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The analysis of electromagnetic propagation over uniform cables
depends on the calculation of the charge densities on the conductors,
relative to a potential function that is not necessarily constant on the
conductors. By considering such a potential function as the real part
of an analytic function, two Laurent series are derived, one of which
involves the Fourier components of the potential function and its as-
sociated charge densities on the conductors. The second series accounts
for the relative location of the conductors. The two series are equated
to give a system of linear equations that can be solved for the charge
components. The results obtained, which apply to uniform cables whose
conductors (including the shield, if present) have circular cross sections
and are covered with two layers of dielectric insulation, can be used to
calculate the propagation modes and propagation constants of the
cable.

I. INTRODUCTION

Multiconductor cables for telecommunications have distributions of
charge on each conductor. The surface charge density on the conductors
is proportional to the normal derivative of a potential function (i.e., a
solution to Laplace’s equation), which is defined in the region separating
the conductors and is constant on the conductors. The constant values
of the potential are the voltages of the conductors, and the proportion-
ality constant is the permittivity of the material next to the conductor.
Also, generalized charge densities are defined for potential functions,
such as the longitudinal component of the electric field, which are not
constant on the conductors.

In the present work an algorithm is developed for computing the
charge densities in this generalized sense for uniform cables. Thus, the
conductors of the cable are assumed to be straight and parallel, so that
each transverse cross section is identical. The wires are assumed to have
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Fig. 1—Typical cable cross section

circular cross sections and to be covered by two circularly symmetric
layers of homogeneous dielectric material. Surrounding the collection
of wires is a circular, metallic shield, and it too is assumed to have two
uniform layers of dielectric on its inside surface. A typical cross section
is shown in Fig. 1.

Interest in the charge densities was spurred by the recent finding that
the modes of a cable and their associated propagation constants can be
expressed directly in terms of the charge densities when, as in Kuznet-
sov’s work,! low frequencies are excluded. Subsequently, it was found
that the analysis could be extended to low frequencies by using the notion
of generalized charge densities associated with the longitudinal com-
ponent of the electric field. These matters are developed in detail in
Ref. 2.

Previous work on calculating charge on the conductors of a cable
usually involved the simplifying assumption of homogeneous dielectric
in the region separating the conductors. For two identical wires in free
space, an explicit formula is available for all the Fourier components of
the charge density on a wire (see Ref. 1, page 41). Goluzin,? using the
theory of complex variables, has developed a continued fraction ex-
pansion for a potential function in a region bounded by circles; the ex-
pansion converges under certain conditions on the size and location of
the circles. Nordgard* has developed an algorithm involving a matrix
inversion for computing Fourier components of the charge densities for
a pair in a shield. Also, the capacitance elements (the zero-order com-
ponent of a charge density) have been calculated in a variety of cir-
cumstances.”6

For inhomogeneous dielectrics, the calculation of charge density has
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been approached by a finite-difference technique” coupled with a Fourier
analysis® of the normal derivative to give the Fourier components. This
technique, by calculating more information than is needed, has proved
to involve more computer expense than the technique to be described
here.

In this paper, techniques from the theory of complex variables are used
to develop a set of linear equations for the charge components. Following
Goluzin (see Ref. 3), the potential function is viewed as the real part of
an analytic function; then two Laurent series are calculated for it about
each conductor. The first is expressed in terms of the Fourier compo-
nents of the charge density and the potential function on each conductor;
the second is expressed in terms of singularities located at the centers
of the conductors (at infinity for the shield). Since the two Laurent series
must be identical, their corresponding coefficients can be equated to give
a system of linear equations from which the charge components can be
calculated. For convenience, the system of equations is expressed in
matrix form.

The matrix equations are developed in the next section, with details
of the calculations and proofs relegated to appendices. In Section III,
the development is summarized and then extended to apply to cables
without shields, to cables with holes in the dielectric, and to more general
boundary problems that arise in determining the admittance matrix and
other propagation parameters of the cable. Numerical examples and
experimental testing of this work is presented in Ref. 9.

ll. CALCULATION OF THE CHARGE COMPONENTS

The cable to be considered consists of M straight and parallel wires
with circular cross sections surrounded by a circular shield of inside ra-
dius Ry. The wires and the inside surface of the shield are covered by two
different layers of dielectric insulation. For the mth wire (1 = m = M)
the radius is R,,; the permittivity of its first layer of dielectric is ¢,, with
thickness R,,,; — R,,; and the permittivity of its second layer is ¢,,; with
thickness R,,,» — R,,1. On the shield (referred to as the m = 0 conductor),
the permittivities of the first and second layers are ¢ and ¢, with
thickness Ry — R, and Ro; — Roq, respectively. The permittivity of the
material separating the insulated conductors is e.

