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A method is developed to quantify the effect of day-to-day variation
in offered load on the accuracy of functions of traffic measurements.
The method is applicable to any smooth function of the standard
trunk-measurements—i.e., peg count, overflow, and usage. As an ex-
ample, the accuracy of the trunks-required estimator for probability-
engineered, full-access trunk groups is approximated. A sensitivity
analysis shows that the major contributor to the variance of the esti-
mator is day-to-daey variation.

I. INTRODUCTION

Most of the traffic-engineering procedures in use in the Bell System
require data collected over periods of up to several days. It has long been
recognized that the daily offered loads estimated from trunk-group data
show considerable variability even for data taken during the same hour
of successive days.!'? This variability can cause significant differences
between the observed blocking and the objective grade of service. It also
can induce large fluctuations in the estimation of network requirements
and must be accounted for in the traffic-engineering procedures. (For
details on a model for this day-to-day load variation, see the Appen-
dix.)

Two important applications that can be affected by day-to-day load
variation are trunk servicing and trunk forecasting. The former is the
use of traffic measurements to determine when trunk groups are sig-
nificantly overloaded or underloaded. In this case, not allowing for
day-to-day load variation can cause either repeated rearrangements
(churning) or, more typically because of the emphasis on providing good
service, overprovision of the traffic network. Trunk forecasting is the
prediction of future network requirements. The accuracy of the forecast
is strongly influenced by the day-to-day load variation. That accuracy,
in turn, affects the procedures used to implement the forecast.
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Most earlier work has attempted to quantify the effect of day-to-day
load variation on averages of functions of traffic data.>% Several
trunk-engineering practices are now based on that work.” However, most
of the previous studies that have examined statistical accuracy (as
measured by variances) of functions of traffic measurements other than
offered load have assumed that the true offered load (also called the
source load) was a constant (e.g., Ref. 8). The purpose of this study is to
provide an extension of the earlier work on traffic-measurement accuracy
(which usually considered the stochastic nature of traffic and the effects
of finite sampling) to include the effect of day-to-day load variation.

The most general work on the accuracy of single-hour measurements
is that of Neal and Kuczura.? That work is used as a starting point for
a more general model developed in Section II. The new model can be used
to estimate the accuracy of any sufficiently differentiable function of
the standard traffic measurements—i.e., peg count (number of arrivals),
overflow, and usage. The model is used in Section III to approximate the
standard deviation of estimates of the number of trunks required for
probability-engineered groups. Section IV illustrates the application
of the results of Section III to trunk servicing.

This paper uses concurrent work on mathematical models for day-
to-day variation.? The reader should be familiar with that work, or for
a short description of the main results, see the Appendix.

Il. THEORETICAL RESULTS

For completeness, a brief review of notations and definitions is in-
cluded here.8 On each day, the measurements are taken over a time pe-
riod denoted as (0,t], with ¢ usually taken to be one hour. The standard
trunk-group measurements are:

(i) A(t) is the measured number of arrivals (peg count) in (0,t].
(if) 0(t) is the measured number of overflows in (0,t].
(iii) Lq(t) is the measured usage based on a discrete scan [typically
by a 100-second-scan traffic usage recorder (TUR)| of the number
of busy trunks in (0,].*

It was found during this study that when day-to-day variation is in-
cluded, the additional effect of the sampling errors in Ly(t) is negligible
for data from the message trunk network (see Section 3.3.5). Conse-
quently, L(t) will be used throughout the paper with the results being
equally valid for the discrete, 100-second scan measurement, La(t).
The triple of measurements (A(t),0(t),L(t)) is taken for an interval of

* A continuous scan of the number of busy trunks (i.e., the total usage) is considered and
is denoted by L(t).
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length t on each of n days. The total collection of data is described as
(Ai(£),0:(¢),Li(t)), i = 1,-,n.

