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Microwave antennas are often required to carry signals simulta-
neously over a broad range of frequencies—e.g., the combined TD-2 and
TH common carrier bands encompass a total frequency ratio of about
1.8 to 1 as do the combined 18- and 30-GHz bands. To achieve these
bandwidths, an efficient broadband feed horn is required. The corru-
gated (hybrid-mode) horn is a leading candidate, but it is not immune
to some cross-polarization coupling, input reflection, and pattern
asymmetry. These problems are introduced mainly by two phenomena:
variation of the dominant mode shape with frequency and mode con-
version along the horn taper and at waveguide transitions at the horn
input. Simple formulas for computing the magnitude of these phe-
nomena and their effects on return loss and radiation patterns are
given.

I. INTRODUCTION

Corrugated feeds (also called hybrid-mode feeds) are widely used in
reflector-type antennas because of their excellent radiation character-
istics.1-16 At the frequency wg at which the surface reactance X, of the
corrugations becomes infinite, the radiation pattern of a properly de-
signed feed is circularly symmetric, is free of cross-polarized components,
and has low sidelobes. In principle these properties can be obtained over
a frequency range of more than an octave. In fact, one can show that the
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Fig. 1—Corrugated horn of Ref. 17.

field over an aperture illuminated by the fundamental mode has the
remarkable property that in the limit, as

ka — =, (k= 2x/)\),

where a is the aperture radius, the field distribution becomes indepen-
dent of the surface reactance X (provided X, > 0). A corollary of this
behavior is that a feed of sufficiently large aperture will have the above
radiation characteristics over a wide range of frequencies provided only
the fundamental mode is excited in the horn. To verify this behavior,
an experiment, described in a companion article,!” was made. A very long
horn (see Fig. 1) was fabricated carefully, using a special fabrication
technique to minimize geometrical imperfections in the corrugated walls,
and the radiation characteristics were measured from 17 GHz to 35 GHz.
From 17 GHz to 29 GHz the far field was found, as expected, to be es-
sentially polarized in one direction. At frequencies above 29 GHz,
however, a cross-polarized component was found to be caused by a cer-
tain undesirable mode, which will be called the HE};-mode. This mode
was excited primarily at the input, where the corrugated waveguide was
connected directly to a smooth waveguide, as shown in Fig. 1. A calcu-
1ation, given in egs. (102) and (103) of this article, was therefore made
to determine the total amount of power converted from the TE;;-mode,
incident at the input, to the HE};-mode.

A peculiarity of corrugated feeds is that there is some mode conversion
even in a conical horn of constant surface reactance X; (unless X; = 0
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or X, = «). An evaluation of this effect is given in Section VII. However,
in the experiment, the taper angle « (Fig. 1) was chosen sufficiently small
(a ~ 4°) so that this effect was negligible.

The analysis starts in Section III with a derivation of the asymptotic
properties for large ka of the modes of a corrugated waveguide. The re-
sults provide a simple and accurate representation of the modes in a feed
aperture of more than a few wavelengths in diameter. Then, in Sections
V and VI, a first-order derivation of the scattering parameters of a
junction between two waveguides of slightly different characteristics
is given. A simple relation [see, egs. (83), (84), and (115) to (117)] is found
between the scattering parameters and the coupling coefficients between
the modes on the two sides of the junction. Each coefficient is given,
except for a constant, by an integral of the type

f j; (E1 X Hy*) - i, dxdy,

where S is the junction area, and E; and Hj, are the electric and magnetic
vectors of the two modes, respectively. In Section IV, this surface integral
is converted to a line integral, thus reducing the calculation of the cou-
pling coefficients to a straightforward exercise. This result is useful also
to calculate the far field of an aperture S illuminated by a mode E;, since
the far field at a given observation point is, except for a constant, the
coupling coefficient over S between E; and the field H, of a plane wave
having the direction of the observation point. The far-field calculation
is thus reduced to a contour integration.

The calculation of the scattering parameters is carried out in Sections
IV to VI, using the above contour integral. It is found, for instance, that
the input reflection of a corrugated feed connected to a smooth wave-
guide of the same diameter is simply given by the coefficient
_Bi=f

B+ B
81 and f) being the propagation constants in the two waveguides. An
identical formula was derived by Brown!8 from the principle of conser-
vation of momentum, but that derivation is not applicable to the present
problem, which involves hybrid modes.

Finally, Section VII deals with the problem of spurious mode gener-
ation in a nonuniform waveguide whose parameters (radius and surface
reactance) vary along the axis, as in Fig. 1. The differential scattering
parameters that give, at any point in a nonuniform waveguide, the local
coupling between the incident mode and the spurious modes are ob-
tained from the analysis of Sections V and VI. By solving the differential
equations specified by the above scattering parameters, we can thus
determine the amplitudes of the spurious modes. An example is provided

p=
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of a first-order calculation of mode conversion in a conical waveguide
such as the one in Fig. 1 for z > z;. The result, eq. (154), is again quite
simple.

Il. PRELIMINARY CONSIDERATIONS

For a smooth waveguide, there is a simple relation between the
propagation constant 8 of a mode and the waveguide diameter, but no
such simple relation exists in the case of a corrugated waveguide [see eq.
(20)]. For this reason, the properties of the corrugated waveguide modes
cannot generally be determined as simply as in the case of a smooth
waveguide. Also, the field configuration of each mode varies with
waveguide diameter. There is, however, an important exception. When
the radius @ of the corrugated waveguide is sufficiently large, the prop-
agation constant 3 for some of the modes is simply given by

B=V(ka)® — ufy, (1)
where ug,, is the mth zero of the Bessel function J of order zero,
Joltom) = 0. (2)

For all the other modes except one (for this special mode 3 is independent
of a; see Appendix B) one has

.6= Vv (ka)z_uQmJ (3)
where wg,, is the mth root of the Bessel function of order two,
Jg(ugm) =0 (4)

Equations (1) and (3) are valid provided a > A, a condition which is
satisfied to a good approximation by most feed apertures. Thus, the
case

ka>1 (5)

is of considerable practical interest. One finds that as ka — «, the
properties of a mode become independent of the surface reactance X
of the corrugated walls, except for the mode of Appendix B. Thus, the
field distribution over the aperture of a feed illuminated by a single mode
will be little affected by the surface reactance X; (which varies fairly
rapidly with frequency) provided ka is sufficiently large. This result, first
pointed out by Thomas,? is very important for it implies that the aper-
ture field distribution becomes frequency independent for large ka. The
main purpose of this section is to determine the asymptotic behavior of
the hybrid modes for large ka. It is shown that if ka # = there is over
the aperture of a feed a certain undesirable cross-polarized component,
even if the aperture is illuminated by a single mode, unless of course X,
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= «. A simple expression for the amplitude of this component is
given.

