Copyright © 1977 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 56, No. 8, October 1977
Printed in U.S.A.

Coupled Surface-Acoustic-Wave Resonators

By P. S. CROSS and R. V. SCHMIDT
(Manuscript submitted March 18, 1977)

Coupled Surface-Acoustic-Wave (SAW) grating resonators are in-
vestigated analytically with a transmission-matrix technique, and the
measured frequency responses at ~145 MHz of devices on YZ-LiNbO3
with Ti-diffused gratings are compared with the theoretical results.
Coupled-mode theory is applied to derive the two-by-two transmission
matrix relating the acoustic wave amplitudes at the input and output
of a surface wave grating. Using the transmission matrices, the external
transmission through a SAW resonator is found by matrix multiplica-
tion. Some fundamental aspects of resonator passband synthesis are
introduced by considering the transmission through several acoustically
cascaded resonators. Resonator filters where the transducers couple
directly to the resonant cavities are treated by developing a description
of the transducer that is compatible with the transmission matrix of
the grating. The analysis technique is then applied to the familiar
two-port resonator-filter. Next, coupled resonator-pairs with a
transducer in each cavity are considered in detail for: (i) collinear
acoustic coupling, (ii) multistrip coupling, and (iii) transducer cou-
pling. Experimental results are presented for each configuration
considered and good agreement with the analytical description is found
in each case.

I. INTRODUCTION

Surface-acoustic-wave resonators are now well established as one-pole,
narrowband filters in the frequency range 30 to 1000 MHz.> Recent
work3-10 has shown that multipole filters can be formed by coupling
several resonators. In general, multipole filter responses can be syn-
thesized by using one or more of the three established coupling mecha-
nisms: (i) collinear acoustic coupling,® (ii) acoustic directional coupling
(multistrip coupler),®” or (iii) electrical coupling using trans-
ducers.8-10

Examples of two-pole resonator filters using the three types of cav-
ity-coupling mechanisms are presented in Fig. 1. In each configuration,
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there are two resonant cavities with a transducer in each cavity for
coupling to the external circuitry.

In the collinear cascade structure the central grating, common to both
cavities, is the coupling element. The strength of the central grating
determines how much power can “leak” from one cavity to the other.

When either multistrip or transducer coupling is employed, each cavity
has a distinct set of gratings, and the resonators are conveniently ar-
ranged in parallel with the acoustic power flowing in two separate
“tracks.” Coupling with the multistrip is effected by simply extending
the electrodes of the coupler into both cavities. The degree of multistrip
coupling is determined by the length or, equivalently, the number of
electrodes of the coupler.

In the transducer-coupling configuration, a second transducer is
placed in each cavity. The cavities are then coupled by connecting the
transducers together, either directly or through an external electrical
network. The external network provides a means for adjusting both the
strength and phase of the cavity coupling.

In order to design a filter using coupled grating resonators it is nec-
essary to be able to relate the frequency response of the filter to the pa-
rameters describing the gratings, transducers, and coupling elements.
We present here a general technique for obtaining the frequency re-
sponse of coupled resonators. In addition, the technique yields closed-
form expressions for the insertion loss, out-of-band response and the
near-in-band shape which aid in filter design.

The approach taken in this paper is to first develop the transmission
matrix of a uniform grating and use it to analyze the external trans-
mission response of a single resonator. Next, the properties of coupled
resonators are introduced by studying the external transmission response
of acoustically cascaded resonators.

We then present a description of the interdigital transducer which is
compatible with the transmission matrix description of the gratings.
With this description one can calculate the transmission response of any
resonator structure which includes internal transducers.

The technique is applied to the familiar two-port resonator-filter.
Then coupled-resonator pairs are treated in detail for each of the three
cavity-coupling mechanisms. Experimental results at ~145 MHz are
presented for each configuration considered, and the good agreement
with theory that is found in each case substantiates the analytical
models.

Il. GRATING TRANSMISSION MATRIX

In this section, the transmission matrix of a surface-wave grating is
derived. A transmission matrix relates the forward and backward trav-
eling-wave-amplitudes at the left side of an element to those on the right
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side. It is therefore useful to establish a compact notation by introducing

the vector
+
W= [”"_] (1)

Wi
which represents the complex amplitudes of the forward-, w}, and
backward-, w;, traveling waves at the right-hand reference plane of the
ith element of a filter structure. The amplitudes have dimensions of
v/Power . Thus, the transmission characteristics of the ith element of
the structure are described by the matrix equation

W= m;W; (2)

where M; is the 2X2 transmission matrix of the ith element.

The transmission matrix of a grating is derived using a plane-wave,
coupled-mode analysis which was originally applied to thick holograms!!
and subsequently to distributed feedback lasers!>!3 and acoustic grating
reflectors.? The grating to be analyzed is taken to have constant period
A, and to extend from x = —L to x = 0. Near the Bragg frequency, only
the fundamental Fourier component of the grating perturbation provides
phase-matching between the forward- and backward-traveling waves.
Thus, in the analysis, a lossless grating is mathematically modeled by
a sinusoidal velocity perturbation given by

o(x) = vy —%cos (Kx) @)

where K = 2r/A. Furthermore, we assume that the surface wave prop-
agation can be represented by the scalar wave equation

dx?  v3(x)
where w is the surface-wave radian frequency. The scalar ¥ represents

the quasistatic electric potential at the surface of the piezoelectric crystal
associated with the surface wave. The general solution!! of eq. (4) is

v=0 (4)

Y(x) =wt(x) + w(x) (5a)
where

wt(x) = P+ (x)ehox (5b)

w—(x) = Y~ (x)etibox (5¢)

are respectively the forward and backward wave amplitudes in the
grating and 8 = 7/A is the propagation constant of the surface wave at
the Bragg frequency wo = mvo/A. By appropriately combining egs. (3)
through (5) and dropping higher harmonic terms one obtains the coupled
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wave equations

+
- ‘% - joyt = jﬁ%w- (6a)
dy— . .
%—;aw- =;%x¢+ (6b)

where 8 = w/vg, x = (8/4)-Av/vg is the grating coupling coefficient
and
2 __ A2
5= "B M)
2Bo
is a measure of the frequency deviation from the Bragg frequency. For
high-@ resonators, we are particularly interested in a limited frequency
range such that 8/8; ~ 1 and the coupled wave equations can be sim-
plified by setting 8/8o = 1 and letting 6 = (w — wp)/vo. In the remainder
of this paper we use this narrowband approximation. The exact forms
of (6) must be used if responses over large bandwidths are required.
Solving eqs. (3) through (7) for the wave amplitudes at x = —L in terms
of the wave amplitudes at x = 0 yields the following transmission rela-
tion

W(-L) = §W(0) (8a)

where the transmission matrix ¢ for a grating an integral number of
periods long is given by

g =(~1)MNs —"i’;l%)
x [\/ﬁ + jA tanh (oL) J tanh (oL) ] (8b)
—j tanh (oL) V1—A? — jA tanh (gL)
where
N, = L/A, (8c)
e=Vi2—2=kV1-AZ (8d)
and
A= 6d/k (8e)

is the normalized frequency deviation.
The reflection coefficient, I, at the plane x = —L for a wave incident
from the left is
_wL) =,
wt(—=L) +1— A2coth (cL) + jA

I'(A) (9)
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and at the Bragg frequency, A = 0,
I'0) =—jp (10)

where p = tanh (xL).