When the cross-sectional plane of the cable is viewed as the complex
plane, the centers of the conductors can be specified as complex numbers.
These are denoted b,,, (m =0, 1,---, M), where by = 0 refers to the center
of the shield. A typical cross section is shown in Fig. 1.

With (p;n, ¢) as polar coordinates based at the center of the mth
conductor (m =0, 1,-- -, M), a potential function U is assumed to satisfy
the following conditions:

(i) In the region separating the conductors, V2U = 0, where V2 =
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(92/0x2) + (92/2y?) and (x, ) denote Cartesian coordinates in the plane
(i.e., U satisfies Laplace’s equation).

(ii) At the surface of the mth conductor (p,, = Rr), U has the Fourier
series:

U=7% upn exp (ingn) m=0,1,---,M. (1)

(iii) When & denotes the permittivity as a function of position, then
both U and €(@U/dp,) are continuous across dielectric interfaces about
the mth conductor for m = 0, 1,- - -, M. The charge density associated
with U at the mth conductor is

olU
=3 Pnm exp (ing,,) m=0,1,---, M. (2)

m
apm pm=Rm n

Pm = €

Thus, the problem is to determine the Fourier components, pnm.

The boundary problem for U is put into the context of complex vari-
ables by viewing the cross-sectional plane of the cable as the complex
plane. Then, in the region separating the conductors, there is an analytic
function f(z) (unique within addition of an imaginary constant) such
that U is the real part of f(z). And f(z) can be represented as a Laurent
series.10

In Appendix A, a Laurent series is calculated for f(z) in a neighborhood
of b,, in terms of the Fourier series of U and ¢, (dU/9p,) at the surface
of the mth conductor [eq. (1) and eq. (2), respectively] for m = 0, 1,
.+, M. The result, eq. (26) of Appendix A, shows the coefficients of the
Laurent series about z = b,, depending only on p,, and un, (n = 0, £1,
42, - - ) with no explicit indication of interconductor coupling.

A second representation for f(z), which is based on Cauchy’s integral
formula is

M
f(z) = folz) + 21 fm(2), (3)
where
@ z n

fo2) = B+ % Bro () @

is analytic everywhere inside the shield and

z2—bnm N 2 = by

fm(z) = Bomén ( R, ) + n§1 Brm ( Ry ) (‘5)

is analytic everywhere outside the mth wire form = 1,---, M (see Ref.
3). The coefficients 8o, - - « » Boas are real, and in general the 8y, (for 1
= m = M and n > 0) are complex. In Appendix B, a second Laurent se-
ries is calculated for f(2) in a neighborhood of b, by combining these
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functions. The result is eq. (38) for m = 0 and eq. (39) form =1, -- -,
M.

The two Laurent series must be identical since they represent the same
function f(z). Therefore, their coefficients can be equated, and, as shown
in Appendix C, this leads to systems of linear equations in tnm, pnm, and
Bnm form =0,1,--« , Mandn =0, 1, --.. It suffices to deal with non-
negative values of n because U and p,, are real quantities for all m
(hence, u—ppm = u*,,, and p_,, = p*,,, where * denotes complex con-
jugate).

The systems of equations are conveniently expressed in matrix form
with the various coefficients combined into vectors. Accordingly, the
following infinite vectors are defined:

Um = (Uom, Uim, =)
Pm = (Pom, P1m, = +*)
Bm = (Bom, Bim, =+ +), (6)
all form =0, 1,---, M and the joint vectors,
u=(ug,--+,Un)
p=(po,**, Pm)
B=(Bo,*+,Bm). (7)

As indicated in Appendix C, when these vectors are taken as column
vectors, there are matrices T, G, and H such that

TB=uandp=GB— Hu. (8)
In particular, G and H are such that
p0m=(5/Rm)ﬁDm m= 1"°°1M- (9)

If only the zero-order components of the charge-densities are of in-
terest, then it suffices to invert the T-matrix to give

B=T"u (10)

whereupon eq. (9) is used. When all the components of the charge den-
sities are of interest, then combining the equations in (8) gives

p=(GT"!'=H)u. (11)

(That the T-matrix is invertible follows from the well-known uniqueness
of solutions to Laplace’s equation with prescribed values on the
boundary.)