. ASYMPTOTIC BEHAVIOR FOR LARGE ka

Consider a disk-loaded waveguide centered around the z-axis, as in
Fig. 1, and assume its parameters a, b, and h are independent of z. Let
r, ¢, z be cylindrical coordinates defined by x = r cos¢ and y = r sin¢.
The separation of the disks, which occupy the region a < r < b, is as-
sumed to be much smaller than a wavelength \,

kh « 1. (6)

The region between two consecutive disks forms a radial line whose input
reactance jX at r = a is a function of the radial length [ = b — a; for ka
> 1, one has approximately

JX = jZytankl,
where Zy = V/ug/ey . For a finite number of teeth per wavelength, the
value of [ must be corrected.* Because of condition (6) the effect of the
disks can be accounted for adequately by introducing an effective surface
reactance®12.19

iXe=iX (1-3), @

where ¢ is the thickness of the disks, and by requiring that the field for
r < a satisfy the boundary conditions

forr =a, (8)

H,~-—
[ sz
where E,, H,, E, are the ¢ and z components of the electric and magnetic

field.
Let 8 be the propagation constant in the z direction,

B = k costy, (9)

and assume #, is real, so that 8 < k. The case where 8, is imaginary is
considered in Appendix B. Assume the ¢ dependence of E, is given by
cos¢. Then, the field components of a mode that propagates in the z
direction with propagation constant {3 are eiven by

E, = Ad(kr) cos¢ e —ihz, (10)

* See Ref. 17 for the effect of a finite number of teeth per wavelength, which causes a
reduction of the effective depth, {.
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N

ZoH, = BJ(kr) sing e —ibz, (11)
Ey= [BJ[(xr) + A cosfl, I(Kr)] sing e 8z, (12)

sinfl, Kr

j J ( r) —;
ZoHy=— M [AJ (kr) + B cost ] cosp e=/Pz,  (13)
E,=- J— [ J1(kr) ——+ A cosb J (xr)] cos¢ e 1Bz, (14)
sinf Kr
ZoH, = — i . [ Julkr) ==~ + B cosb; J; (xr)] sing e=/fz,  (15)
sinfl Kr
(r =a),
where
k=k Sinﬂl.

The boundary conditions (8) givel?

u Jy(u)
T Tt 16

v cosfl; J1(u) (16)
_ _cost l+ 1 Ji(u)

sinfyuy sinf; Ji(u)’

(17)

where
u = ka sinf,
= — , 18
y X, (18)

and 7 is the ratio between the TM and TE components of the hybrid

mode,
A

Y=g
By eliminating v from eqs. (16) and (17), one obtains the eigenvalue
equation

(19)

y _ 1 Ji) [ ud (w2 02 ]
ka u?udi(u) (Jl(u)) 1+(ka)2 J (20)

which is eq. (10) of Ref. 12.

The solutions of this equation are now studied for large ka. Both u and
y are assumed to be finite. Then, in the limit as ka — «, eq. (20) reduces
to

Jiw) N2 = 21
(Jl(u)u) 1=0. (21)
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We distinguish two cases:

Dlwu __, (22)
Ji(u)
and
Ji(u)u
—=1. 23
Jl(u) (23)

According to eq. (16) (with cosfl; =~ 1, since #; — 0 as ka — =), these two
cases correspond respectively to

y=1 (24)
and
y=-1 (25)

Using well known recurrence relations between the Bessel functions and
their derivatives, and using conditions (22) and (23), we find

Jolu) =0 (26)
and
Jo(u) = 0. (27)

We conclude that for large ka, eq. (20) possesses the two sets of solu-
tions

u~uom(m=1,2, ete) (28)
and
uU~ugy(m=1,2 ete), (29)

Uom and us, being respectively the mth root of J4(1t) and Js(u). Solu-

tions (28) and (29) are characterized by v ~ 1 and vy =~ —1; the corre-

sponding modes will be designated,* respectively, HE;,, and HE},,,.
Asymptotic series for u and v in terms of

1
—, (30)
ka

* This mode classification differs from the one by Clarricoats!? and it was chosen for the
following reason. Here, and in Ref. 17, we are interested in horns whose inner radius a varies
gradually with z, while the wall susceptance y is approximately constant, as in Fig. 1, from
2y to 2. Consider therefore a mode propagating in Fig. 1 from 2z, towards z,. Clarricoats’
classification assigns in some cases a different name to this mode in different regions of
the horn, even though there will be no discontinuous variation of the mode-field config-
uration, as it propagates in the horn. On the other hand, our classification based on the
Bessel function roots ug,, and us,,, assigns a single name everywhere in the horn. If instead
the frequency is gradually changed the mode of a waveguide of given dimensions will retain
the same name with Clarricoats’ classification, whereas this is not always true with our
classification. To understand better these considerations, see also Ref. 25.
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are derived in Appendix A under the assumptiony > «. For the HE;
modes, characterized by y — 1 as ka — =, it is found that

ly 1[ y2 2] 1\2
= Uy = Ugm [ 1= = 1-La+ud) | (=
U= tm = to [ 9ka 2 g (LT uon) (ka)

+§[1—§(7u%m+1)] (if] (31)

and

yl ¥ 12
=1-ud, [T=-L+us, —)
v “o {2ka 8( uo)(ka

_y _1, _Y_2 2 ] 1 3...
a2}

For the HE},,-modes, characterized by ¥ — —1, u is given by

- _ly
um—ugmll 5 ha ] (33)
and
ly
=-1- QMI——...],
Y uj 2 ha (34)

The x and y components of the electric field are now derived. First
consider the HE;,, modes. One finds from egs. (10) to (15), with cosf;
= 1and v given by eq. (32), that for large ka the transverse component
of E is given by

Etz—jk—aA[Jo(iu)ix
u a

1
+ = u? -Y“Jz (iu) (cos2¢ i, + sin2¢ iy)], (35)
4 ka a
omitting the factor e ~/82. Amplitude A is determined by power P carried
by the mode. From eq. (67) with du/dy given by eq. (92)and n; = A
_1 ZO 1 u? 1
A==\ =——— 36
|4 a V¥ 7 aBkadiu) (36)

if P =1,
For the HE],, modes with y =~ —1, on the other hand,
_ .ka r . . .
E;~] : A [J2 (—u) (cos2¢ i, + sin2¢p iy) + -+ ], (37)
a
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where the dots represent terms that vanish as ka — . The amplitude
|A| for P = % is still given by eq. (36).*

