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We describe an optical apparatus designed and built to extend con-
ventional light-scattering measurements to the very-small-angle regime.
The present instrument covers the angular range 0.003° < 0 < 0.156°
with an instrumenlal resolution (HWHM) of 0.00046° (1.6 arc seconds),
and exhibits an exceplionally low stray-light background. The theoretical
and practical considerations important in achieving this performance are
analyzed in delail. Besides its primary purpose of studying long-wave-
length (0.01 c¢m to 1 cm) thermally driven fluctuations, the present type of
apparatus should also prove quite useful in other areas where long-wave-
length perturbations must be probed, such as, (i) holographic and optical
memory imaging, (i1) surface roughness testing, and (#1i%) inder of
refraction profiling.

I. INTRODUCTION

Laser light scattering has, over the past decade, been developed!—3
into an extremely powerful tool for probing the long-wavelength
(Ay~ 2 X 1075 em to 2 X 1073 em) elementary excitations of liquids,
gases, and solids. Combined with diffraction grating, Fabry-Perot, or
optical mixing spectrometers the technique is capable of spanning an
impressive range of more than 13 decades in energy or frequency
measurement. Yet, in contrast to what has happened in the field of
inelastic X-ray scattering,*® very little has been done to utilize
very-small-angle (vsa) light scattering to probe longer-wavelength
(Ay=2 10~% ecm to 1 em) excitations. With a few notable exceptions, 1
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most light-scattering experiments have been limited to the scattering-
angle range 8 > 1°.

There have been a number of reasons for this apparent lack of
progress in the very-small-angle scattering regime. On the one hand,
experimentalists in the field, encountering a seemingly divergent stray-
light level at small angles, have assumed that attempts to work in
the vsa region would present insurmountable problems. On the other
hand, there did not appear to be any physical phenomena where the
important elementary excitations were confined to the corresponding
longer-wavelength regime. Or, in cases where they were, it seemed that
the use of more conventional macroscopic experimental techniques
represented a satisfactory experimental approach.

Recently, however, there has been a resurgent interest in problems
involving general hydrodynamic instabilities? both in normal liquids
and liquid crystals.*26 The “critical wavelengths” involved in the
onset of these instabilities are, in general, controlled by some macro-
scopic dimension of the sample chamber and tend to fall in the range
100 um < A, < 1 em. Light scattering is the only technique offering
the possibility of probing these wavelengths without physically disturb-
ing the sample and with a sensitivity sufficient to detect the thermally
driven critical fluctuations. However, probing the excitation wave-
length region 100 um < A < 1 emrequires the capability of resolving and
detecting the scattered light at very small angles, 0.3° = 6 = 0.003°.

This paper describes the experimental progress which has been made
in extending the light-scattering technique to this very-small-angle,
long-wavelength regime.

In Section II, we describe the physical configuration of a light-
scattering apparatus that has been constructed for use in the vsa
region. This section also summarizes the measured performance
characteristics of the instrument in terms of angular resolution and
stray light. Section 111 is a detailed presentation of the basic diffraction
and aberration considerations that influence the design of a vsa
light-scattering apparatus. Section IV outlines various empirical obser-
vations made during the course of construction of the present instru-
ment, relating to the stray-light behavior of optical components at
small angles.

Il. AN APPARATUS FOR VERY-SMALL-ANGLE LIGHT SCATTERING

2.1 Introduction

In this section, we present a general description of the physical
layout and performance of a light-scattering apparatus that has been
constructed for the vsa regime. The theoretical background and
practical considerations necessary to analyze the detailed charac-
teristics of the instrument are deferred to Sections IIT and IV. Although
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designed specifically for the study of the Bénard convective instability,
this apparatus embodies solutions to most of the problems to be
encountered in the general small-angle light-scattering experiment,

2.2 Performance goals

The following performance goals were established for the present
instrument and evaluated at the various stages of construction and
modification:

(?) The ability to make quantitative measurements of both the

scattered intensity and the temporal intensity autocorrelation

function for scattering angles ranging from a few mrad down to

at least 50 prad. (We will, in general, specify angular deflections

in prad; Table I lists conversion factors to other common units

of angular measure.)