In practice, the infinite vectors up, pm, and 8y, m =0,1,---, M are
truncated to give N-vectors, and the matrices T, G, and H are truncated
to (M + 1)N X (M 4+ 1)N matrices. The matrix operations indicated in
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eq. (11) are then carried out on the truncated matrices to give an ap-
proximation to the first N components of the charge density on each
conductor.

A detailed study of the matrix truncation has not been carried out,
though the cables studied in Ref. 9 provide some experience in this
matter. For the cables whose wires and shield were mutually separated
by more than one wire diameter (the 754F and Focal), it more than
sufficed to consider five harmonics on the conductors, including the zero
order (i.e., N = 5). When N was set to 6, there was a difference in the
coefficient of the dominant harmonic (zero order) of less than 1 in 10,000;
furthermore, the coefficient of the extra harmonic was four orders of
magnitude less than that of the zero-order harmonic. For the cable whose
wires and shield were separated by a small fraction of one wire diameter
(the Proximity cable), eight harmonics were required: the coefficient
of the seventh-order harmonic was about Y5 that of the zero-order har-
monic. When N was set to 10, again there was a difference in the domi-
nant coefficients of less than 1 in 10,000; and the extra coefficients were
two orders of magnitude less than that of the zero-order harmonic.

A second practical matter is the presence of conjugation operators in
the T-matrix. When it is known (e.g., by symmetry) that the coefficients
B¢m are real for all £ and m, then the conjugation operator has no effect
and can be ignored. The case where the conductor centers are collinear
is handled in this way.

In general, the coefficients have an imaginary part. Then 8, is ex-

pressed as the two-vector
(Re B!m)
Im ﬂ!m

and the element of the T-matrix, T, (r, £), which multiplies B¢m, is
expressed as
(Re Tim(n, £) —=Im Tpy(n, 8))
Im Tim(n, £)  Re Trm(n, £)
The first component of the matrix product is the proper real part and
the second is the proper imaginary part of the product, Tkm(n, £)Bem.
When a conjugation operator appears, the 2 X 2 matrix above must be
multiplied on the right by
(o -1
0 -1

(this corresponds to changing the sign of the imaginary part of 8¢,,). The
result is the matrix

Re Thm(n, £) Im Thm(n, €) )
(Im Tem(n, €) —Re Trm(n, €) /]
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When these matrices are substituted for the elements of the T-matrix,
then the resulting matrix can be inverted in the usual way.

lll. SUMMARY AND EXTENSIONS

Matrix equations have been derived which relate u, p, and the auxil-
liary vector 8. These are

T8=uandp=GE — Hu.
From these equations, the vector p can be determined when u is given.
When the potential function U is the constant 1 on the mth conductor
and zero on the others, the quantity

Cim = 2wRypor = 27€Bor 1 =h,m =M (12)

is the km-element of the M X M capacitance matrix C. Thus, the ca-
pacitance matrix is calculated as a special case of the analysis in Section
IL.

These results can be readily extended to cables without a shield and
with some modification to cables with circular holes in the interstitial
dielectric. When no shield is present, two changes must be made:

(i) Components of u, p, and 8 associated with m = 0 must be elimi-
nated, and the corresponding submatrices in the matrices T, G, and H
must be eliminated.

(zz) The T-matrix must be bordered by one row and one column to
give

= 0 .
T= (. p) Withe=(en--- e, (13)

wheree; = (1,0,0, - - -) is repeated M-times. Then the first equation in

(8) becomes
°(9)- (%)

where @ is the total charge of the cable and £ is a constant to be deter-
mined. The second condition comes from the requirement that the total
charge be specified, but that the potential on the boundary (the surface
of the conductors) be specified only within an additive constant (£). This
holds for any exterior problem for Laplace’s equation in two dimen-
sions.!!

Circular holes in the interstitial dielectric are treated like extra con-
ductors with unspecified potential values at their surface (o5 = R;,). But
if un, denote the Fourier components of the potential function at the
surface of the hole, then inside the hole,

U=Y un, (}’;—f) " exp (ingn); (15)
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and if ¢, is the permittivity of the material in the hole, then
olU oU

ph=e—| =ea_—
Opp lout Aph

where the normal-derivatives are evaluated on the outside and inside
surfaces of the hole as indicated. Therefore, in terms of their Fourier

components

=Y (nepunn/Rp) exp (ingy),  (16)

in n

pr = Dpup, 17

where D}, is the diagonal matrix with main diagonal {ne,/Rp} forn =0,
1,2,..-.Also, by eq. (46)
pr = GnBn — Hpup. (18)

From eq. (17) and eq. (18), B can be calculated in terms of uy. This
in conjunction with the matrix-equation TS = u is sufficient to determine
first B, then 8, and then by the second equation in (8), p. Details are not
supplied here.