An important property of the field distribution (35) is that E, — 0 as
ka — =, Thus, in the limit as ka — =, the field becomes polarized in one
direction, regardless of the value of the surface reactance X, (unless,
of course X; = 0). From eq. (35), the amplitude of E, is porportional to
the ratio

y

e (38)
Therefore, in order that E, be negligible over the aperture of a feed, it
is sufficient that the aperture diameter be large and the thickness t of
the disks (see Fig. 1) be small compared with their separation.’ The far
field of an aperture illuminated by the fundamental mode, the HE;;
mode given by eq. (35) for u = ug; = 2.4048, is discussed in Ref. 17. From
a comparison of the radiation patterns of E, and E,, we find that the
ratio C2 between the maximum value attained by |E, |2and |E, |2 (which
occurs on axis) is given by

C?=0.14 (1)2 = 0.14 , (39)

k
a [(1 —t/h)ka tangi]2

@o

where wg denotes the frequency for which y = 0. One can easily verify
using this formula that C?2 remains less than 0.000316 (—35 dB) over a
frequency range w; < w < 1.93 wy, provided ka > 10 and t/h < 0.1.

Thus, good performance over a wide frequency range is possible,
provided all the power incident at the input of the feed is converted to
the HE;; mode. If, however, some of the input power is converted into
some of the HE),,, modes, then, according to eq. (37), the field over the
feed aperture will contain a cross-polarized component whose amplitude
is essentially independent of the ratio y/ka. The resulting cross-polarized
component of the far field is discussed in Ref. 17. If w; < w < wy denotes
the frequency range over which only the fundamental mode (HE;;)
propagates, it is pointed out in Ref. 17 that the largest value that ws/w;
can assume is 1.6839; this value is attained for b/a = 1.8309. Cutoff fre-
quency formulas are derived in Appendix D.

In Appendix B, the properties of a surface-wave mode that can exist
in a corrugated waveguide, in addition to the modes of egs. (35) and (37),
are briefly described.

* In eqgs. (35) and (37), only the leading terms for the symmetrical, asymmetrical, and
cross-polarized components are retained.
T Note that from eqs. (7), (8), and (18), y increases with ¢/h.
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IV. COUPLING COEFFICIENT BETWEEN TWO MODES

Suppose the electric field E; at the input of a corrugated waveguide
is known, and we want to determine the resulting amplitude of one of
the modes excited in the corrugated waveguide. We have to evaluate a
surface integral of the form

j‘ J; (E; X H3) - i, dxdy, (40)

where Hj is the magnetic field of the mode whose amplitude is to be
determined. This integral, identical to that involved in determining the
far field radiated in a given direction by an aperture containing the field
E,, is in general difficult to evaluate. However, in many cases, we can
assume that

— ~ —jB.Ey, (41)

where £, is a constant. This condition is approximately satisfied,* for
instance, in the case of a feed aperture illuminated by a single mode
propagating in the z direction with propagation constant . We will show
that the above surface integral can be reduced to a line integral which
can be evaluated straightforwardly. We use the symbol (E,, Hy) for the
integral (40), and call it the scalar product of the two modes E; and
Ho,.

If E;, H, and E,, H, are two solutions of Maxwell’s equations, in free
space,20

V-(E; XH,+E; X Hy) =0 (42)

in the absence of sources. Now, let the z dependence of the two solutions
be given by

e—ibiz  and e /B, (43)
Then, in eq. (42)

V=V, —j(B1 = Bali, (44)
where V, is the transverse part of V. Therefore eq. (42) gives

V. (B, X Hy + E3 X Hy) = j(B; — B2)[(Eq X H)) -i, + (B3 X Hy) - 1,].
(45)

Next, consider a new solution Ej, H; with propagation constant 8; =
—B; and with z components given by

E),=-Ey, (46)
* Of course, condition (41) is satisfied exactly by a mode in a cylindrical waveguide.
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H), = +H,.. (47)

Then the x, y components of E;, H; simply coincide?! with the x, y
components of E;, —H;,

E'l.r = Elx: E’ly = Ely: (48)
H'l.r = _'Hlx: H;J = _Hlyo (49)

Therefore, replacing in eq. (45) 81, E;, H; with —3;, E;, H; and making
use of eqs. (48) and (49), we obtain

Ve (Ey X Hy + E3 X Hy) = —j(8: + B2)[(E; X HY)
= (E3-Hy)] Xi.. (50)

By adding eq. (45) to eq. (50), we obtain
(E; XH3)-i, =V, F, (51)

where
J , . . .
F=—""—[E, XH,+E;XH
2(,81+B2)[ 1 2 2 1]

o .
2=y (B X HO) + (ES X Hy). (52)

We now integrate eq. (51) over a finite area S of the plane z = 0, making
use of the divergence theorem,

J‘L(Elxﬂz)-lzdxdy=‘¢;F-nds, (53)

where C is the contour of S and n is the outward normal. To determine
F - n, let 7 be a unit vector tangent to C,

T=1i, X n. (54)
Then, if A and B are two arbitrary vectors,
(AXB) -n=A,B, - A,B,, (55)
where A,, B, are the components of A and B in the direction of 7.
Therefore, from eq. (52), taking into account egs. (46) to (49),
B2
Bt — 63

F.n=-j (E1,H5. + E5H..]

B1

2
Bt — B3

+ J [E].ZHET + E;zle]- (56)
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Finally, from egs. (53) and (56), we obtain the desired result,

(E,Hy) = f fs (E; X H) - i, dxdy

= _J f (E17H22+E21—le)ds

i _9? (E1,Hj, + E3.Hy)ds.  (57)

Thus, the scalar product (couplmg coefficient) of two modes E; and
E; can be determined straightforwardly from the values of E; and E;
on the contour of the aperture S. This result has a number of applica-
tions. It can be used, as already pointed out, to determine the far field
radiated by an aperture S with known field distribution Ey, in which
case H, is the magnetic field* of a plane wave with propagation vector
k and eq. (57) gives, except for a constant independent of k, the field
component radiated in the direction of k with the polarization of Ho. In
this article, we are interested in the special case where S is a circular area
of radius a, in which case we can replace in eq. (57) 7 with ¢, since

T= i¢.