The grating transmission matrix and reflection coefficient have been
derived by postulating a sinusoidal velocity perturbation grating. The
final expressions are, however, in terms of a coupling coefficient, , which
describes the strength of the perturbation that forms the grating. By
appropriately identifying the coupling coefficient of other grating types
(such as surface corrugations), the grating transmission matrix (8b)
describes the behavior of surface-wave gratings formed with any per-
turbation mechanism.

Equations (9) and (10) provide a means for experimentally deter-
mining the coupling coefficient for a particular physical grating. It has
been found!4 that « can be obtained by either measuring the reflectivity
at & = 0 and using (10) or by measuring the fractional bandwidth Aw/wo
between reflection zeros and calculating x from the expression

T Aw\ 2 247\ 2
7oA (wo) (L) (1)
obtained from (9). The first method is most suitable for weakly reflecting
gratings while the second method works best on highly reflective grat-
ings.

For the specific case of shallow-groove gratings, one can use, in addi-
tion to the above techniques, the results of Li et al.1516 to determine the
coupling coefficient which gives x = h/3A2 for corrugations of depth h.
The various second-order effects associated with stored reactive energy
have been neglected here for simplicity.

The phase of the reflection coefficient and the off-diagonal terms of
the transmission coefficient depend on the choice of grating reference
planes. In Appendix A, the question of specifying reference planes is
treated in detail, and it is shown that reference planes can be found for
any grating such that the transmission matrix in (8b) is applicable.

If the ith element of the structure is a transmission line extending from

x = —L; to x = 0, it is described by the familiar transmission equa-
tion
Wioi=&W,; (12)
where
elBLi 0
& = [ 0 e—jﬁLi] : (13)

Thus far, the surface-wave gratings have been treated as lossless.
However, in many circumstances, small grating losses have a significant
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influence on the grating filter transmission response. In Appendix A,
the transmission matrix of a lossy grating with a distributed attenuation
coefficient, a, is given in eq. (82). This matrix is unnecessarily compli-
cated when only frequencies near the Bragg frequency, |A| « 1, are
considered. An approximate transmission matrix for a lossy grating can
be considered when a/x << 1 and A « 1 by decomposing the lossy matrix
(82) at A = 0 as follows:

9~ AFA (14a)
where
(@) o
A = ‘ (14b)
0 exp (— EYE)
2k
A2
A2 _a . .
F = (1 +E) cosh (kL) |1 =5 T700 ip (14c)
. A2
L 1="=18

where, as before p = tanh (kL) and A = §/x. This decomposition is
equivalent to placing a lumped, frequency-independent loss!” at each
side of the grating. The matrix F is the lossless grating transmission
matrix (8b) simplified for the condition |A| <« 1 and N, even. The de-
composition of & in (14) has two advantages. First, other loss mechanisms
(such as bulk radiation loss) that are localized in nature can be mathe-
matically included as a component of «. And, second, the important
frequency dependence of ¢ is all contained in F so that the simplified
matrix ¥ can be used to obtain closed-form expressions for the resonant
passband shape of a given structure.

lll. TRANSMISSION RESPONSE OF CASCADED GRATING STRUCTURES

The transmission matrices derived in Section II provide the means
to calculate the properties of cascaded structures of gratings and
transmission lines. As an example of the application of the transmission
matrices, we first consider a grating resonator as illustrated in Fig. 2a.
The resonator consists of two identical gratings each of length L, which
are separated by a quarter-wave transmission line. The wave amplitudes
W, and W3, at the left and right reference planes respectively, are related
by the matrix equation

Wg = 91¢2Q3W3 = %W;; (15)

where ¢, = @3 are the transmission matrices of the first and third ele-
ments (gratings) and & is the transmission matrix of the second element
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Fig. 2—(a) Diagram of a grating resonator in the external transmission configuration.
(b) The transmission spectrum at ~145.5 MHz for a resonator on YZ-LiNbOj using Ti-
diffused gratings with A = 12 ym and L = 6.48 mm. (c) The calculated transmission
spectrum for the device in (b) using « = 3.74 em~! and @ = 0.036 cm™1.

(in this case a quarter-wave line). The matrix # is the transmission
matrix of the resonator.

In the laboratory, the external power transmission, |w3/wg|? through
the structure of Fig. 2a is the most conveniently measured quantity. A
typical experimental transmission spectrum for a resonator formed by
Ti-diffused gratings!4 in YZ-LiNbO; is shown in Fig. 2b. Far off reso-
nance, where the gratings are transparent, the transmission is near unity.
Inside the grating stopband, the gratings are highly reflective and there
is a deep transmission minimum. Near resonance, there is once again
near-unity transmission.

The theoretical transmission response can be obtained by applying
the boundary condition w3 = 0 to eq. (15). The external power trans-
mission is then

2 1

3" =
wy RyiRu1*

where R;; is the 11 element of the & matrix of (15). In Fig. 2c, the cal-
culated spectrum is given for the structure of Fig. 2b where « and « are

wi

(16)
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Fig. 3—(a) Diagram of a cascade of N identical resonators. (b) The transmission spec-
trum at 1456.5 MHz of a cascade of three identical resonators with A = 12 um and L = 3.84
mm. (c¢) The calculated transmission spectrum for the device in (b) using x = 3.55 cm™!
and « = 0.027 cm™~L,

chosen to fit the insertion loss and stopband width. The complete grating
transmission matrix of eq. (82) in Appendix A is used in the calcula-
tion.

