)
5 -1 1 +1.5822329637 1/(x*+ x2+ 0.9)
20 -1 1 +1.5643964441 1/(x2 + 1.005)
Steeply
decaying
15 0 10 +1.0000000000 25e —25x
14 0 10 +0.5000002112 V50 exp (—50mx?)
16 0 10 +0.4993638029 50/[p(1 + 2500x2)]
Singular
6 0 1 +0.4000000000 x3/2
3 0 1 +0.6666666667 x1/2
2 0 1 +0.7000000000 0,x<0.3;1,x >03
7 0 1 +2.0000000000 0,x=0;x"12x>0
19 0 1 —1.0000000000 0,x =0;In (x),x >0
Oscillatory
18 0 P +0.8386763234  cos [cos x + 3 sinx + 2 cos 2x +
3 sin 2x + 3 cos 3x]
9 0 1 +0.4794282267 2/[[2 + sin (10px)]
17 001 1  +0.1121395696  50[sin (50px)/(50px)]?
13 0.1 1 +0.0090986453 sin (100px)/px
Isolated peak
21 0 1 +0.2108027354 sech?[10(x —0.2)] + sech[100(x —

0.4)] + sech®[1000(x — 0.6)]

Note: p = 3.14159, P = 3.1415927.

Kahaner did not test noisy functions, and did not ask for impossibly
small error tolerances.

3.1 Testing on the Kahaner 21

The Kahaner 21 are listed in Table 1. They have been grouped ac-
cording to type; within groups they are ordered approximately by dif-
ficulty. Tables II, IIT, and IV summarize the results of ten ANQRs on the
91 test integrals, for requested error tolerances 10~3, 1076,and 1072, In
each table, the first column is the integral number; succeeding columns
are the number of sampling points used by each ANQR. An F indicates
that the ANQR was unsuccessful, and an asterisk that the ANQR used
the fewest sampling points of any successful routine. (For these tables
only, “successful” means that the true error of an integration is no more
than 20% higher than the requested error, since some ANQRs failed by
a small amount.) Columns labeled ROMB through RBUN are based on
the number of sampling points reported by Kahaner? for seven of his
highest-quality ANORs, and were obtained on a cDC 6600. Column
CADRE is from de Boor,8 and the integrals were performed on a CDC 6500.
Columns QSUBA and DQUAD were computed especially for this com-
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Table Il — Number of sampling points used by each ANQR;
attempted absolute accuracy 1073

Inte-
gral ROMB SIMPSN SQUANK QNC7 QNC10 QABS RBUN CADRE QSUBA DQUAD

12 17 19 25 37 13 5* 9 7

11 17 19 25 37 13 5* 5* 7
1 17 19 25 37 13 5* 9 ; 13

7

7

10 17 19 5* 9

WWWPWOWOL
3]
o
9]
]
—
w

4 17 19 25 37 13 5% 17 13
8 17 19 25 37 13 5* 9 15
5 17 19 9* 25 37 13 11 33 15 17
20 17 31 9* 25 37 13 11 17 15 19
15 513 103 53 85 109 85 527 88 63 52*
14 1026 103 49* 97 127 85 51 62 3F 52
16 2049 115 53 121 163 109 87 81 127 48*
6 17 19 9 25 37 13 5* 9 7 16
3 65 55 9F 49 55 77 211 17 15* 17
2 257F 115 29F 121 163 141 271 53* 771 85
7 B8193F 235 105F 241 361 133F 211 33 517 26*
19 4097 175 45 217 307 181 211 137 31 28*
18 129 139 53* 85 73 T 39F 107 63 61
9 33* 163 81 97 145 149 79 183 127 101
17 1025 151 57* 165 307 149 109 512 265 185
13 1025 19F 429 49F 865 573 533 1028 255* 381
21 4097 127 17F 97 127 77 65 108  333F 49*
* = best of all successful results
F = failure

parison, on a Honeywell 6070. Double precision was used so that the
relative machine precision would be comparable to that of the CDC
machines. QSUBA!4 has provision only for relative error; for these tests
arelative error was requested which gave the appropriate absolute error
request.

It is important to notice that some of the failures are due to an ANQR
deciding to stop because of excessive sampling; these failures are far less
reprehensible than the others because an error return could have been
made, and an incorrect answer rejected. For RBUN through ROMB, this
information can only be inferred since Kahaner did not list any error
returns. No such failure occurred for CADRE or DQUAD; QSUBA has no
built-in maximum.