If E;, H; (i = 1, 2) represents a mode of a corrugated waveguide of radius
a,sothatforr=a

Eiy=0, ZoHiy= —JjyiEi, (68)
then eq. (57) simplifies to
1
E, H E.,
(Ey, Hy) = = - m =v1) . BrEs ds. (59)
Since the modes are charactenzed forz =0andr =a by
E;; = niJ1(u;) cosg, (60)
where 7; is the coefficient A of the ith mode, then
am *
(B Hy) = — P (v - yomumdiwdiwg). (61)
Zo 1 — B3
Note that
a%(B — B3) = uj —uf. (62)
If we assume
y2 =y1 +dy, (63)
U = U + dul, (64)

* There are two cases (two polarizations) that must be considered, for each value of
k.
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s

from eq. (61) we obtain for the power carried by the mode E;

1 T fad dy
Pi==-(E,H) = — ————=—n%J%u,). 65
1 2( 1, Hy) 570 2u; dus nief1(u1) (65)
The derivative dy/du,, which appears in this expression, is calculated
in Appendix C. In the following sections, we choose

(E;, Hi) = 1, (66)
in which case from eq. (65)
220 Uu; du,— 1
il = - | = . 67
il a’r Bia | dy | JHu;) (67)

These results are now applied to the problem of a junction between two
different waveguides.

V. JUNCTION BETWEEN TWO WAVEGUIDES OF DIFFERENT SURFACE
REACTANCE

Let two waveguides of different surface reactance, but the same di-
ameter, be jointed at z = 0. Assume a single mode incident on the plane
of the junction from the region z < 0 and let E;, H, denote the transverse
field components. To determine the amplitudes of the reflected and
transmitted modes, we expand E, and H, on either side of the junction
in an infinite series of modes, and then require continuity of E; and H,
at the junction. A simple solution for the amplitudes of the scattered
modes is then obtained assuming the difference in surface reactance is
small. This result will be extended in Section VI to the more general case
of two waveguides of slightly different diameter.

Let the transverse fields for z < 0 be represented by a superposition
of the modes of the waveguide occupying the regionz <0, -

E, = Aje, %2 + 3" Rieieifz, (2 <0) (68)
1

H, = Ajhjeif: — )?R.-h,-efﬂlz, (z <0), (69)
where
Ajeje~/fiz, Athje=ifiz (Re(8) > 0)
are the transverse field components of the incident mode, and
R;ee/Biz, —R;h;elbiz
are those of the reflected modes.
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Similarly, for z > 0,

E =) Tee-ifiz, (z>0) (70)
1

H, = 3 T;hje=%iz, (z>0), (71)

where T are the amplitudes of the transmitted modes.
We assume that e;, h; are normalized so that

(e;, hy) = _f fs (er X hy) - i dxdy = bin. (72)
Similarly,
(e;, hy) = din. (73)

Since (e;, h;) represents twice the power carried by the ith mode e;, this
power becomes imaginary if the mode is cutoff, in which case eq. (73) for
i = 1 should be replaced with

(e, hy) =J.
However, in this article the calculation of R;, T; is restricted to the modes

that are not cut off by the two waveguides.
From eq. (61) with n;, n given by eq. (67),

2 Ui,

i, My . 74
(ei, hn) = 25. 20 y)\/|ﬁlﬁn(dy/duf)(dy'/du,,)| (74)
and

(el hy) = %ﬂ(el,h) (75)

where (e;, h,) and (e,, h;) are scalar products defined as in eq. (72)
and

u? = (ka)? — (B;a)?, (76)

a being the radius of the two waveguides. In eq. (74) 1/y and 1/y’ are the
normalized surface reactances of the two waveguides.
Now assume y’ — y is very small and let

by=y —y. (77)

To determine R;, T;, we require continuity of E; and H, forz =0,

Asey + iRnen = Tie) + i T,e.. (78)
Arhy — th —T1h1+ZTh (79)
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Take the scalar product of the first equation with h; and of the second
with e;. One obtains, taking into account eq. (73) and assuming that the
mode e; is not cutoff, so that 3; is real,

Ai(e, h)) + Ri(e;, h) + X R,(e,, h)) =T, (80)
n=11

Ai(e;, hy) = Ri(e;, hi) = ¥ Rg(e; h,) =Tk (81)
n#li

Now, assume for the moment that y, y’ # «. Furthermore assume none
of the modes under consideration is at cutoff. Then

(en, hy), (ejh,) (i #=n) (82)

are small quantities of the same order of 5y. Furthermore, as we show
below, this is true also for R,,. It follows that the two sums involving R,
in eqs. (80) and (81) are of order higher than dy. Therefore, subtracting
these two equations and neglecting terms of order higher than dy,

(81. h;) — (e; hy)
"(e, hi) + (e ;)

Adding egs. (80) and (81), and neglecting terms of order higher than
dy and solving for T}, we obtain

(e, h)) + (e, hy)

R; = (83)

T; = Ay 5 (84)
Using eqs. (74) and (75), we rewrite eqs. (83) and (84) in the form
Bi — u1ﬁl ‘dy/duf
Ri=-A 85)
Iﬁ1+3, uaﬁl\/ dy/du, (
; 1
Ti = F =) \/“‘“5 — . (86)

ﬁ B18; | (dy/duy) (dy’/du;)|

The derivatives dy/du, and dy’/du; are derived in Appendix C.

It is interesting to note from eq. (85) that the reflection coefficient for
the mode ¢ = 1 is simply

pL= & — B Bl (87)
Ay B+ 81

which coincides with a formula derived by Brown!8 from a principle of
conservation of momentum. However, that derivation is not applicable
to the present problem, which involves hybrid modes. Measurements
of p; described in Ref. 17 show that this formula, although derived as-
suming y’ ~ vy, is quite accurate even for relatively large differences be-
tween y and y’.
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It is also interesting to note that the following interpretation can be
given to eq. (86). If E, for z = 0 were known, we could determine T;
simply using the formula

Ti = (Eb h:): (Z = 0): (88)

which follows from eq. (70), in view of the orthogonality relations (73).
Now, if y — y’ =~ 0, E; does not differ much from A e, and, therefore, we
might be tempted to write in eq. (88) E; ~ A;e,, in which case we would
get

T; =~ Ai(ey, h)). (89)
Alternatively, since from eq. (71) we also have
Ti = (e;: Ht) fOl' 2= 0) (90)

we might be tempted to assume H; ~ A1h, for z = 0, in which case
T" ~ Al(e}, h1) (91)

Neither of the two formulas is correct* even if 6y ~ 0. However, according
to eq. (84), a correct expression for small dy is obtained by taking the
average of the two formulas. We now treat two special cases.