In many cases, only the frequency response near resonance is of in-
terest and the external power transmission can be found using the ap-
proximate grating transmission matrix (14a). Under the conditions ||,
a « «k and 2 cosh (kL) = exp (xL), eq. (16) simplifies to

g ! (17)

2 2
1+ %exp L) + 7% exp (4uL)
K

wi
wg

452

From (17), an analytical expression for the unloaded resonator quality
factor, @,, can be obtained and is given by

1 1 1
—_— = (18)
Qu Qr QE
where
Q, = T sinh? (kL) =~ Lexp (2«L) (19)
kA 4k A
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is the @ associated with radiation loss from the ends of the gratings

and
™

Qe = 2aA

is the @ associated with the distributed internal grating loss (material
losses, surface imperfections, and diffraction).

The distributed internal grating loss can be determined from the
resonant transmission loss through the resonator. From eq. (17) the
resonant transmission is

(20)

wi |2 _ 1

= ; (21)
[1 + l-afe:@:p (2xL)]
2k

wg

from which « can be determined.

The transmission matrix analysis technique is easily extended to more
complicated structures such as those that are encountered in multipole
filter-synthesis applications. The simple case of a collinear cascade of
identical resonators shown in Fig. 3a provides an illustrative example
since such a cascade has been shown to have a near-resonance trans-
mission response described by a Chebyshev polynominal.®#18 The
transmission matrix of a cascade of N lossless, identical resonators is
given by (%)~ where 7 is the transmission matrix of a single resonator.
If the lossless grating transmission matrix (8b) is used, the following
expression for & is found:

2
22 2sc—j[l—z A sz]

Vi 1- A2
g=gpg=|Y174

1- a2
2,
T1=a

2A A2 (22)

— 28 _gc+j|1-2 32]

Vi- A J[ 1— A2

where S = sinh (¢L) and C = cosh (¢L). Equation (22) is applicable over
the region of validity of the coupled-mode approximation, |A| «
m/kA.

Using the results of Storch!? to evaluate ()", one can obtain the
following expression for the transmission response through the cas-
cade:

+12
2N 1 (23)
wo [1+2 A SZU()]2

T+ a0 UnE
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where

2A
=———=CS8S
¢ V11— A2
and Uy is the Chebyshev polynominal of the second kind of Nth order.
Near the resonant frequency the response is simplified to

2 1
T 1+ Q2U%(R)

where 2 = 2@, (w — wp)/wo and @, is the radiation @ of a single resonator.
In Fig. 3b the experimental transmission response of a cascade of three
coupled resonators is presented, and in Fig. 3c, the theoretical frequency
response calculated using the lossy grating matrix (82) is given. The
theoretical description again provides an excellent fit to the data.

The comparisons made in this section between the experimental and
theoretical transmission spectra of cascaded grating structures provide
a quantitative verification of the analytical model and approximations
presented in Section IL. In particular, over the frequency range used in
the measurements (AB/8 < 1 percent), the excellent agreement between
the calculated and experimental responses justifies both the use of the
coupled mode equations and the narrow-band (8/8, ~ 1) simplification.
It should also be noted that the loss coefficient required to theoretically
fit the data is only about twice the surface wave propagation loss of
LiNbOg. Thus, the titanium diffusion process!4 produces a low-loss
surface perturbation that is ideal for high-€ resonators.

wi

wi (24)

IV. INTRACAVITY TRANSDUCERS AND THE TWO-PORT RESONATOR

In the preceding sections, coupled-mode theory has been applied to
derive a transmission matrix description of SAW gratings and resonators.
The resonators become useful bandpass filters with low out-of-band
transmission, when the transducers are placed inside the cavity.20-22 In
Fig. 4 an interdigital transducer (IDT) is depicted schematically and the
various physical quantities associated with the IDT are indicated. The
quantities wi¥ and wi | are the local amplitudes of the various acoustic
waves as previously defined, and a; and b; are the amplitudes of the
electrical waves incident and emanating from the transducer, respec-
tively.

The terminal amplitudes at the transducer can be related by a di-
mensionless matrix 7, such that

wi wi
w_, | =T wr (25)
b; a;
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Fig. 4—Diagram of an interdigital transducer.

where T is given by

l11 l12 t13
T =tz a2 ta3 (26)
sty3 —Ssto3 a3

and s is a symmetry parameter expressing whether the transducer has
an even (s = 1) or odd (s = —1) number of electrodes.

The transducer description of eq (25) has the useful property that the
acoustic amplitudes are expressed in transmission matrix form. As a
result, (25) is conveniently decomposed into two equations:

(i) The acoustic amplitudes at the transducer reference planes are
related by

Wii=t;W; +air; (27)
where t; is the transmission matrix
i 12
ti= 28
! (—t 12 tzz)i (28)
and 7; is the input coupling vector
t
ni=(,") (29)
tos/i
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Fig. 5—(a) Diagram of a two-port resonator. (b) The electrical transmission spectrum
for a two-port resonator on YZ-LiNbO3 with gratings 9.6 mm long and 12 pm period, op-
timally placed transducers with N, = 5, Z, = 50 , and an acoustic aperture of 50 wave-
lengths. (c) The calculated spectrum for the device in (b) using x = 4.5 cm™1, a/x = 0.01,
R; = 11 Q, ¢ = 0.04, and ¢4 = 9.98 7 on resonance.

(¢z) The electrical signal leaving the transducer is expressed by

bi = 1;- Wi + a;(t3s); (30)
where 7; is an output coupling vector
, t
ri=s ( 13 ) (31)
—tos/i

The symbol - in (30) indicates the scalar (dot) product.

As shown in Appendix B, egs. (27) and (30) allow the analysis of res-
onators and coupled-resonators to be reduced to a simple, matrix-mul-
tiplication algorithm.

The elements of the matrix 7 are evaluated by using an appropriate
transducer model.?32¢ The accuracy of the matrix elements depends on
the degree of sophistication of the model used. For example, the Mason
equivalent circuit model first used for interdigital transducers by Smith23
et al. has proven very useful in practice. The complete matrix T based
on the Smith-Mason model is given in Appendix B.

In many resonator applications, however, only a first-order analysis
is required. Thus, by neglecting the static transducer capacitance and
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the frequency dependence of the propagation phase-shift through the
transducer, 7 is given by

1+g+g —£ — & svV'2g
(T )first-order ~ § g+ & 1-g - 8s S\/Q_g (32)
Vg —V'2g s
where
g=G,Z, (33)
8s = G:R, (34)

and G,, Z., and R, are the transducer radiation conductance, load re-
sistance, and series electrode resistance, respectively. The first-order
matrix in eq. (32) is sufficient for calculating the near-resonance prop-
erties of many SAW resonators, but the more complete matrix in eq. (84)
is required for wideband descriptions.