A stray-light level per coherence solid angle in the scattered

field (d®,./dQcor) that was less than 107 of the incident beam

power.

An angular instrumental resolution of less than 15 urad.

The capability of continuously scanning the instrument over

a reasonable range in scattering angle without the need for

realignment.

(v) The attainment of near-diffraction-limited performance using
customary spherical optics of reasonable cost.

(17)

(v4%)

(i)

Taken individually, each of the above goals can be met or bettered
by existing optical instruments. To cite just two examples, the 200-inch
Mount Palomar telescope has a diffraction-limit angular resolution of
about 0.1 grad; and, in a typical 8 = 90 degrees light-scattering ex-
periment, the desired stray-light level would be considered a straight-
forward achievement. Insofar as the angular range is concerned, we
can easily show that the scattered light observed at these angles is
contributed by plane-wave components of the refractive-index per-

Table |— Conversion factors between various common units
of angular measure

Deg Rad mrad wrad ﬁf; Arc Sec
1 D:ﬁ 1 0.0174 17.45 17,453 60 3600
1R 5.73 1 108 10¢ 3438 | 2.06 X 10¢
1 mrad 0.0573 10— 1 108 | 3.438 206.3
1 prad 5.73 X 10~ 10— 102 1 0.0034 0.2063
1 are min. 1/60 291 X 107 | 0.291 291 1 60
1 arc sec. 1/3600 4,85 X 107% [ 4.85 X 1073 | 4.848 | 1/60 1

LIGHT SCATTERING
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turbations in the sample whose wavelengths, A, are given by the
small-angle Bragg condition

A = Xo/8, (1)

where )\, is the incident-beam wavelength. Therefore, probing the
scattering-angle range from 50 urad to 3 mrad gives information about
Fourier components of the refractive index having wavelengths be-
tween 1.0 em and 0.016 em, respectively. Here we can point out that
this spatial-frequency region is routinely examined by common inter-
ferometric checking methods and holographic techniques.

The instrument described in this paper is unique in that it meets
all of the performance criteria simultaneously. In being able to probe
perturbations with wavelengths as long as 1.0 cm, it represents a
100-fold improvement on previous low-stray-light-level scattering in-
strumentation, while its small stray-light background gives it a
1000-fold sensitivity advantage over conventional interferometric and
holographic equipment. On a per-unit-aperture-size basis, its ability
to resolve closely spaced faint (10~%) and strong (1) features is about
50 times better than the Mount Palomar telescope.

2.3 Optical components and physical configuration of the instrument

Figure 1 sketches the optical configuration of the most recent
version of the apparatus designed to meet the performance criteria set
out in the preceding paragraphs. For brevity, we refer to this par-
ticular optical system as the MK VI instrument.

s
1

|-.f__\e
=
)

r=T71— ™1

ARGON LASER

Fig. 1—Optical component layout of the MK VI small-angle-scattering instru-
ment. Component sizes and spacings are shown approximately to scale.
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Before discussing the specific function of the various elements of
the spectrometer, we present below, for reference purposes, a brief
description of each of these elements and their mounting following the
identification scheme used in Fig. 1. Whenever spatial or angular
displacements are specified, they are to be interpreted according to the
conventions illustrated in Fig. 2. The £ (or 6) and 7 (or ¢) axes are
taken to be mutually orthogonal cartesian (angular) coordinates
perpendicular to the axial ray at the point in question. The £(4)
direction will always lie in the plane of Fig. 1, the instrument’s tan-
gential plane, while 7(¢) will denote the vertical or sagittal plane.
The direction of beam travel defines the local 2 axis. The basic hardware
components of the MK VI instrument are the following:

A,—An adjustable circular diaphragm stop with an aperture
diameter d41 /2 5 mm.

Ay—A fixed, precision-pinhole aperture, ds» = 100 um. A4, is
mounted with £ and ¢ vernier adjustments relative to L.