5.1 Limiting case ka >> 1
Assume that both y and y’ are finite, but the radius a is very large,
ka > 1,
a condition which is often satisfied near the aperture of a feed. From eqs.
(31) and (33)
lim —=—--—. (92)

Furthermore, for large ka,

1u?
~ka———, 93
Ba a 2 ka (93)
since (Ba)? = (ka)? — u?2 Therefore,
' lu?—ul 1 ju;\2
e~ — -2 —t == () by, 94
aBi — af; 2  ka 2 (ka) y (04)
since from eq. (92)
, 1u
;~ i T 5 . 95
wi~ui = oy 0y (95)

* They are often used, however.2
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Using these results, from eqgs. (85) and (86) we obtain

uw; (Y —y)

= A,
T lu?—u% ka (96)
g luumy -y
YT 4 (ka)? ka

One can show that these formulas are valid even if dy is not small, pro-
vided both

(97)

are small.
An application of eq. (96) is considered in Section 7.1.

5.2 Case 1/y =0

At the input of the feed of Fig. 1, the corrugated waveguide is con-
nected to a smooth waveguide (1/y = 0) of the same diameter. We now
wish to calculate the reflection and transmission coefficients of such a
junction. Thus, assume y ~ = for z < 0. For y ~ =, there are two types
of modes: TE modes, in which case v ~ 0, and TM modes, in which case
v ~ o, In the former case, from eq. (179) of Appendix C

. dy kau —
1 L= —y2(p2—-1)———, ~0). 98
Jim = YT D G e Y0 o8
In the latter case, from eq. (180)
dy _ u 9 _
du va (y~ =) (99)

Now let the incident mode be a TE;; mode. We distinguish two cases
depending on whether the ith mode is a TM mode or a TE mode. In the
former case, from eqs. (85) and (98)

Bi — Bi Bif 1

lim R; = —A ; , (100)
yee BB Y wi-Dk
where u; is the first root of J3(u;) = 0,
u; = 1.8411. (101)

If, on the other hand, the ith mode is also a TE-mode, from egs. (85)
and (99),

- 2 _
lim B, = —4; 2= Biy /B1i — 1 (102)

y—e ‘B1+8; Y Biui-1"
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Fig. 2—Reflection, transmission, and coupling coefficients for input junction of Fig. 1.

From eq. (86) we obtain, using eq. (98),

. 1 ,‘31[,&2 1
IimT;=A ; , ——, 103
v 15!31—013;'\/3?0.@5(“%“1) dy’ (103)
du;

where dy’/du; can be determined using eq. (178), unless y’ > 1, in which
case we can use eq. (98) or (99) with y,u replaced by y’,u;.

Equations (100) to (103) have been used to calculate the behavior of
a junction with b = 1.8309a. Consideration has been restricted to the
TE;; mode and the TM;; mode of the smooth waveguide, and the cor-
responding modes (HE;; and HE},) of the corrugated waveguide. The
results are shown in Fig. 2, where i = 2 refers to the TM;; mode (or the
HE|, mode),

R.12
2 1
= |- 104
5 A, ( )
is the input reflection,
ps = By)? (105)
Ay
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gives the power converted into the TM;; mode, and
T,
A
gives the power converted into the HE}; mode. In Fig. 2, w, is the fre-

quency at which y’ = «. The corrugated guide at this frequency behaves
like a smooth guide and, hence,

pr=pe=t2=0. (107)

The curves of Fig. 2 are useful in determining the practical bandwidth
of the junction of Fig. 1.

2 2
ts =

(106)

VI. JUNCTION BETWEEN TWO WAVEGUIDES OF DIFFERENT DIAMETER

For some applications, to minimize the input reflection of a corrugated
feed, it may be convenient to choose for the smooth waveguide a diameter
different from that of the corrugated waveguide. In this section, the
analysis of Section V is extended to the general case of a junction between
two corrugated waveguides of different diameter. Let a and a’ be the two
diameters for z > 0 and z < 0, respectively, and assume again a single
mode is incident on the junction, from the region z < 0.

If E, for z = 0 were known, then the transmission coefficients 7} which
appear in eqgs. (70) and (71) could be determined at once using the for-
mula*

T, = fj; (E. X h})-i, dS, forz =0, (108)
which follows directly from eq. (70) in view of the orthogonality of the
modes e;, h; [see eq. (73)]. In eq. (108) S’ denotes the circular area

0<r<a’
Now, for z = 0, E; is given by eq. (68) inside the area

0<r<a, (109)
and it vanishes for a < r < a’. Therefore, eqs. (108) and (68) give

@

T:i=Ai(e;, h)) + ¥ R,(e,, h)), (110)
n=1
where
mhg: nx :'".z S»
(e )fj;(e h}')-i, d (111)

S being the circular area (109), which corresponds to the waveguide of
the region z <0.

* Here we are only interested in calculating T; and R; for 8; > 0, 8; > 0.

CORRUGATED FEED PERFORMANCE 853



Equation (79), which was obtained by requiring continuity of H, for
z = (), must be satisfied over the area S. By multiplying this equation
with e, and integrating over S, we obtain for n < 1

~Rn =Y Tien h) (n51). (112)
1

If the coefficients T; in this relation are expressed in terms of the coef-
ficients R; using eq. (110), we get for n # 1

~Rp=(A1+R1) Y (e, h))(en, h)+ Ry 3 (en, h))2
i=1 =1

s#n,1 =

+ ¥ R Y (es, hi)(en h). (113)
=1

For n = 1, the second sum of the right-hand side should be omitted and,
furthermore, —R, should be replaced with A; — R;.

We have thus obtained a system of equations in the unknowns R4, Rs,
etc. We solve* them in the limiting case where botha” —a and y’ — y are
very small, in which case

(en, hy)=0 forn s
R;~0

. ) 114
(enx hk)_lzo ( )

and therefore the first two terms of the right-hand side of eq. (113) for
n # 1 are respectively equal to

Ay[(en, b)) + (e1, hy)]

and R,,. The last term can be neglected. Therefore, eq. (113) gives for
n#l

1 , ,
R,~-7 [(e1, hy) + (en, hy)]A1 (n 5 1). (115)
Similarly, forn =1,
1 ‘ .
R, 25 [1— (er, h))?]A; ~ [1 = (e1, hy)]A;. (116)

The transmission coefficients can now be determined using eq. (110).
We find forn = 1

T, %3 [(en, hy) = (en, B (0 = 1), (117)

which is a generalization of eq. (84).