As a first application of the transducer matrix in (32) and of the ma-
trix-multiplication algorithm in Appendix B, consider the two-port
resonator in Fig. 5a. Ideally, the transducers are optimally-placed?® (¢
= ¢g = w/4), and the cavity is resonant at A = 0 (¢4 = m). Thus, from
eq. (32) and egs. (96)—(103), the electrical power-transmission factor Psa
of the optimal two-port is given by

2 _ 2 2 (35)

1-r
28 + 2g. +
€ £ 1+r

where, r = jT, I is the frequency-dependent reflection coefficient of each
grating (G is assumed to be identical to G7), and g and g, are given in
eqs. (33) and (34), respectively.

The total loading on the cavity can be separated into two components:
(i) the power coupled to external circuit and (if) the power lost in the
filter structure.

Thus, eq. (35) can be written in the more intuitively recognizable
form

Psy = | s (36)
% pc + ur
where
ue = 88 (37)
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Fig. 6—Nomogram giving the resonant and out-of-band transmission for two-port,
surface-acoustic-wave grating resonators and matched grating resonator pairs. The res-
onant transmission is determined by the ratio of the transducer cavity loading uc to the
cavity loading J’i{hdue to all other mechanisms. The out-of-band transmission is only a
function of uc. The dashed curves are contours of out-of-band transmission for constant
cavity loss. The resonant and out-of-band transmission can be found from gc and pL OF
vice-versa. The nomogram is directly alt:vlll:vlicable to single resonators and matched colli-
nearly coupled resonator pairs, To use the nomogram with matched multistrip-coupled
pairs, multiply the ordinate by 4»%|T'|2 (see Section VII) and for matched transducer-
coupled cavities, multiply the ordinate by (v./4)? (see Section VIII).
is the single-transit, fractional power coupling to the external circuit

and
pL =8¢ +4(1—r)/(1+r) (38)

is the single-transit, fractional power loss due to all other mechanisms
(ohmic loss, bulk scattering, intrinsic propagation losses, and trans-
mission through the gratings). Note that in the optimal resonator de-
scribed here, the transducers are spaced an integral number of half
wavelengths apart so that coherent interactions take place that allow
pc to be greater than 1 for strong-coupling transducers.

On resonance (A = 0), for highly reflective gratings [exp (2x<L) > 1],
eq. (38) becomes

ur = 8g; + 2¢ + 2a/k + 4 exp (—2«L) (39)
where ¢ is a localized!? excess loss that accounts for mode-conversion
losses. By dividing the numerator and denominator in eq. (36) by 7, the
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resonant power transmission through a resonator is described by the
single parameter uc/pL.

Figure 6 is a nomogram for finding the resonant and out-of-band
transmission of grating resonators. The solid curve is the resonant in-
sertion loss versus uc/pr. Plotted with dashed curves is the out-of-band
transmission with the cavity loss u;, as a parameter. Using the nomo-
gram, the resonant and out-of-band transmission can be found knowing
pc and py, or vice versa. The nomogram is also applicable to coupled
resonators as described in the caption to Fig. 6 and in Sections VI, VII,
and VIIL Coldren and Rosenberg617 have used similar diagrams for the
resonant insertion loss of single and multistrip-coupled resonators as
a function of coupling and loss parameters.

Equation (35) can also be used to find the loaded electrical Q, QLe,,
of a single-cavity, two-port resonator. For exp (2«L) > 1, it is found
that

ks 1
kA (pc + pr)

where 7/kA is the single-transit cavity phase-shift.

The algorithm used to derive eq. (35) provides a flexible tool for in-
terpreting experimental device performance, since a large number of
electrical, mechanical, and geometrical properties are explicitly con-
tained in the analysis. For example, consider the transmission response
in Fig. 5b of a two-port resonator with Ti-diffused gratings on YZ-
LiNbOs. The resonant insertion loss is 10 dB, and from eq. (36) or Fig.
6)

QLel = (40)

EC — 046 (41)
ML

Next, the transducers each have five electrodes 50 wavelengths long, and,
from egs. (33), (93), and (94),

uc = 0.052 (42)
for Z, = 509. From (41) and (42), it is found that
pr = 0.112 (43)

The transmission minima on each side of the resonance occur near the
first reflection zeroes of the gratings. Thus, eq. (11) can be used to esti-
mate &, with the result

k=~ 4.3 ecm™1 (44)
The gratings are each 0.96 cm long (800 A), and from eq. (44),
e~ 2L = (,00026 (45)
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From external transmission measurements on resonators (see Sections
II and III), the loss o/« associated with diffused gratings is found to be
~0.01. Thus, from (39)-(45), the remaining loss is probably associated
with the transducers and is given by

8g: + 2¢ = 1 — ZTa — 4e~2L = (0,092 (46)

The electrode resistance (B, = 11 Q) is calculated from the metal
thickness (2700 A of aluminum),

gs = 0.0014 (47)
and, finally, from eqs. (46) and (47)
e = 0.040 (48)

The 4 percent excess loss ¢ is probably due to bulk mode conversion by
the transducer electrodes. Both loss mechanisms associated with the
transducers (series resistance and bulk mode conversion) should be less
significant on low-coupling materials such as ST-quartz due to the in-
creased transducer length.

In order to complete the description of the resonator in Fig. 5a, the
phase-shifts ¢, ¢4, and ¢¢ must be specified. It is observed in practice
that the velocity of propagation is very sensitive to surface perturbations
(piezoelectric-loading, mass-loading, and reactive energy storage). As
a result, the separation between the gratings must be empirically ad-
justed to compensate for the velocity variations in the structure. For the
device of Fig. 5b, the appropriate empirical values are ¢ = ¢4 = 7/4 and
¢s = 9.98 m on resonance.

The parameters estimated in (41)—(48) have been used with the al-
gorithm in Appendix B to calculate the complete transmission spectrum
shown in Fig. 5c.

V. COUPLED GRATING-RESONATORS—GENERAL CONSIDERATIONS

Multipole filters are formed by coupling together two or more cavities.
The general configuration for a cascade-coupled multipole resonator-
filter is shown in Fig. 7. Acoustic energy is launched by the transducer
in the input cavity, propagates through the coupling structure Cs, and
is detected by the transducer in the output cavity. The coupling structure
Cs consists in general of some combination of gratings, phase shifts,
transducers, and multistrip couplers. The overall filter response is de-
termined by the properties of Cs as well as the properties of the input
and output cavities.

