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Minimum Impulse Response
in Graded-Index Fibers

By J. S. COOK
(Manuscript received October 15, 1976)

A straightforward analysis slightly extending the work of Kawakami
and Nishizawa and of Gloge and Marcatili provides some insight about
the extent to which the mode differential delay in a graded-index fiber
can be minimized. We show that an ideal fiber (no mode mixing) with
uniform mode excitation and loss and uniform material dispersion can
theoretically have an rms pulse broadening due to mode differential
delay as small as about 0.02LA%nq/c. We suggest that further im-
provement can result through recognition of differential mode loss and
by accurate control of the (non-zero) rate of change of dispersion with
fiber index.

I. INTRODUCTION

It is known through simple first-order analysis that differential delay
between the propagational modes in multimode optical fibers can be
greatly reduced by grading the optical index of the core so that the
index

n = ny(l — AR2), (1)

where R is the fiber radius normalized to unity at the core-cladding
boundary. It is also known that even less differential delay can be realized
theoretically by slightly perturbing the gradient from this parabolic
shape.

We have taken some direct steps based on existing analyses to deter-
mine how much further improvement might be realized if the optimum
gradient could be realized in an “ideal” fiber, where geometry is invariant
over its length (no mode mixing) and where material dispersion is in-
variant with radius. The approach is very simple and will be so stated,
but the algebra is tedious and what little has been included will be found
in the appendix.
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In their very nice analysis, Kawakami and Nishizawa'! showed that
an improvement in fiberguide impulse response could be obtained by
perturbing the parabolic profile through the addition of a small
fourth-order variation in the index gradient. They suggested that the
minimum pulse width would be obtained when the fourth-order coeffi-
cient, 8, lies between the values %, where all meridional modes are syn-
chronous, and 1, where circular spiral modes are synchronous. Minimum
total pulse width, 7, in fact occurs when § = %, and minimum rms width,
o, occurs when & = %. Their expression for n can be written:

n = no[l — 2AR? + 8(2A)2R4]/2. (2)

It will be seen presently that when the index gradient is near optimum
it takes some care to keep track of which propagating modes are the
fastest and which are the slowest. The overall pulse width, 7, is simply
the difference in arrival time between the slowest and fastest modes. If
we plot 7 vs & [found by solving (5) for all mode numbers at each é and
taking the difference between the extremes], the curve is continuous but
its derivative is not (Fig. 3 below). Personick? has pointed out that the
rms pulse width, g, (the second moment of the received pulse) is more
useful for fiberguide system analysis than is 7.

. J:t?p(t)dt_ j:tp(t)dt 2
j:p(t)dt _[p(t)dt

where p(t) is the power arriving at a given point at time, ¢. Note that
do/db is continuous, hence minimum o can be found by direct compu-

tation.
Gloge and Marcatili have shown in their analysis® that minimum total

pulse width occurs when
n= no[]. — QAR2(1-A)]1/2_ (4)

For convenience, we introduce a multiplier, p, in the exponent of R in
(4), namely,

, (3)

g

n = noll — 2AR21-r8)]1/2, @)

By definition, minimum total pulse width occurs for p = 1; minimum rms
width, ¢, however, occurs when p = 1.2.

These results are found by determining in each case the time of arrival
of energy propagating in the u, » mode (radial, azimuthal mode number)
with respect to the arrival time of the zero-order mode:

LAZH()
2cM?

t(8) = [(1—38/2)(2u + v+ 1)2+8/2(» — 1)7] (5)
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Fig. 1—Normalized time of arrival vs mode number (right) and mode count vs time of
arrival (left) for n = ng[1 — 2AR2 + (%)(2A)2R4]V2; i.e., 6 = 3.

LAZ%n,

2cM?2

where L is the length of the fiber, ¢ is free-space light velocity, and M
is the largest guided-mode number.

t(p) = [(Qu+ v+ 1)2— pM(2u + v + 1)], (6)

In both cases,
M=02u+rv+ 1)pax = Trno(a/?\o) V' 2A, (7)

where a is the core radius and A is the free-space wavelength of light.
Also, since we must include both E and H waves and two polarizations,
a fiber with near-parabolic core gradient carries a total of about M2

modes.
Equation (3) can be solved easily if we assume all modes are equally
excited [p(u, ») = 1] and integrate over all modes. So

M M=)/ M (M-n/2 9
f f t2(u, v)dudy j‘ J‘ t(u, v)dudy
9 0 0 0 0
0‘ 3 - .