* This deriv_ati()l? is not rigorous, for we neglect to examine the question of convergence
of the summations in eq. (113). However, the validity of the results appears to be confirmed
by the experimental results.
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The coefficients (e;, h,) can be calculated using eq. (57). If y’ — y and
a’ — a are very small, we can proceed as follows. The field components
e, and h,, of the nth mode are considered to be functions of the coordi-
nates r,¢ and of the two waveguide parameters a,y. Therefore,

oh,
h. = h,(r, 6, a’, y') < hy, + 222 5y + 200 54 (118)
oy oa
where h,, 0h,/dy and dh,/da are evaluated for a’ = a, y’ = y, and &y
are da denote y’ — y and a’ — a. a similar relation can be written for e,,.

It follows from eq. (118) that (e;, h;) for i  n is a sum of two terms,

(e;, h,) = (e,, aa]; ) by + ( bal::) ba, (119)

since (e;, h,) = 0. The first term is simply the coefficient (e;, h},) cal-
culated for a’ = a; it corresponds to a junction between two waveguides
of the same radius, but different surface reactance. The second term can
be interpreted as the coefficient (e;, h},) relative to a junction between
two waveguides having the same surface reactance but different radii
a and a’. Since the term has already been treated in Section V, only the
latter need be considered. If one sets

oh, oe,

) Ben =
da da

and if the ¢ variations of both modes are of the type considered in Section

I, then, taking into account that e;; = 0 for r = a, using eq. (57) we

get

6h, = éa, (120)

: Bn ah* ae;
(e;, 6h,) = wada [—] 57— g (e“ﬁ " 2 4 ¢h52)r¢:30=
. Bi oh,, . de,.
tigr (e,- Cne g O hw)f:go]. (121)

As an application, consider y = «, in which case (e;, h,) can be in-
terpreted as the coefficient (e;, h,,) relative to a junction between two
smooth waveguides of radii ¢ and a’ = a + éa, respectively. Assume e;
is a TE mode and e,, is a TM mode, so that forr = a

oh,,
eip =€, =—-=0, (122)
oa
where the last term vanishes because h,, is a TM mode. Then eq. (121)
gives

1 ae,,
(B,‘, 6hn) = rada ,6‘2 _ 63 [ ]Bn ( 2a hAz)?_)_:r?(]"

+jB; (ae"Zh-¢)¢=0=]. (123)

da r=a
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Similarly, interchanging n < i in eq. (121) and taking into account that
forr=a

be,—z

= €ngp = €nz = hn. =0, (124)
da
we obtain
(en, 6h;) = 0. (125)
Now, the two modes are characterized by
1 r .
hiz = —mid1 (— ui) sing, (126)
Zg a
. 8 J1 (£ U’L)
: a
hip = — Lni Lo cos¢, (127)
Zo  u; r
Ly
a
and
€nz = ﬂnJl (£ un) COSd), (128)
a
,8 Jl (‘E Un
. n a .
enp = JMn 2 sing, (129)
Un r
Tu,
a

where the amplitudes n; and 7, are, because of the requirement (72),
given by
/2201 uF 1 1 1
"V ra a VB VAT =1 |hw)| Y (ka)’
IVE7S S SR
n = ma aV B, |Jiu,)| ¥ (ka)’

From eqs. (123) and (126) to (131), taking into account that J,(u,) = 0,
we obtain the final result

(130)

(131)

ka 1 da
VaBaB, Vui—-1a’

(132)

(ei; 6-hn) =2

Note that in deriving this relation it has been assumed that éa is suffi-
ciently small so that
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If this condition is not satisfied, we should replace 8, with 8, in eq.
(132).

Of special interest is the case where e; and e, represent the TE;; mode
and the TM;,; mode, respectively. In this case u; = 1.8411 and, letting
i =1and n = 2 for these two modes, we get

ka ba
aBafz a’

From egs. (115), (117), (125), and (133) we then obtain for the conversion
coefficients T and R

(e1, 6ho) = 1.2937 (133)

Ty= —Ry=0.646 —2—"% x 4, (134)
apapBqa
where |A1|2, | T2|2 and |R2|? represent the incident power, and the
powers transmitted and reflected in the TM;; mode. We can verify* that
T, is smaller by a factor of 2 than the conversion coefficient given in Ref.
992, which is due to the fact that the assumptions of Ref. 22 imply

T~ (e, h,), (135)

rather than eq. (117).
Note that for 8> — 0, we have a8, — usV'éa/a , and therefore

e /6an 3/4
Ty 0646/ a”?z (f) . (136)
1

Note T's remains finite even when the TM;; mode approaches cutoff
in the first guide.

Vil. MODE CONVERSION IN A NONUNIFORM WAVEGUIDE

Typically, a corrugated feed is made of one or more sections of non-
uniform waveguide whose surface reactance and radius are functions
of z. Since a nonuniform waveguide does not in general possess a natural
mode of propagation, an incident mode will be scattered in forward and
backward modes. This is true even for a conical waveguide of constant
surface reactance (except wheny = 0 or y = »). The analysis of Sections
V and VI gives the differential scattering parameters which allow the
local coupling into forward and backward modes to be determined at any
point in a uniform waveguide. We can thus obtain a set of differential
equations, whose coefficients are given by the above scattering param-
eters, and which can be solved, at least in principle, for the mode am-

* In Refs. 22 and 23, the TM;,; mode was cut off to the left of the junction, and for this
reason there is poor agreement between those measurements and eq. (134), which is not
applicable in this case. However, numerical calculations by Masterman and Clarricoats
agre well with eq. (134) at frequencies well above the cutoff frequency of the TM;; mode,

as we may verify from Fig. 11 of Ref. 24.
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plitudes. We confine ourselves to a first-order treatment assuming the
total scattered power is much less than the incident power, since this is
the most interesting case if the feed is well designed. It is convenient to
assume for the moment that only y varies with z, in which case the
waveguide can be approximated by a succession of junctions of the type
considered in Section V. Let the HE;; mode be incident at the input (z
= 2,). We wish to determine the resulting amplitude T's(z) of the HE};
mode for z = z3, If the variation of y is sufficiently slow, we can neglect
reflections and determine T assuming the amplitude A; of the HE;
mode is nearly constant. The transverse field of the fundamental mode
is then

Alele‘f'"’l(z’, (137)
where
dd
—1=3,. (138)
dz

The effect on the HE;; mode of a small variation 8y at z = £ is to produce
at z ~ zy a component

dTs = to(£)dyA eI 21B)e—ilPalz2)—2(8)] (139)
where
dd
—2=p, (140)
dz

and from Eq. (86),

-1 Lildg 1
t = . (141)
) apy —aps \/0231!32 | (dy/duy)(dy/dus)|
Note that both 8, and 35 are functions of z. From eq. (139), integrating
from z; to zo,

Tolzs) = f 2 ATy = Aye—idae
z1

X f  to(2)et -0 D g, (142)
2] dZ

which assumes a very simple form when ka >> 1, as discussed in the fol-

lowing section.