In order to better understand the various elements that can be used
in the coupling structure Cs, two-pole resonators formed by acoustic
collinear coupling, multistrip coupling, and transducer coupling are
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Fig. 7—Diagram of the configuration for cascade-coupled SAW grating resonators with
an arbitrary coupling element, Cs.

discussed individually in the next three sections. It is shown for each
coupling mechanism that the important, near-resonance properties of
the coupling structure are expressed by the matrix é
. l eJ28Left j, /1 — y§
¢= v [—]m e~ J20Lett ]
where v is a real parameter < 1, and L is the effective contribution to
the cavity length by the coupling structure.

The parameter v is the magnitude of the amplitude transmission
coefficient through the coupling structure and is a measure of the degree
of coupling between the cavities. The quantity exp (j25L.fr) is a propa-
gation phase factor that accounts for the phase shift through the coupling
structure.

The degree of coupling between the cavities (specified by ») largely
determines the transmission characteristics of the resonator pair. For
example, using the method outlined in Appendix B, the resonant
transmission of a pair of cavities is found to be

(49)

b1z _ vpuc

1
ol 4 ety el ety
4 4

where the quantity (uc + p1) is the single-transit, fractional power
loading on the combined resonator pair. Equivalently, (uc + u1) can be
interpreted as the round-trip power loading on each cavity.

By differentiating eq. (50) with respect to », it is found that maximum,
resonant transmission is obtained when the coupling structure
“matches” 26 the two cavities according to

(50)

+

2
1+ (uc + uL)
4

1
Vopt = 5
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Fig. 8—Near-resonance transmission spectra for lossless, coupled resonator pairs that
are: (a) undercoupled, (b) matched, (c) slightly overcoupled, and (d) overcoupled for
maximum 3-dB bandwidth.

Qualitatively, the cavities are matched when the loading on each cavity
due to the coupling structure is equal to the loading due to all other
mechanisms.

The importance of matching the individual resonators in a coupled
structure is illustrated in Fig. 8. If the parameter » is too small, the
cavities are undercoupled and there is a large resonant insertion loss as
in Fig. 8a. When v = v,y from eq. (51), the cavities are matched and
minimum insertion loss is obtained as shown in Fig. 8b. As » is increased
slightly beyond vop, the peak flattens and broadens as in Figure 8c. For
still larger values of v the cavities become overcoupled and the resonance
splits into two peaks as in Fig. 8d where the dip between peaks is 3 dB.
Thus, the degree of cavity-coupling, v, is a central parameter in deter-
mining the passband shape and insertion loss.

The matched condition (51) has a further interesting consequence.
When the frequency dependence of the transfer function is included in
(50), it can be shown for matched cavities that

b7 pe |2 [ 1 ]
— 52
as pe+upel L1+ Q2U(Q) (52)

where Us = 2Q is the second Chebys_hev polynomial of the second kind.
The parameter  is a normalized frequency

2

A
2=2-%q, (53)
wo
where Q1. is the loaded electrical @ of each cavity in the coupled pair.
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The Chebyshev-polynomial form in eq. (52) is the same as the form ob-
tained for a coupled pair of identical resonators in the external trans-
mission configuration [see eq. (24)]. Although it is not rigorously proven
here, eq. (52) indicates that the passband shapes that can be obtained
in external transmission can also be obtained with intracavity trans-
ducers. Thus, the procedure for synthesizing resonant passbands can
be simplified by first investigating the passband in the external trans-
mission configuration, and subsequently including the transducers.

VI. COLLINEAR ACOUSTICALLY COUPLED RESONATORS

An acoustically coupled resonator pair is formed by inserting a section
of grating between the input and output transducers as shown in Fig.
9a. Comparing Figs. 7 and 9a, the coupling structure in Fig. 9a is simply
a section of grating. From eq. (14a), the near-resonance coupling matrix
is given by

C=AFA (54)

The loss matrix A in eq. (54) has the same form as that given in eq. (14b),
but any excess loss due to the transducers must be included.

The near-resonance behavior of a highly reflective grating, described
by the matrix %, is approximately equal to the coupling matrix €ineq.
(49) when the identification

vg = sech (L) (55)

is made and L. is the effective penetration depth into the grating, 1/2x.
The quantity », is the coupling parameter for collinear acoustic coupling
and Lj is the total length of the coupling grating.

Including dissipative loss, the matching condition (51) specialized to
collinear acoustic coupling, is given by

(e=xL8)opy = i(uc + uzg) (56)

where uc = 8¢ is the transducer loading on the resonator pair, and uzg
is the effective loading on each cavity due to all other mechanisms,

uLg = 88, + deg + 45 + de—2Ln (57)

In deriving eq. (57), it is assumed that the outer gratings, G and Gy, are
identical.

Comparing egs. (39) and (57), the expression for uz is similar to that
for pg, (for a single cavity) with the exceptions: (i) the grating-loss con-
tribution is twice as large (4a/x versus 2«/«x) because there are four ef-
fective reflection planes instead of two, and (ii) the excess loss ¢ is in
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Fig. 9—(a) Diagram of an acoustically cascaded resonator-filter pair. (b) The electrical
transmission spectrum in a 50 Q system for an acoustically cascaded resonator-filter pair
on YZ-LiNbO;3 with L, = Lg = 9.60 mm, L5 = 7.296 mm, A = 12 um, N, = 5 and an acoustic
aperture of 50 wavelengths. (¢) The calculated spectrum for the device in (b) using « = 3.3
cm~ Y a/k =0.01,R, =124, ¢ = 0.018 and ¢2 = ¢4 = g = pg = 0.234 7 on resonance.

general different from the excess loss ¢ for a single cavity. In fact, the
origins of the excess loss can be investigated, by comparing measured
values of ¢, and e. For example, if the excess loss is predominantly caused
by the gratings, ¢, ~ ¢ If, however, the excess loss is transducer-asso-
ciated, ¢, = ¢/2 since there is only one transducer in each cavity in an
acoustically coupled pair.

As an aid in design and data interpretation, the nomogram in Fig. 6
is directly applicable to matched acoustically coupled cavities when .
is substituted for y;.

The transmission spectrum of an acoustically coupled resonator pair
is shown in Fig. 9b. The transducers and outer gratings are identical to
those used in the single-cavity resonator in Fig. 5b. The experimental
parameters have been estimated as described in the previous section,
and the calculated response is shown in Fig. 9c. It is interesting to note
that the value ¢, = 0.018 = ¢/2 is found, providing further evidence that
the excess loss is transducer associated on LiNbOs.