ROMB! is a standard Romberg extrapolation routine, using the stan-
dard 1, 1, Y4, Ys sequence. It is not adaptive. It stops, apparently, after
8193 sampling points of f(x). Thus only one of its failures is serious.
ROMB requires at least 17 points before believing any answer.

SIMPSN® and SQUANK!! are adaptive Simpson’s rule routines, ap-
parently with cutoffs at 5003 and 5001 points, respectively. These rou-
tines are decent at low accuracies, but are not of high-enough order to
be competitive at high accuracy. SQUANK also assumes that an improper
convergence rate is due to noise in the function, rather than to a singu-
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Table Ill — Number of sampling points used by each ANQR;
attempted absolute accuracy 10~

Inte-

gral ROMB SIMPSN SQUANK QNC7 QNC10 QABS RBUN CADRE QSUBA DQUAD
12 17 19 9 25 37 13 5* 9 7 13
11 17 19 9 25 37 13 11 9 T* 13
1 17 55 17 25 37 13 21 17 T* 19
10 17 55 21 25 37 13* 31 17 15 19
4 17 55 25 25 37 25 5F 33 15* 19
8 33 67 29 25 37 25 41 17 15* 21
5 65 163 65 49 37 49 59 49 31* 41
20 65 163 49 49 37 49 49 33 31* 33

15 2049 343 213 133 145 133 4117 140 63* 98
14 2049 331 169 133 163 109 91 89 3F  86*
16 8193F 511 273 181 181 145 141 145 255 96*

6 129 91 29* 61 73 65 383 65 31 34
3 4097 199 105 157 217 145 423 33 63 32*
2 B8193F 235 29F 241 361 261 271 119* 3351 125

7 8193F 1027F 1153F 241F 361F 89F 587F 129 5925 40*
19 B8193F 499 257 241 361 105F 403 233 795 38*

18 257 547 301 181 199 206 195 177 63* 117

9 129 871 377 289 397 313 267F 409 266 285
17 2049 2275 697F 385F 1009 829 697 1237 2556* 547
13 2049 19F 2549 15256 1639 1449 2383 1449 2566* 7157

21 8193F 691 185F  205F 253F 197F 327* 189F 525F 127F

* = best of all successful results
F = failure

larity, and so quits early on some of the test integrals. SIMPSN requires
at least 19 points, and SQUANK 9.

QNC7 and QNC108 are adaptive Newton-Cotes routines, with 7- and
10-point rules, respectively. (QNC10 was called QUAD in Ref. 8.) They
performed quite well, failing only on some of the most difficult integrals.
QNCT7 requires at least 25 points, and QNC10 at least 37, somewhat ex-
cessive for the easiest integrals.

QABS!3 combines Romberg and Curtis-Clenshaw quadrature, and
performed quite well, failing only on some of the most difficult integrals.
It requires at least 13 points.

RBUN? is an adaptive Romberg extrapolation routine, using the
standard sequence. It apparently has a cutoff at 5001 points. RBUN re-
quires at least 5 points, and seems to be somewhat unreliable.

Kahaner recommended any of QNC7, QNC10, or QABS as a library
routine. He did not have CADRE, QSUBA, or DQUAD available to test.

CADRES® is more recent than the ANQRs just discussed. It uses a version
of cautious Romberg extrapolation based on the standard sequence. It
also includes provision for recognizing a singularity of the form x¢, es-
timates o numerically, and extrapolates using the estimated «. CADRE
requires at least 5 points. On the test integrals, it seems somewhat more
efficient than QNC7, QNC10, and QABS on nonsingular integrals and
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Table IV — Number of sampling points used by each ANQR;
attempted absolute accuracy 10™°

Inte-

gral ROMB SIMPSN SQUANK QNC7 QNC10 QABS RBUN CADRE QSUBA DQUAD
12 17 55 33 25 37 13* 39 17 15 19
11 33 151 33 25 37 25 39 17 15* 19
1 17 163 65 25 37 25 73 17 15* 23
10 65 271 97 37 37 49 123 33 15* 25
4 33 331 105 25 37 8 139 33 15* 26

8 65 463 149 73 73 97 129 65 31* 45
5 129 487 289 97 73 181 239 129 31 73
20 129 487 249 97 73 146 185 129 31 49