7.1 Conical horn with ka > 1

Suppose the radius a varies linearly with z, as shown in Fig. 1 forz >
z1, that the flare angle « is very small, and
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ka(z) > 1

for z; < z < 5. It was shown in Section I that for ka >> 1 the properties
of a mode are entirely determined* by y/ka and, therefore, a mode will
propagate without variation of its transverse field distribution if y/ka
= constant. For this reason, it is reasonable to assume that mode con-
version will be negligible if

y
o(—)=0. 143

(ka) (143)
Under this assumption, the effect on the amplitude of the HE}; mode
for z = 25 of a small variation &(y/ka) occurring at z = £ can be expressed
in the form

dTy = 79(£)8 (ki) Ao J015)g—ilp2(z2)=d2(8)], (144)
a

where, since egs. (144) and (139) must agree in the particular case a =
constant,

To(£) = kata(§). (145)
From eq. (96),
o= — a1 (ka > 1). (146)
Uy — Uy

Therefore,

Tolzs) = —Ajeitated 122 J‘ “eitno-wold (1), (147)
us —u? Jz ka
Note that, since ka > 1,

afi~ka ——-—. (148)

Therefore, from egs. (138) and (140)

d kui—u?
= [®1(2) — ®al2)] =~ 1
5, 1212 22)] =7 (ha)? (149)
Now, a varies linearly with z,
a = (z — zp) tane, (150)

* Since now we are dealing with a conical waveguide, each mode is a spherical wave
centered at the apex A of the waveguide, and the field distribution over a spherical
wavefront is given to a first approximation (small &) by egs. (35) and (37). To obtain the
field distribution over a plane z = constant, we must therefore introdce in eqs. (35) and
(37) a factor of exp (—j¥), ¢ = k(x2+ y2)/2R, R being the distance of the plane from the
apex.
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where 2 is the value of z at the apex of the waveguide. Therefore, from
eqs. (149) and (150)

lui—-uly

®(z) — Pa(z) = (151)

2 ytana ka’

Of particular interest is the case

y = constant. (152)

Then eq. (147) can be readily integrated. Taking into account eq. (151),
we obtain
4uiuly? tana?

(uf — ui)*

2

2 _ 2
1—exp [jlui(l_ﬂ)]' (153)
2 ytana ka; as

|T2|2= |A1|2

X

where a; = a(z;). Therefore,

16uiudy? tana?
(ui—udt

where it is recalled that s = 5.1356 and u = 2.4048. For « = 4°, which

is the value chosen in the experiment of Ref. 17, this inequality gives for
y=1

| T2|? = |Ay|? (154)

M = 0.6636 104, (—41.8dB) (155)
2 =" ’ ' ’
|A4]
which is a very small value for most aplications. For & = 16°, on the other
hand, we obtain —29.8 dB, which may no be negligible.
Note that | T'2|% and | A;|? are, respectively, the powers carried by the
HE], mode and the HE;; mode.

Vill. SUMMARY

In the feed of Fig. 1, when a TE;; mode is incident at the input, some
of the incident power is in general reflected. Furthermore, some power
may be converted to unwanted modes if the corrugated waveguide
supports more than one mode at the input. Additional mode conversion
may take place inside the feed if the variation of the radius and of the
surface reactance is not gradual enough. As a result, a feed will have a
nonzero input reflection and, at some frequencies, unwanted modes may
illuminate the aperture of the feed. The consequences of these unwanted
modes on the radiation characteristics—e.g., enhanced cross polariza-
tion—are pointed out in Section III and in Ref. 17, where the theory is
compared with experiment.

These effects can be evaluated to good accuracy using the expressions
derived in this article, as highlighted below. For large ka, eq. (35) ex-
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presses the field shape for all copolarized hybrid modes of various radial
harmonics with the same ¢ dependence, while eq. (37) corresponds to
the cross-polarized modes. Equation (36) gives the mode amplitudes
required to normalize the power carried by the modes.

A property of corrugated feeds is that the aperture field distribution
does not remain constant with frequency, as in the case of a feed with
smooth walls, but varies because of the frequency dependence of the
surface reactance X,. Thus, although the desired mode has no cross-
polarized component at the resonant frequency of the corrugations, at
other frequencies the desired mode does radiate some cross polarization.
The ratio, C2, between the maximum value of the cross-polarized power
in the radiation pattern and the maximum value of the copolarized power
(which occurs on axis) is given by eq. (39). From eq. (39), it follows that
with large ka and thin disks one can maintain low cross-polarized power
in the radiation pattern from the desired mode over an octave or
more.

At a junction between waveguides of the same diameter but of dif-
ferent surface reactance, eq. (85) gives the general expression for the
mode coupling coefficient to modes reflected from the transition, and
Eq. (86) gives that for modes transmitted forward from the transition.
Equations (97) and (96) are simplifications of egs. (85) and (86), re-
spectively, which apply for ka >> 1. When the input waveguide is smooth,
the mode coupling coefficient is given by eq. (100) for reflected TM
modes, by eq. (102) for reflected TE modes, and by eq. (103) for hybrid
modes transmitted forward from the transition. Since the transition from
smooth to corrugated waveguide is a major source of unwanted modes
in a corrugated horn, eq. (103) is very useful in determining mode purity.
Another important formula is eq. (87), which determines the reflection
coefficient of the dominant mode (return loss) for any transition in X
and any ka.

Another source of generation of undesired modes is the mode con-
version occurring along the conical taper of a corrugated horn. Equation
(154) gives the mode-coupling coefficient for the transmitted undesired
mode due to a conical taper.

In some cases a step in diameter may be used to match transitions
between different surface impedances; eq. (134) determines the mode-
coupling coefficients at a step in diameter.