M?/4 M?2/4

(8)

Substitution of (5) and (6) into (8) (assuming M > 1 to simplify the

algebra) and minimization with respect to 6 and p, respectively, produce
the results already stated.

We can substitute these minimum values back into (5) and (6) and

plot arrival time as a function of x and v, as shown in Figs. 1 and 2. Also
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shown in these figures (on the left) is a plot of relative power vs time of
arrival, again assuming uniform excitation of the modes.

Figures 3 and 4 show 7" and ¢’ vs 8 and p, respectively. The prime de-
notes normalization with respect to L A2n/e.

RELATIVE POWER, pit] | %\
17 / \n ‘-7‘-"'-9__
-0.1 _ -
_ H
M2 T
_“—__—_—_‘—\.
-1 0
v M
o' =0.029

Fig. 2—Normalized time of arrival vs mode number (right) and mode count vs time of
arrival (left) for n = no[l — 2AR2(1-84/5)]1/2; j e, p =
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Fig. 3—Normalized total pulse width, 7, and rms pulse width ¢’ vs § forn = no[l — 2AR?
+ 8(2A)2R4]1/2,
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4—Normalized total pulse width, 7/, and rms pulse width ¢’ vs p for n = ng[l1 -
2,3(1:%)2(1—,;.1 1/2,

It is natural to question whether we can improve on these independent
functional perturbations from the parabola by an appropriate combi-
nation thereof. Combination of (5) and (6) yields:

_La®ng 30 2
(6,0 = [(1 S) Gt D)

+2 (= 12— pM(u+ v+ 1)]. (@)

Substituting (9) into (8), as before, and minimizing with respect to both
5 and p produces: § = 15, p = %, Substituting these into (9) and neglecting
the 1s (large mode count) yields:

tchAT?[uz-l-uu'i'(%) ,,2_(%) M(2,u+u)]. (10)

This is plotted in Fig. 5.
Now combine (2) and (4’) and let § = 15 and p = % to find

n= RD[]- — QAR2(1-2A/3) + (%)(2A)2R4]1/2 (11)

as the near-optimum index gradient. Equation (11) can also be writ-
ten

n ~ no[l — AR? — A2(R)), (12)

which may be more convenient if we are seeking the excursion of the
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Fig. 5—Normalized time of arrival vs mode number (right), and mode count vs time
of arrival (left), for n = ng[1 — 2AR2(1-2/3 + (1/3)(2A)2R4 V% ie, p=%,6 =%

improved gradient from the inverse parabola of (1):
R4
«®)~ (2) R2in (/R - (13)

This is plotted in Fig. 6.

Il CONCLUSION
The rms pulse width in an ideal fiber with parabolic gradient is

2
o~ 0.145 Eéc-”—”. (14)

For the profile determined in this paper,

LA?
s = 0.0216 —C—""’ (15)

Hence, nearly an order-of-magnitude improvement in fiberguide impulse
response over that produced by an inverse parabolic gradient could be
realizable in an ideal multimode fiber.

Uniform excitation of the modes was assumed for this analysis. If the
low-order modes tend to carry more power,? even smaller o could be
realized and Fig. 1 would suggest that p — 0 and & — % might be more
nearly optimum.

Olshansky and Keck* have shown that when material dispersion varies
with radius, the optimum gradient is significantly different from para-
bolic and from those discussed here. On the other hand, it can be shown
that procedures similar to those indicated here can be carried out; and
if the dependence of the dispersion on optical index could be controlled
to a predetermined practical value, even less differential delay than that

724 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1977



0.3
02 v
0.1 / \
=
0
-01
-0.2
0.2 0.4 0.6 0.8 1.0

R

Fig. 6—Index perturbation from inverse parabola for minimum rms pulse width [see
egs. (12), (13)].