15 4097 1483 1145 241 217 281 5001F 215 127* 138
14 4097 1123 797 241 253 245 259 202 3F
16 8193F 2467 1649 397 343 397 1435 337 256  192*

6 2049 427 161 133 163 137 1423 529 63- 46*
3 B8193F 883 513 289 361 289 1595 129 266 42*
2 B8193F 235 29F 241F 361F 381 271 173 5931 165*
7 8193F 4279F 5001F 589F 685F 89F 2467F 625 11325 70*
19 8193F 2203 1969F 421F 415F 89F 1571 369F 3495 80*

18 513 2923 1589 409 343 589 753 417 127* 217
9 257* 3967 2625 697 757 893 883 786 7656 473
17 4097 5003F 5001F 1345F 1999 2025 2741 2329 2556* 1109
13 4097 5003F 5001F 3073 2773 3197 b5001F 35056 256* 1161

21 8193F 3751 1667 709 685 633* 1079 661 827F 261F

* = hest of all successful results
F = failure

much more efficient on singular ones. In addition, the cautious extrap-
olation means that CADRE’s error estimation procedure has some ra-

. tionale behind it, and CADRE is more robust than the aforementioned
routines. However, CADRE is difficult to understand and to maintain,
since its style is the antithesis of structured programming. It is one large
program, with no subprograms, but with a liberal and unstructured use
of GOTOs.

QSUBA!4 uses a series of 8 whole-interval quadrature rules of increasing
order, starting with the 1- and 3-point Gauss-Legendre rules. Succeeding
rules are constructed to be of as high order as possible, consistent with
using all the previous sampling points. The highest-order rule uses 255
points and is of order 383. If convergence is not obtained after 8 rules,
the interval is divided in half, and each half considered anew. Unlike all
the other ANQRs under consideration, all function values must be dis-
carded, since none of the sampling points on the half intervals coincides
with any on the full interval. QSUBA works well on any integral which
can be integrated without dividing the interval, and poorly on integrals
which require dividing. It is especially good on easy and oscillatory in-
tegrals, since a high-order rule is generally used. QSUBA uses at least 3
points, which is somewhat unsafe, but has no maximum built in—it goes
on forever, if necessary.
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DQUAD takes at least 13 points. It fails only on number 21, for high
accuracy, missing the narrow peak at x = 0.6. The integral which is the
same as 21 except for moving the peak to 0.61 is done properly, using 117,
241, and 447 points for error tolerances 1073, 1076, and 109, respectively.
DQUAD is clearly more efficient and robust, based on these test integrals,
than any other ANQR tested except QSUBA. DQUAD is more robust than
QSUBA, but is less efficient for integrals where QSUBS does not need to
divide the interval.

3.2 Parameler studies (1)

Testing an ANQR on a “random” set of test integrals, while instructive
and a good start, is insufficient for a library routine. The testing of an
ANGQR is incomplete without numerous parameter studies:

j;bf(x;a) dx

with fixed ¢ and varying « (Ref. 12), and with fixed « and varying e. The
function f(x,«) should be increasingly difficult to integrate as o ap-
proaches some limit, and « should be pushed close enough to that limit
so that failure occurs. For error tolerance studies, the requested error
should range from the approximate value of the integral to less than
typical roundoff on the computer being used.

Several of the first type of parameter study will now be discussed. For
all of them, the error requested is 10~5. The first was suggested by de

BoorS:
1 Qa
f — 2 _dx
o 1+ (22x)2

For large a, the integrand is highly peaked. The integrand is 2= at x =
0, falls to half that at x = 2-¢, and is 2~ at the endpoints of the interval.
There is no danger in missing the narrow spike, since it is exactly at the
center of the interval, a normal sampling point for almost all ANQRs. This
example demonstrates the power of adaptive ANQR, in that the number
of sampling points increases only as V'« , approximately. The behavior
of DQUAD is shown in Fig. 1. The number of sampling points is plotted
against . The meaning of the symbols used for plotting in all the figures
is given below.

- Successful integration; no error flag

X Unsuccessful integration; error flag

O Unsuccessful integration; no error flag
® Successful integration; error flag

In testing DQUAD, “successful” means that the true error is less than e.
DQUAD failed for « > 38, but recognized its failure (failure was due to
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Fig. 1—Performance of DQUAD on function highly peaked at center of interval.

filling of the function value stack). For comparison, CADRE fails starting
at a = 31, and generally uses about 20 percent fewer sampling points than
DQUAD.