The problem can also be generalized by specifying more complicated
boundary conditions on the conductors. For example, the longitudinal
component of the electric field satisfies a boundary condition of the

form,
p—Su=g, (19)

(see Ref. 2) where S is some matrix and g some vector. It follows imme-
diately from (8) that
(G-HT - ST)B = g. (20)

Thus, under certain conditions on matrix S, # is obtained by inverting
(G — HT — ST), u is obtained as T8, and p is then obtained from eq.
(19).

The latter problem is involved in determining the elements of the
admittance matrix for the cable (see Ref. 2, eq. 21). As shown in Ref. 2,
this is an intermediate step for calculating the propagation modes of the
cable and their associated propagation constants. The finite-difference
technique, which had been used to calculate charge densities,”8 was not
capable of dealing with this type of boundary condition. But even for
cases such as the calculation of the capacitance matrix where the finite
difference technique could be applied, the technique described here has
a cost savings of more than one order of magnitude for 0.1 percent ac-
curacy. Thus, the technique has proved to be flexible in solving potential
problems associated with uniform cables and relatively inexpensive.

APPENDIX A
The First Laurent Series

When the cross-sectional plane of the cable is viewed as the complex
plane, the potential function U is the real part of an analytic function
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f(z). In this appendix a Laurent series is deduced for f(z) in a neigh-
borhood of each conductor, starting from the Fourier series for the charge
density and U at the surface of the conductor, as given in eq. (1) and eq.
(22

In the first layer of insulation for the mth conductor (for R,, = p,, =
Rni m=1,--+,MorRy=py = Ry), the potential function is

Ulpm, dm) = tom + Pom (Rim/em)én Em+ % X

n#=0
X exp (ingm)[wnm (€ + £7") + Prm (Rpm/nen ) (En — 27, (21)

where &, = (pm/R). This is validated by noting that it satisfies La-
place’s equation and it satisfies the boundary conditions of eq. (1) and
eq. (2) at p,, = R,, (i.e., when &,, = 1).

In the second layer of insulation (for R,y = py =Rpam=1,---, M
or Ro1 = po = Rog), the potential function is

Ulpm, dm) = uom + Pom (Rm/em) enry, + Pom (Rp/em1)enkp,
+ 1[1 z exp (inqu)[uanIm(pm) + pnm(Rm/nfm)G;m(pm)]: (22)
n=0

where £,,1 = (pm/Bm1),

rm = (Rmi/Rn), 6m= (em1/em) (23)
and
G;&m(pm) = (rgi + r;n)(fgnl + E;:'_l,l')
+ (O) 7 F r2" ) Eny — E21). (24)

This satisfies Laplace’s equation and the continuity conditions on U and
é€QU/dpy) at the interface p,, = R, (i.e., when £, = 1and &, = ).
For U this is obvious, but to check the continuity of édU/dp,,), it is
useful to refer to the calculation,

(/o) H (o) = ai GEn(om) = (n/pm)[(F £ o) (&, — £20)

Pm
+ (6m) "M F r" ) EN + ERD] (25)

Outside the insulation (for p,, = Rpa +,m =1,--+, M or pg < Rgs),
the analytic function whose real part matches U is

f(2) = ton + Pon R/ in + pom R/ en (= b’“)

w — b \n
+ Y (Z R ) [unmAnm + Pom (R /nen )Bnm]
n=1 m
> - bm " * *
4 T (5572) WinBan + Pun(Rn/nen)Fam],  (26)
n=1 m
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where * denotes complex conjugation,
Km = Om10mEnrm + dm1€nryy — €nrmrm, (27)
rm1 = (Rma/Rm1), bm1 = (e/em1), (28)
and with G%,, = G£,,(Rpn2) and H3,, = Hyn(Rm2),

Apm = (o) (G + Gm1) 7 Hy)
Bum = (rmrm1) (G + (51) " Hom)
Epm = (rorm)™(G i = (0m1) ' Hom)
Fom = rmlm)"(Grm — 6m1)Hym).  (29)