indicated here could be realized. This does not necessarily contradict
the results of the calculation by Arnaud and Fleming® based on an
analysis® which includes tunneling modes at equal weight with the more
clearly guided modes. They showed that if we assume a very specific
non-zero dependence of dispersion on index, namely, that resulting from
the inclusion of germania in silica, the differential delay of the optimum
graded-index fiber is considerably degraded. We suggest, however, that
if we carefully choose materials to enhance the index (a propitious mix
of germania and phosphorous oxide, for example), we might provide a
dispersion vs index dependence that would improve rather than degrade
the mode differential delay, at least at a particular light wavelength.
This goes well beyond our present ability to make measurements and
control materials, however, and only leads us to conclude that im-
provement in technology can potentially bring significant improvements
in the information-carrying capacity of low-loss graded-index fibers.
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APPENDIX
It is our purpose first to justify (5) and (6). Equation (5) comes from
Ref. 1, eq. (29), which translates directly to

w2y 2 ~/
0 —[32=2“;”0(2M+.;+1)—2A

c2

-6+ 6pu(r+ 1)+ @+ D+ 2)] i—g , (16)

where a is the core radius.
This can be solved for 8 to find

ﬁ%w—;l-g—(2u+u+1)——24—
a

cA
wnoa?

[(1-%‘5—) 2+ v+ 1)2+g(u2-—1)]. 17)

The largest propagating mode numbers can be found by recognizing
that the phase constant, 3, can be no lower than the phase constant, k4,
of an unbound wave in the cladding, where

ng = n0[1 - 2A]1/2 ~ Nog (1 - A) (18)
So

2R -8, (19)

wn
Bmin ® —2 — (2u+v+1)
C a

Eq. (19) yields
wngaVv' A

o3 (20)

CQu+v+ Dnax=M=
w?2ngla?A
2c2

Substitution of (20) into (17) shows that each term on the right-hand
side thereof is of order A smaller than the previous.

The time of arrival of energy carried in any mode through length, L,
of fiber relative to the arrival of energy in the zero-order mode is

W ER o

Differentiation of (17) and substitution of that [utilizing (20)] into (22)
produces eq. (5).

Equation (6) is found from substitution of GM(17) [i.e., eq. (17) of
Gloge and Marcatilli in Ref. 2] into GM(19), recognizing that the a of
Gloge and Mareatili is our 2(1 — pd). First, we must identify m/M of

M?= (21)
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Fig. 7—All modes that lie under the line intercepting the u axis at M/2, the v axis at M,
are propagating modes.

GM(17). The symbols are unfortunate, but we find this equates to our
(2u + v+ 1)2/M2,

This is easier to justify than derive. All modes are associated with
positive mode numbers that lie in the y, » plane, as shown in Fig. 7. We
can plot the identity of (20) on the plane to bound the crosshatched area
in Fig. 7 within which lie all propagating mode numbers. The total
number of propagating modes is four times the total mode-number
combinations in that area, which can be seen by inspection to be M2.
Gloge and Marcatili2 showed that for their assumed functional index
variation, the phase constant depends on the total mode number inde-
pendent of the ratio of u to ». If, then, we draw a dotted line parallel to
the limit line, as in Fig. 7, the sum of all modes with phase constant
greater than that represented by those on the line are identified by
numbers that lie within the double crosshatched area. This Gloge and
Marecatili call m, and we call (2u + v + 1)2. Their M is the total number
of propagating modes, which is our M2. [We have neglected the extra (1)
since we have assumed M >> 1. We would have to be more precise if only
a small number of modes were involved.]

We can now translate GM(17) to be
% + v +1)2
(#M+) ~ (bem/A)?
or
ARu+rv+1)

M (23)

dom =
This in GM(19) results in (6).
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Performing the integrations for (8) is simple but tedious. A helpful
formula, however, is

(M—-»)/2 Mn+1 — pntl
Qu+pv)dpy=—-—"". 24
_f) @+ Dndu == (24)
The evaluations of (8) for the two cases of (5) and (6) are
LA?ng 1 [1 26 762]1/2
)=—"—|-"—"7"+—
o(3) 2v3la 3 15 (25)
LA%2nyg 1 [1 2p p2]1/2
= — | -—-=+= . 26
a(p) 2v3 [4 5 6 (26)

For the combined case,
1 26 762 2p  p? 85p]1/2
s )= |2y 2 2R B =E 27
o(8, ) c2\/§[43155615 27)

Minimizing these is straightforward.
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