For the model assumed in this study, the trunk group contains ¢
trunks, whose holding times are assumed to be from a negative expo-
nential distribution with mean h. During the ith measurement interval,
the arrival epochs form a renewal process with mean interarrival time
A; ~L. The offered load during the ith interval is assumed to be constant
and given by a; = A\;h, and the peakedness of the traffic is z.! The offered
source loads ay,,a, are assumed to be independent and identically
distributed (iid) according to a specified probability distribution, T,
which will be assumed to be a gamma distribution.* Note that because
a; and a;, i # j, are independent, the processes associated with them are
also independent.*

Any customer who arrives when there is an idle server will enter service
immediately. Because this is a study for trunk groups with typically low
blocking, a customer arriving to find all servers busy is assumed to depart
and has no further effect on the system; i.e., customer retrials will be
ignored.

2.1 The approximation

Let &, j = 1,2,3,i = 1,~,n be the 3n random variables representing
the data; i.e., ;1 = A;(£)/t, £io = O;(t)/t, and &3 = L;(¢t)/t. For a fixed i,
each &, j = 1,2,3 is a random variable whose parameters are functions
of another random variable a;. Denote the mean and conditional mean
of E,‘ j by

Gf = E[Eu] = E[E(Eiflai)]s
and
3,—(11;) = E[‘Et}la!]
Then, setting £ = (£11,£19,613,E21,%+,£03) implies that the mean of § is
Q = E(E) = (51,52,53151."'.53)-
Now consider any differentiable function g(x11,~-x,3) = g(x). Expand

g in a Taylor series about 4 neglecting terms of order greater than one
to get

f®~g)+ 3 3 2B%

i=1,=1 OX;j

I:H(Efj — ;). (1)

* Studies have shown that the day-to-day variation in peakedness is small and is neg-
ligible for most network engineering applications. Recent studies have also shown that
the effect of a systematic variation in load (e.g., as a function of the day of the week) is also
negligible.!” Finally, simulation data from this study have indicated that including the
effect of calls with different exponential holding times on one group (e.g., effective and
ineffective attempts) have little effect on the results.
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The mean of g(¢) is approximated by

n 3
Ele®~50 + 3 3 %5 e, -
i=1j=1 Xij lx=
= g(0).
For the variance of g(§),
n 3 9 —
Els@ -g@P~E ([ £ %2 ;-]
i=1j=1 0x; lx=0
|
k=11=1 OXp |x=8
n 3 9 n 3 9
> g(x) 5 g(x)
i=1j=1 aIz_,l 1=0k=11=1 OXp lx=0

X E[(&; — 0,)(& — 0] (2)

Because a; and a;, are independent for & > i, the expectation in (2)
vanishes unless & = i, in which case it is!!

E[(&; — 8;)(8q — 0)] = E Cov(&ij,£a|a:) + Cov(6;(a;),0:(a;). (3)

Because (3) does not depend on the subscript i (the a; are iid), we may
drop it and replace &;; by £, and £; by £.; in the sequel. Substituting (3)
into (2) provides the approximation for the variance*

n 3 3
Ele® - @) ~ 3 3 3 8@ og(x)] 2glx)
i=1j=11=1 OXj lz=8 OxXj

X [E Cov(£,,t.4|a) + Cov (0;(a),8/(a))]. (4)

x=0

2.2 Computational considerations
The term in brackets in (4) is given by
S[Cov(£j,t1]a) + (6;(a) — 6,)(8i(a) — 8)]dT(a). (5

The functions in the integrand given in Ref. 8 are too complicated for
the integral to be computed exactly, hence numerical quadrature is re-
quired.

In previous work several different quadrature schemes have been used
on integrals similar to that in eq. (5). Because the functions are usually
smooth, these schemes are generally successful. For this study, a com-
pound 7th-order Newton-Cotes form was chosen.!? The tails of the
gamma distribution tend to zero sufficiently quickly that the infinite
region of integration can be truncated to a finite region with no prob-
lem.

* When g(£) includes the averaging of n days of data, each term dg(x)/9x;; contains the
factor 1/n, so that the variance of g(£) is of the order of (1/n).
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. EXAMPLE: VARIABILITY OF THE TRUNKS-REQUIRED ESTIMATE

The methods described in Section II were applied to the specific
problem of computing the standard deviation, o(¢), of the trunks-re-
quired estimate, é, for probability engineered full-access trunk groups.
The function g in this case is defined by a set of algorithms described
in the Appendix. The partial derivatives of g are approximated by di-
vided differences. Approximations were computed for several typical
cases to cover a reasonable range of engineering interest. To test the
accuracy of the approximations, they were compared with corresponding
sample standard deviations from a simulation. These results are de-
scribed in the following two sections. An application using these results
to compute probability intervals for estimates of trunk required is il-
lustrated in Section IV.