Substituting z = by, + Rz exp (ingy,) into f(z) and taking the real part
gives

tom + P[)m(Rm/f)(Km + énrmrmi)

+ 1/8 Z exp (in¢m)[unm(Anm(rmrml)n + Enm (rmrml)—n)

n==0
+ Pnm (Rm/nfm)(Bnm(rmrml)n + an(rmrml)_n)],

Since U_pm = Unm and P—pm = Pnm- As is easily checked, this matches
U in eq. (22) for pm = Ry (i.e., for £m1 = rm1). Likewise, it is straight-
forward to check that the p,,-derivative of the real part of f(z) matches
(€m1/€m)U/dpy evaluated at p, = Rpno-. This validates eq. (26) for
f(z).

When the dielectric is homogeneous, then rp, = rp1 = 0m = dm1 = 1.
It follows that in this case k, = 0 and A, = Bym = Epm = —Fpm = 4.

APPENDIX B
The Second Laurent Series

An analytic function f(z) in the region separating the conductors has
the form given in eq. (3) through eq. (5). In this appendix, a single Lau-
rent series is derived for f(z) in a neighborhood of each conductor (in-
cluding the shield) by combining these equations.

The functions fn (2), as given in eq. (4) and eq. (5), are analytic in a
neighborhood of by, for m =k and k # 0; hence, they are represented by
a power series about z = by,

— - Z_bk n —
fm(2) ngocmk(n)( z ) m=0,1,---, M. (30)
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The coefficients c,,, (n) are related to the derivatives of fm(z)atz = b,
by the formula
(Rk )" anfm

=0,1,2,++-; 31
n! 0z" |z=by " ( )

Cmr(n) =
in particular, ¢,,x(0) = f,, (by).

The results of the calculation in eq. (31) are indicated at the end of
this appendix. When the formula is evaluated for fo(z), as given in eq.
(4), the result is eq. (40), and for f,, (z), as given in eq. (5), the result is
the combination of eq. (41) and eq. (42). The combined Laurent series
for f(2) about z = by, is indicated in eq. (39).

In a neighborhood of the surrounding shield, the Laurent series of eq.
(5) holds for f,,(z) (m = 1, ..+, M). This is rewritten as

@) = Bom e (1) + Bom 0 (1) +anl), (32
Rl) Rm
where
z=b,

£n(2) = Bom £n ( ) + {é Bem (z = b’") _". (33)

R,

Since gy, () = 0, it follows that g,, (R3/z) is analytic in a neighborhood
of z = 0; so it is represented there by a power series,

En (R;) = 1 Cmol(n) (}%}) (34)
and accordingly,
gn2) = Z. cmoln) (1%,) - (35)

The coefficients c,,0(n) form = 1,--., M are obtained from the for-

mula,
_Riar R
cmoln) = n! dzn [grn (z )]

The result of applying this formula to eq. (33) is

ol = () (=T £ (3 20) () )

n=1,2,.--

n=12-.., (36)

z=0

The combined Laurent series for f(z) in a neighborhood of the shield
is

f(2) = 3 Buo (i)"'+ 5 [m,m tn (Ri)

n=0 Ry m=1 0

+ Bom €n (;LO) + )E cmo(n) (i)_n]. (38)

m n=1 Rn
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The combined Laurent series for f(z) about z = by, (k # 0) is

)= %, em@ + Ao en (F2) + £ 80 (%)

+ i (zr_—bk)n ( > ka(n))- (39)

n=1 Rk m#=k
The coefficients obtained by carrying out the calculations in eq. (31)
are e
cwm = (2)7 £ s () (g) KEOnTOL2 (O
Ry £=n n/ \Rp
andform, k = 0,m # k
br — bm st by — by —f
mk(0) = — |t m(—=— 41
nk(0) = o n | . | Z Ben (M55 (41)
by — b\~
cmk(n) = (LR;—k)
Bom , & £+n-1y\ /by — bnm —e]
X|—-——+ m 42
[ n (gl Be ( n ) ( Rm ) ( )
forn=1,2,---.
APPENDIX C

Equate the Two Laurent Serles

Equating the constant, logarithmic, nth power, and —nth power terms
(n = 1), respectively, in the Laurent series about the shield [i.e., in eq.
(26) and eq. (38)] gives the linear equations,