This integral should not pose any serious difficulty to a decent ANQR,
since the unpleasant behavior occurred exactly at the center of the in-
terval. Usually, though, the user should strive to break up integrals so
that any unpleasant behavior happens at one of the endpoints of the
interval. It is feasible for ANQRs to recognize such behavior at the end-
points, but difficult if it occurs in the center of the interval. As an ex-
ample, the previous integral, except with limits 0 and 1, may be consid-
ered. DQUAD’s performance is shown in Fig. 2. For « = 7, DQUAD recog-
nizes that the integrand approximates a step function, and makes a
change of variable. This change of variable keeps the number of sampling
points from growing significantly as « increases.

Figure 3 shows a similar integral, except more steeply decaying away

from the endpoint.
1
f 20e=2°% dy
0

200
< .
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Fig. 2—DQUAD’s performance on function highly peaked at end of interval.
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Fig. 3—Performance of DQUAD on steeply decaying function.

Failure eventually occurs, as for the previous integral, when, after the
change of variable, the new integrand is a sharply-peaked function with
its peak away from an endpoint, and the peak is missed entirely.

Testing of ANQRs on functions with isolated peaks within the range
of integration takes more work; o must parameterize the narrowness of
the peak, but the position of the peak is also important. A suitable test
integral has two parameters. DQUAD was tested on

1
f 2 —4°(x=H)? dix
0

For each «, 25 integrals were done, with 8’s of 0.02(0.02.)0.50, for a sta-
tistical evaluation. No failures occurred for a = 1, 2, 3, 4, 5, or 6; one oc-
curred for o = 7, at 8 = 0.04. For a = 8, 12 out of 25 failed. Figure 4 il-
lustrates the results for 8 = 0.40, a typical value.

Another standard test integral, also used by de Boor, is

1
f x*dx
0

200
2 1s0l N
z 2@, ~4%(x-0.4)2 ;
O 160 - :
o 0- .
(&) —
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Fig. 4—Performance of DQUAD on highly peaked function.
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Fig. 5—Performance of DQUAD on function with endpoint singularity.

with the integrand set equal to zero at x = 0. Thus for « = 0 the integrand
is a step function, and for a < 0 the integrand has an infinite disconti-
nuity. For a < 0, the integrand is “unreasonable” by almost anyone’s
definition, but users sometimes give such integrals to ANQRs. Figure 5
shows the performance of DQUAD. A change of variable was made au-
tomatically by DQUAD for —0.97 € a < 1.75, approximately. DQUAD is
designed to reject the change of variable if the estimated « is less than
—0.99, and the change is not necessary to achieve the desired accuracy
for a = 1.75. For a < —0.97, DQUAD fails with an error flag, using about
900 function samples. Machine precision limits the efficiency of the
change of variable for « less than about —3/;. For comparison, CADRE
fails, with an error flag, for « less than —7f, and gives an erroneous error
flag for a near, but not at, « = 1. CADRE is substantially less efficient than
DQUAD for this test integral. Other ANQRs, without special procedures
for endpoint singularities, are much worse.

A final type of test integral is one with an oscillatory integrand. Since
almost all ANQRs sample the integrand at regularly spaced points, there
is a danger of undersampling. As an example, consider

J:] ' [1+ cos (arx)] dx
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Fig. 6—Performance of DQUAD with oscillatory integrand.

as suggested by de Boor. Figure 6 illustrates the performance of DQUAD
on this test integral. The first failure is for « near 36, where the regular
sampling causes the cosine to look like unity. The lower part of the figure
shows the region near 36. The top part shows the number of sampling
points used for « from Y4 to 20, with spacing of Y/;. The trend line is ap-
proximately N = 10a; CADRE’s trend line is approximately N = 20a.
Besides the general rising trend, there many dots significantly below the
trend line. These occur because of resonance between the regular sam-
pling of DQUAD and the regular oscillation of the integrand. If « is inte-
gral, or very nearly so, coarse sampling may indicate that the integrand
is simpler than it really is. For example, if « is an odd integer, the cosine
is odd about x = 0.5, and the center third of the integral is integrated
(correctly) based on insufficient sampling, since the trapezodial rule
correctly integrates odd functions.