3.1 Basic calculations

For the main results, the existing trunk group size is fixed and the
mean offered load @, peakedness z, and levels of day-to-day variation
are varied over the range of interest. Following Bell System practice, it
is assumed that measurements are taken over a 20-day period (i.e., 20
independent one-hour measurement intervals) and that the trunk group
is to be designed for an average-blocking objective of 0.01 (denoted
B0.01). It is also assumed that the calls have a mean holding time of 180
seconds. The sensitivity of the results to these assumptions are described
in Section 3.3.

To validate the theoretical computations, sample variances from a
simulation program were computed for each of several sets of input
conditions (each variance was computed from a sample of size 50, which
was large enough to give stable results and still be computationally
feasible). For some input sets, the simulation runs were repeated to
provide an indication of the variability of the estimated standard de-
viation. (An analytic approach would require computations of the
4th-order moments and cross-moments of the measurements and was
not practical.)

3.2 Results

Results were computed for trunk groups ranging in size from 10 to 68
circuits. Illustrations of typical results are presented in Fig. 1 showing
plots of ¢(¢) as a function of input offered load and peakedness on trunk
groups with 68 circuits. It has been observed in actual data that peak-
edness and level of day-to-day variation are correlated. Hence, combi-
nations of peakedness and levels of day-to-day variation were selected
to cover most values encountered in practice, with z = 1 and low variation
selected to illustrate groups which first-routed traffic; z = 4 and medium,
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Fig. 1—Standard deviation of trunk estimate, o(¢), vs offered load on a 68-trunk
group.

and z = 7 and high were related to illustrate groups serving overflow
traffic. In all cases, it was assumed that measurements are taken on a
trunk group of the specified size, and the number of trunks needed to
achieve an average blocking of 0.01 was estimated.

The input loads in general correspond to a range of blocking values
from less than 0.01 to greater than 0.15. Except for z = 1, ¢(¢) has a
minimum at a load that corresponds to an observed blocking in the 0.02
to 0.03 range.* For lower blocking values and z > 1, o(¢) increases as the
load decreases because the coefficients of variation (standard-devia-
tion-to-mean ratio) of the measurements, especially overflow, increase.
As the load increases, o(¢) also increases; however, the coefficient of
variation of trunks required decreases slowly, probably because the
coefficient of variation of the offered load decreases with increasing @,
causing the coefficients of variation of the measurements to de-
crease.’

3.3 Parameter sensitivity

The sensitivity of ¢(¢) to the various parameters is illustrated in Figs.
2 and 3 and is described below.
3.3.1 Blocking objective

As illustrated in Fig. 2a, the first parameter tested was the design
blocking. For the design range of 0.01 to 0.03," there is very little change
* As discussed in the Appendix, when z = 1, the peakedness is not estimated, which

causes the #(¢) curve to have a different shape.
t The Bell System design objective is 0.01, but in some private networks and other ad-

ministrations, higher values are used.
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Fig. 2—Parameter sensitivity for a 68-trunk group. (a) Blocking objective. (b) Call-holding
time.

in o(¢) when z = 1 and low variation. For blocking in this range, the re-
sults for 0.01 can be used as an upper bound. Changes in the design
blocking have more of an effect for more variable data, as illustrated by
the data for z = 4 and medium variation.

3.3.2 Call-holding time

As the call-holding time h increases, the relative length of the one-
hour measurement interval decreases. The result is a relative decrease
in the amount of data available and a resultant increase in the standard
deviation of the measurements.® However, for a fixed observed-load
variance and for holding times in the range of 3 to 6 minutes, the effect
is mostly offset by a decrease in the true day-to-day variation of the
source load.? This is illustrated in Fig. 2b.

3.3.3 Level of day-to-day variation

The assumption to which the results are most sensitive is the level of
day-to-day variation. The day-to-day variation of offered source-load
is characterized by four levels, called no, low, medium, and high.
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Fig. 3—Effect of level of day-to-day variation on a 10-trunk group.