. M Ro
(&) Boo+ 2—1 Bmo fan = ugo + poo(Ro/€)xo

m

M
(ii) Z_:l Bom = Poo(Ro/€)
(i) Buo = WlttnoAno + Pro(Ro/neo) Bl
(i) 3 cmo(n) = Wl r0Eno + po(Ro/nco)Fool (43)

For the kth wire (k = 1, - - -, M), the corresponding equations are
() ¥ cmke(0) = uor + por(Rr/€)kk
m#k

(it) Bok = pox(Rr/€)
(i) Zk k(1) = Yy[tunkAnk + Prk(Re/nex)Bak]
m

(iv) Buk = YalunkEnk + Dni(Ri/nex) Far]. (44)
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The charge coefficients can be solved from (ii) and (iii) in the first set
and from (if) and (iv) in the second set to give

M
Poo = (¢/Ro) >:=:1 Bom

Pno = (4deon/RoBno)Bro — (€eonAno/RoBnro)uno

por = (e/Ri)Box
Dk = (4exn/ReF k) Brr — (exnEni/ReFrk)ink. (45)

In terms of the vectors defined in (6) (viewed as column vectors), these
equations are expressed

pk=Gkﬂk_H-‘luh k=0)15“':M! (46)
where the nZ-elements of these matrices forn, # =0, 1,--- are

(0, e;;---;e)) n=0
(4eon/RoBng) n=¢£ =0

Goln, £) = otherwise
Gi(n, €)= (e/Ry) n=¢=0
(k=1,---, M) \(4de)n/RyFp)(*) n=£=0
0 n#=¢
_ {f()nAnD/ROBnO) =¢
H”(n'e)_[o n#=el

Hy(n, €)= ((exnE.,/RyFpr) n=1¢
(k=1---,M) |0 n#=e

In terms of the joint vectors defined in (7),
p=GB— Hu, 47)

where G and H are the direct sum of the matrices, G, and H}, respec-
tively, fork =0, 1,---, M (see Ref. 12, p. 159).

The charge components can be eliminated in the original set of
equations by means of the identity,

BukEnk — ApiFnr = (32/61,611)
n=0,1,-« and k=0,..., M. (48)
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The result is the set of equations,

. M R
(i) Boot+ m2=1 Bom (fnﬁi— Ko) = Ugo

M
(i1) = (80801Fn0/8)Bno + (80801Bro/8) Zl cmo(n) = ungo

m=

@) X cmr(0) — Borkr = Uok
m#k

(i) — (66x1Fnr/8) Ek Cmk (1) + (8.6%1Bnk/8)Bnk = Unk
m#

fork=1,---,M and n=12,---. (49)
These equations can be expressed in the matrix form

TooTo1++- Tom Bo ug
TioTi-+-Tww || B |_| W

Tﬁ = u, (50)

TroTmr - Tum || Bm uy

where 8 and u are viewed as column vectors. The symbols T fork, m
=0,---, M denote submatrices of T defined as follows:

1 n=¢=0
(80601Fno/8) n=¢€#0
T , €)=
oo(n, €) 0 g
( 0
EnR——xo n=£¢=0
b =
—(80801Bno/8n) (R_m)" (*) ¢ _ (1)' 9 ..
n - n—
soiniBaa/®) () () (¢ 1)
(m=1,---,M)ﬁ (80601Bno/8) r,) (&, 1
€=1r"'pn;
n=1,2+-
kO otherwise
¢
(9—&;) n=0;£=0’1,...
Troln, £) = Ro
£\ /bp\~n sbp\¢ 1=n=¢
=1 ... aF,,s()(—) (—) =n=s
(k=1,-++,M) | (®kdr1Fnr/8) ) (&, Re 1=1100..
0 otherwise

624 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1977



—Kk n=¢=0

S O GubuBua/8)*) n=¢ %0
(k=1,---, M) 0 n#=/¢

Tkm(n: f) = ¢n lka_—bm| n=¢=0

bk - bm —¢
5 =0;8=1,2,---
(om0 k%m) ( . ) n
bn — bp\—n £=0;
(301 Fe/8n) (*Ef)

n=1,2---
— (60x1Fn1/8) (é’ + :: - 1) (me_k bk)"" (bkl‘{mbm)—t

n, £ # 0.
The symbol (*) throughout means that complex conjugation is to be
performed. These elements of the various submatrices are read off the
appropriate coefficients in the system of equations in (49) in conjunction
with the equations for the c,,x(-) in egs. (37), (40), (41), and (42).
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