APPENDIX A
Asymptotic Series for u and vy in Terms of 1/ka
We determine the asymptotic series for u and + in terms of
1
—, 156)
ka (
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under the assumption y > 0. It is convenient to introduce in eq. (20) the

quantity!?
_udy@) _ Jo(w) _
J1(u) J1(u)

Note that
dF _dow)  Ji(w) Jolw)
du Ji(u) Jiw) J1(u)’
But from eq. (157)
Jow) _F 1
Jiu) u u

Therefore, eq. (158) gives

du u u
It follows that
u.g+F2—1+w2=01
du
d?F dF
—+—(1+2F)+2u =0,
“aur Ty 1A =0

3 2 2
uﬂ+zﬁ(1+F)+2(d—F) +2=0,
du

du?d du?
etc.
In terms of F, eq. (20) can be rewritten
1 1,2
2= F—F241- 2(—) =0,
e ka “ ka
or, using eq. (159),
1 dF 12
yukaF+du+u[1—(ka) ]—0.

Now assume

2
u=u0m[1+a1£;+a2(;—a) +"'].

Develop F in a Taylor series about the point u = ug,,
dF

F = Fluom) + (u)Fm (U = tom) +---.

du

From eqgs. (160) to (162), with u = ug,, taking into account that

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)
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Fluom) = —1, (167)

we obtain for the derivatives appearing in eq. (166),

().
du U=UQm om
d?F
- = -3. 168
(duz)u=unm ( )
3 2
(Q) =-2 s uﬂ"’, ete.
du3 u=uom Uom

Substituting eqgs. (165), (167), and (168) in eq. (166) one obtains F as a
series of powers of 1/ka; the coefficients of this series are algebraic ex-
pressions in ug, and aj, ag, etc. Similarly, by developing dF/du in a
Taylor series about the point u = ugp,, and then using egs. (165), (167),
and (168), we obtain dF/du as a series of powers of 1/ka. Substituting
eq. (165) and the above series expansions of F and dF/du in eq. (164),
we can solve for the coefficients ay, as, etc. We obtain eq. (31). Substi-
tuting eq. (31) in eq. (166) we obtain an expansion of F in powers of 1/ka.
Using these results, from

F F
Y= = —, (169)

COSH]__ ‘\/1_(3)2
ka
we get eq. (32).

Equations (31) and (32) have been obtained assuming eq. (165), which
corresponds to the limiting case of eq. (28). If, instead of assuming eq.
(165), we assume

, 1 142
U=t = Usm [1 +61(5) + 82 (50) +] (170)
we obtain eqs. (33) and (34).

APPENDIX B
Surface Wave Mode
In addition to the modes considered in Section III, there is a mode for
which 8 > k. Thus, since for this mode cos §; > 1, it is convenient to re-
place 6, with jf, in egs. (16) and (18). Since
cos jf = cosh 8,

sin j#; = j sinh 6,
J1(jx) = jI(x),
J1(x) = I(x),

(171)
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where I;(x) is the modified Bessel function of order 1, we obtain from
egs. (16) and (17)

Iiuw) u
=, 172
I1(u) cosh 6; (172)
y 11;(u) coshﬂlll]
e et et 17
ka [uIl(u) u yu (173)

where u = ka sinh 8;. We can verify from these two equations that u —
=« as ka — «, Now, for large u,

, ev
I ~1 ~ ) 174
l(u) ]_(H) m ( )
Therefore eq. (172) gives
Yy — o, aska —> »,
From eq. (173), for large u and ka,
y _ 1
-~ -, 175
ka u (175)
Therefore, since u = ka sinh 6,
1
sinh 6, ~——. (176)
y

We now examine the behavior of the field components for ka — .
Taking into account eq. (171), from eqs. (10) to (15), after replacing 6,
with jf;, we find for v = —« (i.e., for B = 0) that the only nonzero com-
ponent of the magnetic field is H, and

1
sinh 64

—ZoH, =

Al (u i) cos¢ e —JBz,

Therefore, for kr > y

~ZoH, =AY/ % coss explk(r — a) sink 0, — jge],

where A’ is a constant. This shows that the field is confined to the near
vicinity of the wall, decaying approximately exponentially from the
wall.

We can show that ka > 1.81, the surface wave mode in combination
with the HE,,,, and HE},, modes comprise the complete set of propa-
gating modes whose E, azimuthal dependence is cos¢.

APPENDIX C
Derivation of dy /du
From eq. (163),
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y 1 1 141
—=—F+( -=)=.
ka u? (ka)? u2) F
where
U'J,l(u)
F=——.
J1(u)
Furthermore, from eq. (164)
Fr=-tipry (-l-—u).

Therefore,

() [Go) ] o

For the case y — =, we now determine

. dy

lim —.
For y ~ = there are two types of modes: TE modes, in which case vy~ 0,
and TM modes, in which case v ~ «. In the former case from eq. (169)
we have F' ~ 0 and, therefore, eq. (178) gives

2 _ 2
-~y - 1) S (R0 (9
since from eq. (163) for F ~ 0
lim F= -1 alou?
yreo y  kau?

In the latter case (y =~ =) from eq. (169), we have F' ~ «. More precisely,
from eq. (163)

u?
F<—y,
kay
and therefore from eq. (178)
dy _ka ., u _
LS pma_—y2 (yme) 180
du va” (v~ =) (180)
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APPENDIX D
Cutoff Frequencies of the Modes of Equations (35) and (37)
From eqs. (16) and (17) we get
Y2+ yw—1=0,
where
R
ka cosf;

Therefore, either

o+ Vit d

2 (181)

Y

or
—w=Vl+4
2

respectively, in the two cases of egs. (35) and (37) (which correspond,
respectively, toy — 1 and y — —1 for ka — «). At cutoff 8 — 0; i.e., cosf;
— 0. For cosf; ~ 0, y # 0, we have |w| — « and, therefore, from eq.
(181)

Y= , (182)

. 0 ify>0
o ity<o0’ 18)
(184)
whereas from eq. (182)
o, ify>0
_7_'[0, ify <0

If v = 0, the mode is of the TE type. Now, for a TE mode at cutoff, the
only nonzero component of the magnetic field is H, and therefore the
surface reactance X, has no effect on the cutoff frequency. This means
that the cutoff frequency can be determined by replacing the corrugated
wall with a smooth wall of radius a, and therefore the cutoff frequency
is determined by the condition:

Ji(ka) = 0.

If v = =, on the other hand, the mode is of the TM type and the only
nonzero component of the electric field at cutoff is E,. It follows that if
the disks are very thin (¢ = 0), they can be removed without affecting
the field. Thus, the cutoff frequency can in this case be determined by
replacing the corrugated waveguide with a smooth waveguide of radius
b. It is thus determined by the condition
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Jl(kb) = 0

Wheny =0, y = £1, and from eq. (16), J;(ka) = 0 for cosf; = 0. Thus,
when y = 0 both types of mode have the same cutoff frequencies.
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