Figure 3 provides a comparison of results for different levels of vari-
ation for a 10-trunk group. The labels, N, L, M, and H on the figure
correspond to no, low, medium, and high variation, respectively.* The
largest relative impact is for the case z = 1 when changing from no to low
variation. In fact, the standard deviation of the trunk estimate doubles
when such a change is made. Thus, inclusion of day-to-day variation in
the model has a significant effect on the standard deviation of trunk

estimates.
For large peakedness, shown by z = 7, as the load decreases, the curves

coalesce. This rather unexpected behavior can be explained by the model
for day-to-day variation (see Ref. 9). For groups with small loads, low
day-to-day variation, and large z, the variance component due to sam-
pling in a finite measurement-interval may be most or all of the total
variance of the observed load. In this situation, the day-to-day compo-
nent in the model of observed-load variance decreases to zero. For most
practical applications, the large values of z are associated with medium
or high levels of day-to-day variation, and this phenomenon does not
occur.

3.3.4 Number of samples

As stated earlier, all of the plots are based on an average of 20 hours
of data. If the number of hours, n, of available data is different from 20,
the effect can be determined analytically from (4). The standard de-
viation for n hours is computed by multiplying the given results by the
factor (20/n)1/2,

3.3.5 Effect of usage sampling errors

The effects introduced by a discrete measurement of usage (TUR)

* These levels are defined in the Appendix.
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Table | — Comparison of continuous and discrete usage
measurement effects

a(é¢) using
c a z Level Ly L
10 7.0 1.0 Low 0.4007 0.4372
10 7.0 4.0 Medium 1.012 1.043
40 30.0 4.0 Medium 2.138 ‘ 2.174
40 30.0 7.0 High 2.949 2.999
68 40.0 7.0 High 4.172 4.211

were found to be negligible for the message-trunk network. Typical re~
sults of calculations using Lg(t) and L(t) are presented in Table I. The
first four columns of Table I are the trunk group size, load, peakedness,
and level of day-to-day variation. The next two columns are the ap-
proximations of the standard deviation of the trunk estimates with L,(t)
and L(t), respectively. The difference between the last two columns is
negligible for traffic-engineering applications. Note that the relationship
of the two columns is the opposite of what might be expected. This re-
sults from a bias in the asymptotic approximation for Var[L(t)] for the
small loads included in the region of integration.?

IV. APPLICATION: PROBABILITY INTERVALS FOR TRUNK ESTIMATES

One of the first applications for the methods described in this paper
was the development of probability intervals for trunk estimates. The
intervals are used to determine if the estimated number of trunks re-
quired for a given circuit is (statistically) significantly different from the
number presently in service. If the difference between the estimate and
the current number is within the interval, then that difference is con-
sidered to be the result of the statistical nature of the data. Such a dif-
ference should not be the cause for action.

These intervals have application in two different areas of the trunk-
engineering process. First, they provide an upper limit for the accuracy
that can be attained by the trunk-forecasting process. Sources of error
that have not been included here, such as wiring errors and load-pro-
jection errors, must increase the variability of the data. Second, they
enable a trunk-servicer to evaluate the output of a mechanized trunk-
servicing system and to determine if (and where) network rearrange-
ments are necessary.

Data from the simulation described earlier indicate that the estimates
of trunks required appear to have a normal probability distribution, with
mean and variance computed as described in Section II. Using this in-

* This is not true when day-to-day variation is ignored.®
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Fig. 4—Ninety-five-percent probability intervals for trunk estimates.

formation, the probability intervals for the trunk estimates have been
constructed. Examples of such probability intervals are shown in Fig.
4. The solid line on Fig. 4 shows 95-percent intervals for trunk groups
with z = 1 and low day-to-day variation. For example, for a correctly
engineered 50-trunk group, 95 percent of the estimates of trunks re-
quired, based on traffic measurements, will lie between 47 and 53 trunks.
The crosses on Fig. 4 show similar data for traffic with z = 7 and high
variation.