This kind of resonance phenomenon is a difficult problem for an ANQR
to surmount. The best way is probably to back off slightly from the no-
tion of a fully automatic ANQR. Usually a prospective user of an ANQR
knows if an integrand is oscillatory, and further, knows the approximate
period of the oscillation. To avoid problems with possible undersampling,
the user could divide the integral into several integrals, each with only
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Fig. 7T—Parameter test with accuracy varied.

a few periods of the oscillation. An easier way is for the user to require
the ANQR to sample the integrand sufficiently finely to see all the os-
cillations; this assumes the user knows the approximate period. DQUAD
has provision for this, using the parameter HSAMPL, discussed in Section
IV. If HSAMPL is taken to be 1/« in the above example, all the dots fall
on the main trend line, and no failures occur.

3.3 Parameter studies (2)

The second type of parameter testing, using a single test integral and
varying the requested error, will be considered now. Some ANQRs will
fail when the requested error is large compared to the value of the inte-
gral, because of insufficiently cautious error estimation. All ANQRs fail
if the requested error tolerance is too small, because of roundoff. A
properly designed library ANQR will have some mechanism for dealing
with too-small error tolerances. Finally, the graph of the number of
sampling points versus the requested accuracy is of interest.

Figure 7, for
1
f 8e—8x dx
0

is typical of DQUAD’s performance on easy integrals. The graph of N
against log 1/¢ is horizontal at large requested error, with no failures, since
DQUAD does not believe any answer until it can be confident of the error
estimate. The central portion of the graph is roughly linear. The number
of sampling points needed is approximately proportional to ¢1/20,
DQUAD is effectively functioning as a 20th-order method. The small-
est-error part of the graph is also horizontal; accuracy is limited by

roundoff.
1
f 212 dx
0

Figure 8, for
is similar except for the smallest requested errors. A change of variable
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Fig. 8—Parameter test with accuracy varied.

is made only for e = 1074 through 10716, For ¢ = 10~2 through 10715,

DQUAD is effectively a 15th-order method. The effective order is less than

for the previous example because only three columns of the T table can

be asymptotic. Roundoff begins to pollute the answer at ¢ = 1016,
Figure 9, for

j;l [1 + cos (awx)] dx

for two values of «, 1.95 and 17.95, is the last example. For « = 1.95,
DQUAD is effectively a 20th-order method for € = 10-3 through 1017,
For a = 17.95, DQUAD does not begin to be a 20th-order method until
e= 10786,

3.4 Parametler studies (3)

The final type of parameter testing uses a single test integral and error
tolerance, but varies the amount of noise in the function. For testing,
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Fig. 9—Parameter test with accuracy varied.
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integrals of the types
1
J‘ [f(x) + 102r(x)] dx
0
1
f f(x)[1 + 102r(x)] dx
0

were done, with requested accuracy ¢ = 10~6. The function r(x) is the
output of a pseudorandom number generator with values uniformly
distributed on (—1,1). Values used for « were 1,0, -1, ..., -8. For f, the
same four functions were used as in the previous section. For each
function and each «, five different starting points of the random number
generator were used. Sample results are shown in Fig. 10 and 11. The
number of function values used is plotted vs. o, for each of the five tries.
(Where two or more of the tries coincide, they are plotted side by side.)
Points plotted with - are those for which DQUAD returned with an error
estimate less than 10~6; points plotted with X indicate an error estimate
greater than 107S.
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Fig. 11—Parameter test with amount of noise varied.
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A summary of the results follows.

For every test with 10¢ > 1078, DQUAD recognized the presence of
noise, estimated its magnitude, adjusted accuracy tolerances accordingly,
and gave an answer and error estimate. The error estimates given were
at most twice 102, and were generally less than 1.2 times 10°. In only 6
out of 280 integrals was the calculated answer farther from the noise-free
value of the integral than the estimated error returned.

For every test with 10« = 10~6, DQUAD returned an answer with an
error estimate less than 106, In 3 out of 40 integrals, the presence of
noise was recognized. In 2 out of 40, the calculated answer was between
1 and 2 times 10~6 away from the noise-free value; in the remaining 38,
the answer was less than 1076 away.

For every test with 10« < 1076, DQUAD returned an answer with an
error estimate of less than 106, and the calculated answer was less than
10-6 away from the noise-free value. No noise was recognized.

IV. IMPLEMENTATION OF QUAD
QUAD is a Fortran subroutine which attempts to evaluate

j;bf(x) dx

to within absolute accuracy ¢; the user supplies a, b, ¢, and a Fortran
function subprogram to evaluate f(x). The discussion also applies to the
double precision version, DQUAD, except as noted.