VIl. MULTISTRIP-COUPLED RESONATORS

Grating resonators can also be coupled using a directional (multistrip)
coupler®7 as shown in Fig. 10a. A detailed analysis of the multistrip-
coupled resonator pair from a scattering-matrix point of view has been
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Fig. 10—(a) Diagram of a multistrip-coupled resonator-filter pair. (b) The electrical
transmission spectrum in a 50 Q system for a multistrip (5 um strips, L5 = 90 um) coupled
resonator-filter-pair on YZ-LiNbOg with L; = Lg = 9.60 mm, A = 12 um, N; = 5 and an
acoustic aperture in each track of 50 wavelengths. }c) The calculated transmission spectrum
of the device in (b) with ¢ = 0.163, k = 43 em™1, a/k = 0.01, R, = 10 Q, ey = 0.047, 2 = 0.25
7 and ¢4 = 9.89 7 on resonance.

given by Rosenberg and Coldren.® In this section we derive the coupling
matrix (@5 in Fig. 7) for multistrip-coupled cavities.

The overall structure consists of two resonators in parallel connected
by an ideal, directional coupler?’ described by the fourth-order vector

(59-( 8

where
()
o= ()
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and
p2+g2=1 (61)

For simplicity, the frequency dependence of the propagation phase shifts
through the multistrip coupler is ignored in eqgs. (58)-(60).

Comparing Figs. 7 and 10a, the coupling element is the multistrip
coupler in combination with the gratings G¢. The transmission between
W, in the upper track and V; in the lower track can be treated as a
two-port cascade element. Thus, the 2X2 matrix D satisfying

w} r
() (%)
Wy U4
becomes the coupling matrix for multistrip-coupled cavities.
To solve for D, the appropriate acoustic boundary conditions are

wg =vg =0 (63)
and the resulting matrix is
J -1 (p% - q?)
D= % T (64)
-(p?—q? Tg

where T'g is the reflection coefficient of the gratings, Gg.
Near resonance (|A| << 1), T'g can be expanded as in eq. (14), and for
exp (kLg) » 1, eq. (64) becomes
[ eid JV1 - umz] A
-V1-vk e~ia
where v, is the coupling parameter for multistrip-coupled cavities

vm = 2qV'1 — g2 (66)

and L. = 1/2« since the length of the multistrip coupler is neglected.
The loss matrix .A in eq. (65) has the same form as that given for a single
grating in (14b), but any excess loss due to the multistrip coupler must
now be included. Thus, the matching condition for multistrip-coupled
cavities becomes

=14

Vm

(65)

e T BLim
V16 + (pc + prm)?

where u;,, is the single-transit power loss of the resonator pair (excluding
transducer coupling):

(67)

Gopt =

ULm = 88, + dem + 4 = + de~2Ls (68)
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The excess loss ¢, now includes additional losses suffered due to the
multistrip coupler.

As pointed out by Rosenberg,6 far away from resonance (|A| > 1) the
multistrip-coupled structure has low out-of-band transmission, since
the path connecting input and output requires a reflection from a grating.
Quantitatively, from eq. (64).

Uy

wi

? = 42| Te(8)]? (69)

As indicated by eq. (69), the effective cavity-coupling is directly pro-
portional to T'g. Thus, the out-of-band transmission of a multistrip-
coupled pair is low and can be suppressed to arbitrarily small values by
using sidelobe-free apodized gratings.?®

The nomogram in Fig. 6 can be used for matched, multistrip-coupled
cavities when puz,, is substituted for uz, and the ordinate for out-of-band
transmission is multiplied by 42| T's| 2

In Fig. 10b is shown the experimental transmission spectrum of a
multistrip-coupled device, and in Fig. 10c is shown the spectrum for the
same device calculated using (64) and the parameters given in the cap-
tion. The high resonant insertion loss (15 dB) is due to the large cavity
perturbations (e, = 0.047) caused both by the transducers and multistrip
coupler. The distortion in the sidelobe response is due to slight nonun-
iformities in the gratings and direct capacitive coupling between the
input and output transducers (RF feedthrough).

Vill. TRANSDUCER-COUPLED RESONATORS

The general scheme for using transducers to electrically couple two
resonators is depicted in Fig. 11a. The coupling structure is topologically
similar to the multistrip-coupled case, but with the important advantage
that an electrical coupling network can be inserted between the reso-
nators if desired. In general, both passive and active electrical circuit
components can be employed so that passband shaping and amplifica-
tion/attenuation can be performed in the coupling network. Thus, the
electrically coupled configuration offers more design flexibility than
either the acoustic cascade or directionally coupled configurations.

To gain an insight into the performance of electrically coupled reso-
nators, we examine the important case®1° where the coupling network
is simply a shunt susceptance jx. The coupling structure (transducers
T, in combination with gratings G7 and shunt susceptance jx) is de-
scribed by the electrical coupling matrix & satisfying

(£)-e ()
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Using the acoustic boundary conditions (as for the multistrip-coupled
structure)

wr=v7=0 (71)

and assuming the two coupling transducers are identical, with N, elec-
trodes, the matrix & is found to be

. . —r2
=-2j(‘“1)N‘Qz I—J(lgtr) r+1(12Qtr )
(1+7r)? e (12;:2) ey (r(lQ-: r))

where r = jI'7, I'7 is the reflection coefficient of gratings G, and Q; is the
effective radiation @ of the cavity-coupling transducers:

¢ = (wCr + x/2)/G, (73)

The quantities C7 and G, are the transducer static capacitance and
radiation conductance, respectively. For clarity of exposition, in deriving
eq. (72), the transducer length is assumed small compared to energy
penetration depth in the gratings (0; =~ 0) and the series resistance is
neglected (R; = 0). In eq. (72), the loss due to series resistance in the
cavity-coupling transducers T5s can be mathematically included in the
grating loss coefficient as done for the losses in the multistrip coupler
in Section VII.