The method described in Section II has also been successfully applied
to approximate the variance of observed blocking for probability-engi-
neered trunk groups. That result has been used to develop intervals of
acceptable measured blocking for use in network servicing.
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V. SUMMARY

A method for computing the effect of day-to-day variation in offered
load on functions of traffic measurements has been presented. The
method, which is applicable to any smooth function of the common
traffic measurements, was used to compute the standard deviations of
estimates of trunks required for probability-engineered trunk groups.
In the associated sensitivity analysis, the daily variation in source load
was identified as the significant contributor to the total variation of the
estimate. In fact, day-to-day variation was so large that it was possible
to neglect errors introduced by a discrete 100-second-scan measurement
of the usage. (This extends a result derived analytically by Hayward for
traffic with Poisson arrivals.!?)

The variability in trunk estimates depends very strongly on levels of
peakedness and day-to-day variation. For first-route traffic and low
day-to-day variation, probability intervals for trunk estimates grow
slowly with ¢, while for higher levels of variation they expand rapidly.
These results are presently being used to develop methods to assist trunk
engineers in the forecasting and servicing of the traffic network.

APPENDIX

Detlails of the Compi:taﬁona! Models

This appendix contains some of the engineering details necessary for
the computations in Sections IIT and IV. The first section gives a brief
description of the model for day-to-day load variation used in Section
3.1.2 The second section discusses the conversion of traffic measurement
data into estimates of the trunks required to meet an objective grade-
of-service.

A.1 Model for day-to-day variation

Four levels of day-to-day load variation described as no, low, medium,
and high are used for trunk engineering. For the latter three classes, the
variance v of the measured (observed) offered loads is related to the mean
offered load @ by the formula

v = 0.13 (@),

where ¢ = 1.5, 1.7, or 1.84 for low, medium or high, respectively. The
mean @ is assumed to be constant during the measurement period (any
variation of @ during the measurement period will cause the estimated
peakedness to be larger).

The variance of the observed loads is composed of two parts: the true
source-load variance and the variance contributed by estimating the
traffic parameters from data collected over a finite measurement in-
terval.? The latter component is given by 2az/(t/h) where @ is the mean

TRAFFIC LOAD VARIATION 571



of the daily loads, z is the peakedness of the offered traffic, ¢ is the length
of the measurement interval, and h is the mean call holding time. Thus,
by subtraction, the source-load variance is assumed to be

2az
Var(a) = 0.13a% — —=2_ 0] .
ar(a) = max a &/

A more detailed discussion is given in Ref. 9.

A.2 Trunk-engineering process

The trunk-engineering process starts with an estimation of the traffic
parameters obtained from trunk-group measurements. Time-consistent
busy-hour measurements of the number of arrivals (peg count), the
number of overflows, and usage are gathered for a period of several days
(up to 20 business days when all data are available). They are then used
to estimate the mean of the busy-hour loads and the peakedness of the
offered traffic. The mean load is computed by averaging the hourly
loads

_ _Lai(?)
0i(t)
P

where Lg; (t), O;(t), and A;(t) are defined in Section IL. The sample mean,
4 = 1/n = d; and sample variance 5 = 1/(n — 1) Z (d; — d)? are computed
next. In practice, the level of day-to-day load variation is selected by
picking the value of ¢ as the one that provides the closest agreement
between v and 6. For the computations here, ¢ was assigned by the
program input. The next step in the traffic-engineering process is to
apply a correction for the effect of retrials on @ and B = 1/n 2 [0;(t)/
A;(t)]. (Because the region for the usual application of these results was
for small blocking values, the retrial correction was not included in the
analysis.)

The traffic peakedness is estimated by an iterative procedure. Given
¢, 4, and B, a preliminary estimate of z is determined so that the theo-
retical blocking predicted by the equivalent random method matches
the observed blocking.! The preliminary estimate of z is adjusted to
correct for day-to-day variation using the procedure described in Ref.
7 to give the corrected estimate, 2, of the peakedness. In the case of trunk
groups known to serve only first-offered traffic (i.e., none of the traffic
has overflowed from some other group), the theoretical value of z = 1
is assumed and no estimation of peakedness is performed.

Once d and £ have been determined, the number of trunks required
to satisfy the engineering objective (usually B0.01) can be determined
from established trunk-capacity tables or appropriate computer algo-
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rithms. These algorithms specify that any fractional trunk-requirement
will be rounded up unless it is less than 0.3. This rounding rule induces
the slight nonsymmetry seen in Fig. 4.
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