QUAD is written in PFORT,!® a portable subset of ANS Fortran. Tem-
porary storage space is managed by a portable Fortran stack mecha-
nism.”

The calling sequence is

CALL QUAD (F,A,B,EPS,ANS,ERREST)

F is the name of the user’s subprogram, A and B are the limits, and EPS
the requested accuracy. The estimated value of the integral and an es-
timate of the accuracy of the estimate are given in ANS and ERREST. If
ERREST is larger than EPS, QUAD invokes the PORT library’s centralized
error handling facility,” turning on the error state before returning
control to the calling program. If the user has not taken prior action to
recover from errors, an error message is printed and the run is termi-
nated. The user who has taken prior action may test for the error state,
and continue if desired.

QUAD sets seven parameters to their default values and then calls
R1QUAD. The default values should be adequate for almost all users, but
the user wishing other values may call RIQUAD directly. RIQUAD also
gives more information to the user about problems encountered during
the integration. R1IQUAD’s calling sequence is
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CALL R1QUAD(F,A,B,EPS, HSAMPL,NFCALL,LYSTAK,KMAXEX,
KDIVID,JPRINT,NUMINT,ANS,ERREST,KWARN)

The default parameter values used by QUAD are

HSAMPL 0.125
NFCALL 2000
LYSTAK 250
KMAXEX 6
KDIVID 4
JPRINT 0
NUMINT 3

The same parameters are used for DQUAD, except that KMAXEX = 8.

HSAMPL measures how finely f(x) must be sampled. No error estimate
is believed unless the trapezoidal rule step size is HSAMPL |b — a| or
smaller. Reducing HSAMPL improves the robustness of R1IQUAD, but
decreases its efficiency. Changing HSAMPL is useful for integrating os-
cillatory functions, where there is some danger of aliasing. For [} cos
(awx) dx, HSAMPL = 1/« is safe. The minimum number of sampling
points of f(x) is roughly 2/HSAMPL.

NFCALL is the upper limit on the number of sampling points of
flx).

LYSTAK is the length of the stack for storing values of the function
at the sampling points. Space for the stack is allocated within RIQUAD
using a portable storage-allocation package.”

KMAXEX is the maximum number of extrapolations allowed. Legal
values are 4, 6, 8, 10, and 12.

KDIVID is the minimum number of extrapolations required before
dividing an interval. Legal values are 4, 6, 8, . . . , KMAXEX.

JPRINT determines how much printing will be done. With JPRINT <
1, there is none. With JPRINT = 1, the endpoints, attempted error tol-
erance, answer, and error estimate are printed for each interval at-
tempted. With JPRINT > 1, the T tables are also printed.

NUMINT is the number of equal intervals into which [a,b] is divided
to start. If NUMINT > 1, signularities can be recognized at x = a and at
x = b; if NUMINT = 1, a singularity can be recognized only at x = a. In-
creasing NUMINT generally increases robustness while decreasing effi-
ciency.

KWARN is an integer warning flag, output from R1QUAD. It is zero if
all went well. If KWARN is positive, it may have up to 6 digits, each with
an independent meaning. Although ERREST may be greater than the
requested EPS, it is still reliable. Each digit is zero unless a problem oc-
curred; starting with the right-most digit, the problems are:
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() The error estimate is limited by noise or roundoff, but is above
the requested error.

(z1) The interval size is as small as is allowed.

(zif) As many intervals are stacked as is allowed.

(iv) As many function values are stacked as is allowed.

(v) As many function sampling points have been used as is al-
lowed.

(vi) The error estimate is larger than the requested error.

4.1 Machine-dependent constanits

All machine dependency is isolated into four machine-dependent
constants, which are set by RIQUAD. No reprogramming is necessary to
run QUAD or R1QUAD on another computer. The constants are set using
the portable machine constants program RIMACH of Ref. 7.

DLARGE is used as error estimate before any error estimates are con-
sidered believable. Its value is set to slightly less than the largest float-
ing-point number, 0.1 RIMACH(2).

DSMALL is used as the default magnitude of ro(x). Its value is slightly
larger than the smallest positive floating-point number, 10
RIMACH(1).

DROUND is used as the default magnitude of r;(x). Its value is set to
50 times the largest relative rounding error, or 50 RIMACH(4).

HSMALL is the smallest fraction of |b — a| used for a trapezoidal rule
step size. Its value is the same as DROUND.
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