For the electrical coupling structure, the phase shifts ¢g = 7/4 must
be included between the coupling transducers and the gratings G in
order to obtain optimum coupling of the transducers to the cavity
standing-wave-pattern. Further, as noted by Matthaei et al.,10 the
coupling transducers introduce a small phase shift due to the finite value
of @;. Thus, expanding (72) for |A| < 1 and exp (xL7) > @, the matrix
6 is given by

[ elld+ded)  jo/T 2 ]_,4 (74)

1
= —(—=1)Nt —
6=—(-)T—A —jV1 =11 e iatde)

Vi

where the matrices A account for all dissipative cavity losses due to
gratings and transducers Ts, and the constant excess phase shift ¢y is
given by

Pex = /2 — 2/Qt (75)
The quantity », is the cavity-coupling parameter for transducer cou-
pling,

__2Q
QZ+1

L3

(76)
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Fig. 11—(a) Diagram of a transducer-coupled resonator-filter pair. (b) The electrical
transmission spectrum in a 50 § system of an electrically coupled, resonator-filter pair
on YZ-LiNbO; with optimally placed transducers with N; = 5, L; = L7 = 9.60 mm, A =
12 um and an acoustic aperture in each track of 50 wavelengths. (c) The calculated spec-
trum of the device in (b) with @; = 6.69, x = 4.0 cm™, e/ = 0.01, R, = 11 Q, ¢,= 0.047, and
¢4 = 107 on resonance.

Here again, L. in (49) is given by the penetration depth (1/2«) into the
grating since the transducer length has been ignored. The matching
condition for transducer-coupled cavities becomes

4
(@)opt=—")—
Qtopt pc + pre

where uy, is the single-transit power loss of the resonator pair (excluding
loading by the external circuit),

(77)

ure = 8gs + 4 + 45 + de~2L1 (78)

The excess loss ¢; accounts for all additional losses due to the cavity-
coupling transducers as well as the excess loss from the input-output
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transducers, and the term 8¢, is due to the input-output transducers
Ta.

Outside the grating stop-band (|A| > 1), the power transmission
|vs/w$|? through the coupling elements tends to the limit

2 v\ 2

)
The out-of-band transmission of the transducer-coupled configuration
is therefore lower than with collinear acoustic coupling but is still higher
than the out-of-band level for multistrip-coupled resonators [see
(69)].

The resonator nomograph in Fig. 6 can be used for matched, trans-
ducer-coupled resonators when u;, is substituted for g;, and the ordinate
for out-of-band transmission is multiplied by (»,/4)2.

In Fig. 11b, the experimental transmission spectrum of a pair of
transducer-coupled cavities is shown, and the theoretical response of
the same device calculated using (72) and the parameters given in the
caption is shown in Fig. 11c. The excess loss ¢ is about the same as ¢ for
a single-cavity resonator, as would be expected. As for the multistrip-
coupled pair, the distortion in the sidelobe response is caused by grating
nonuniformities and RF feedthrough.

Uy

H

IX. SUMMARY AND CONCLUSIONS

The major results derived in this paper are summarized in Table 1.
Gratings and small pieces of transmission line are the fundamental el-
ements for SAW resonators. Using coupled-mode theory, gratings and
transmission lines are described by 2X2 transmission matrices. Reso-
nators and combinations of resonators can be analyzed simply by
multiplying together a sequence of transmission matrices. A matrix-
multiplication algorithm is also presented for analyzing bandpass filters
with intracavity transducers.

To form multipole filters, several resonators can be coupled together
using one or more of the three mechanisms: (i) collinear acoustic cou-
pling, (ii) multistrip coupling, or (iif) transducer coupling. Near the
resonant frequency all three mechanisms are mathematically equivalent
and can be used interchangeably in passband synthesis applications. Far
off the resonant frequency, the three mechanisms have quite different
sidelobe suppression characteristics.

The essential properties of the three coupling mechanisms are illus-
trated in Fig. 12. The calculated transmission spectra for three different
coupled resonator pairs are shown. In each case, the cavities are of
identical length and are coupled to the same degree (same value of ) with
only the cavity-coupling mechanism being changed from case to case.
All three spectra have nearly the same passband shape, but the electri-
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Fi%. 12—The calculated transmission spectra of three equivalent resonator-filter pairs
on YZ-LiNbOs, each using a different cavity-coupling mechanism. In each case, the devices
are assumed lossless and the outer gratings are 800 periods long with A = 12 ym and x =
3.27 cm™!. The transducers have N, = 5 with an acoustic aperture of 100 wavelengths. The
degree of cavity coupling is the same in each case with vy = vy = » = 0.077.

cally coupled pair resonates at a higher frequency than the others due
to the phase shift introduced by the cavity-coupling transducers. The
multistrip and electrically coupled cavities have a slightly greater reso-
nant insertion loss than the acoustic cascade because some energy is lost
through the end gratings Gg in Fig. 10 and G- in Fig. 11. The sidelobe
levels are highest for the acoustic cascade and progressively lower for
transducer and then multistrip coupling.

For the synthesis of multipole filters each coupling mechanism has
unique advantages so that a combination of two or more coupling
mechanisms will probably be optimal. The acoustic cascade is particu-
larly easy to design because coupling between cavities can be accom-
plished without disturbing the intrinsic cavity properties. That is, there
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are no velocity perturbations, ohmic losses, or spurious reflections in-
troduced into the cavity by the coupling structure.

Transducer coupling allows the flexibility of using an external elec-
trical network in addition to the additional sidelobe suppression men-
tioned above. The external network can be used to contribute to pass-
band shaping and as a convenient means for post-fabrication trimming
of device performance.

Finally, the multistrip coupler offers the lowest sidelobe levels and
the technological advantage that no critical alignment of the coupler
within the cavity is required (as is the case for transducers).

Beginning with the gross properties of the various coupling mecha-
nisms discussed above and emphasized in Fig. 12, the simple matrices
given in Table I can be used to obtain first-order results for a wide variety
of filter configurations. More precise results can then be obtained using
the exact expressions given earlier in the text. Thus, the analytical
techniques presented in this paper should provide a sound basis for
developing a synthesis procedure for multipole SAW resonator filters.
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APPENDIX A—TRANSMISSION MATRIX FOR LOSSY GRATINGS

In this appendix a general grating transmission matrix is derived which
includes a propagation attenuation and allows for an arbitrary choice
of reference planes.

As in Section II, the grating extends from x = —L to x = 0. The velocity
perturbation is now generalized to allow an arbitrary phase shift, 6, of
the grating with respect to the x axis:

v(x) =vo— -IZ—U cos (Kx + 8) (80)
The scalar wave equation is modified to
d2¥ w? 2wa
+ ~ v =
dx? (02(x) d u(x)) 0 (81)

which includes a propagation attenuation coefficient, . The grating
transmission matrix is found in the manner described in Section II. For
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grating with symmetrically placed reference planes; (d) step-up grating with symmetrically
placed reference planes.

the narrowband approximation, 8/8; =~ 1, the transmission matrix be-
comes

g = £ cosh (eL)
a

[5+j (5 _Kj“) tanh (aL)] elfol

K

—jei? tanh (gL )e~ifoL
je~i? tanh (gL )eifoL

[£ 5 (£22) o] e

K K

(82)

where
o= [x2— (6 — ja)?]/?
This matrix reduces to eq. (8b) when « and @ are set equal to zero.
It is shown in Section II that the magnitude of the grating reflection

coefficient provides a means of determining the coupling coefficient.
Similarly, the phase of the reflection coefficient specifies the parameter
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6 for a particular choice of reference planes. For a lossless grating an
integral number of periods long, the reflection coefficient at the Bragg
frequency is

I'(0) = —je+i® tanh (xL) (83)

Thus, when the reference planes of a grating are spaced by an integral
number of periods, one need only measure the phase of the reflection
coefficient at the Bragg frequency in order to determine 6. For example,
consider surface corrugation gratings of the step-down and step-up type
as shown in Fig. 13. The experimentally observed optimum transducer
placement has shown for both YZ-LiNbQ32%3? and ST-quartz!7- that
the electric potential, ¥, is a maximum at the edge of a step-down grat-
ing, and a minimum at the step-up grating edge. Accordingly, for refer-
ence planes shown in Fig. 13a, § = +x/2 for a step-down grating and in
Fig. 13b, # = —=/2 for a step-up grating. Similarly, for any type of grating
and choice of reference plane, # can be determined from knowledge of
the optimum transducer?5 location which gives the position of the po-
tential maximum. For the case of step-down gratings, 8 = 0 corresponds
to the symmetrical choice of reference planes as shown in Fig. 13c. A
symmetrical choice of reference planes for a step-up grating is as shown
in Fig. 13d, which requires 0 = =. In this paper we assume the reference
planes have been chosen such that § = 0 for mathematical simplicity.

APPENDIX II—TRANSDUCER TRANSMISSION MATRIX AND
RESONATOR-ANALYSIS ALGORITHM

The transmission matrix 7 of an IDT can be found by manipulating
the well-known admittance matrix?3:24 based on a Mason equivalent-
circuit model. Using the results of Smith et al.,23 and including an ef-
fective series electrode resistance, R;, 7 is given by

(1 + to)ef”t “"to St13
T=s to (1 — to)e=i0 gt qe=i0 (84)
t13 —tyze ~I0% Stag
where
G.(R; + Z.)
=/ 85
R (85)
v2G.Z, .
tio =—T—€ ojBt/2 86
13 1+ j6. € (86)
250,
tags=1——""— 87
33 1+, (87)
s=(=1)M ' (88)
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N; = number of electrodes in the transducer

b = N;Ad (89)
G, = transducer radiation conductance
b = wCr(Rs + Z,) (90)
e = (wCr + B,)(Rs + Z,) (91)
Cr= (N, —1)C,/2 (92)

B, = transducer radiation susceptance

C, = static capacitance/electrode pair

. (Gt) 2
sin (—
2

Gr = 2Go(N, — 1)} | ———— (93)

For uniform transducers,23:3

Zt
2
Go = k2Csw/27 (94)

k? = electromechanical coupling constant

sin (6;) — 0,

B, ~ 4Go(N, — 1)> 3254
Ch

(95)

Using the transducer description in eq. (84), we develop an algorithm
for analyzing coupled resonators with intracavity transducers. Consider
the general cascaded-resonator structure in Fig. 7. The input signal is
applied to transducer T'; which is separated by phase shift ®, from
grating G;. The output is taken from transducer T; which is separated
by phase-shift &g from grating Gg. The element Cj is a generalized cou-
pling element that can be composed of gratings, transducers, phase shifts,
and multistrip couplers. The coupling element Cs is described by the 2X2
transmission matrix @s. Specific examples of the matrix @; are given in
the main text for: (i) a single-cavity, two-port resonator, (i) acoustically
cascaded resonators, (iif) multistrip-coupled resonators, and (iv) elec-
trically coupled resonators.

From eq. (27), the acoustic amplitudes associated with transducer Ty
can be expressed

W, = t3W3 + a3ty (96)

Vector equation (96) is actually two equations with four unknowns w#,
wi. Two further equations are obtained from the boundary conditions
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expressing the fact that there are no acoustic waves externally incident
on the resonator
wi=wsg =0 (97)

Next, the boundary conditions can be referred to the reference planes
of transducer T'3:

W, = 9,9.W, (98)
W3 = @5®t7P399Wo (99)
where it is assumed transducer Ty is connected to a matched load (i.e.,

an= 0)
Combining egs. (96), (98), and (99), the outward propagating acoustic
waves wg and w; are specified in terms of the electrical input, a3,

(u?a) =M (“(’)3) + @391 @7 (100)
where .M is the overall acoustic transmission matrix
M = §1Pot 3P4C5Pst 7950 (101)
The vector W7 is next found from Wy,
W, = $399Wy (102)
Finally, from eq. (30) the electrical output amplitude b7 is given by
by =17-Ws (103)

The analysis leading up to eq. (103) is essentially a derivation of a
general algorithm for finding the two-port, electrical-transmission
characteristics of a grating resonator with an arbitrary coupling element
Cs. The algorithm can therefore be applied to single-cavity resonators
as well as more complex, multipole structures.

The analysis can be further simplified by considering transducer T3
in combination with grating G, as an “input” coupler described by the

matrix @N
+
£)-en (%)
b3 w3y
Similarly, transducer T7 and grating Gg form an “output” coupler de-
scribed by @OUT
wi b
( 6_) = eour ( 7) (105)
We a7
The overall electrical transfer function is then found from
(gs) = ENG,@5EOUT ('”) (106)
3 azy
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For optimal transducer placement and, for simplicity, neglecting R,
and 0, @N and @OUT are given by

—(—=1)MN: [011 012]
CN=—mov-"— (107)
vV2g Lea C22
and
1 c11 —C91
e LT ] -
V2gL—cCi2 Ca2
where
1+ j6,
=g+—1=¢ 109
cn=g+ (109)
(1+j0.)r
=g+ 110
C12 8 1+r ( )
1—jo,
= —g+—1L* 111
a1 g+ (111)
(1—jb)r
=g+—1 112
Ca2 = § 1+r ( )
g= G,.Z,
r=jT

and T is the reflection coefficient of the appropriate grating (G; or
Gy).
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