Argon ion laser—The laser is normally adjusted to provide be-
tween 50 mW and 200 mW of output at either Ao = 5145 A or
Mo = 5017 A. The laser used has a flat-long radius spherical
resonator, placed at about 1 hemispherical spacing, and oscillates
in TEMy, modes only. The output is a well-collimated beam with
a slight spheroidal distortion. The beam has a gaussian intensity
profile with a diameter of 1.4 mm as measured to the 1/e* points.

(AXIAL RAY)

x>

Fig. 2—Cartesian coordinate system for (z, y, 2) showing the cartesian angular
deflection 8 and .
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DET—A silicon-diode photodetector. The diode used is a photo-
voltaic device operated without bias as a current source. The
detector has a 1-cm-diameter active area.

KE—A precision knife-edge custom-fabricated from neutral-density
“plack glass” plate. The 40-mm-long edge is straight to within
1 pm and nick free.

Li—Plano convex achromat with a focal length fr; = 132 mm. L,
and A, share a common mount with vernier § and £ degrees of
freedom.

Ls—An anastigmatically mounted pair of plano convex achromats
with an effective focal length fr. = 94.77 mm. L. has (£, 9, 2, §, @)
vernier adjustability.

Ls—An achromatic lens having fz; = 150 mm and a mounted free
aperture diameter of 35 mm.

My, M, M, M,—Flat mirrors 13 inches in diameter with A/10
surface figure.

M3, Mq—Dielectrically coated, concave, spherical mirrors fabricated
of fused quartz. They have a radius of curvature of 2 m and a
surface conformity of A/10. The mounted free aperture is 6.5 cm
in diameter.

M4, My—Aluminized, first-surface, fused-quartz, flat mirrors. They
have a mounted free aperture of 13 em and a surface figure of A/20.

S—A bilateral slit with straight jaws that can be used to reduce the
# dimension of the probe beam.

SL—A commercial, precision, bilateral slit. The jaws have a 50 mm
usable height and an accurately adjustable opening range from
3 um to 3 mm. The slit assembly is mounted on a precision z-z
translational stage positioned by large-barrel micrometer heads
with a maximum conforming error of about 1 um. The z(6)-axis
micrometer can be manually positioned or can be driven by a
digitally controlled stepping motor.

SV—The location of the scattering sample.

These optical components are mounted on a 3-inch-thick aluminum
glab that forms a stable base for the instrument. Because random
laboratory air currents and temperature gradients can cause angular
beam deflections comparable to the instrumental resolution, the entire
apparatus is covered by an essentially air-tight Plexiglas* enclosure.

2.4 Functional description of the apparatus

We can most easily deseribe the basic optical characteristics of the
instrument by following the beam path through the system starting

at the laser source.

* Registered trademark of Rohn & Haas Company.
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Mirrors My, M, M;, and M, steer the laser output beam around to
a spatial filter assembly comprised of A1, L1, and 4». Lens L; and pin-
hole A, form the conventional spatial filter arrangement, while the
pre-aperture A, serves to block high-angle-beam trash, such as multiple
reflections in the laser resonator output mirror. The long path length
through M,—M, and aperture 4, also provides a significant reduction
in laser tube discharge light that would otherwise pass through the
gystem.

The spherically spreading wave coming from A, is recollimated off-
axis by M5 The collimated beam leaving M ; has a diameter* D(1/e)
of approximately 1.65 cm. The wave-front planarity of this beam is
measured and adjusted using a wave-front shearing interferometer
aligned to give a 7-mm shear in the tangential plane. The tangential
direction wave-front curvature is reduced to less than A/8 over the
beam aperture by translating the spatial filter assembly along the
laser beam (2) axis. It is important to note that the use of this off-axis
collimation scheme produces a large amount of astigmatism and
tangential plane coma. As a result, it is not possible to make the probe-
beam wave fronts siraight in both the & and 1) directions stmultaneously.t
The alignment procedure just described is intended to give diffraction-
limited angular resolution in the § plane with some sacrifice in @
direction resolution.

The collimated probe beam is now sent to the scattering object at
SV via the flat mirror M;. Flat mirror M; collects the transmitted
beam and small-angle scattered light and directs them to .

In the tangential focal plane of spherical mirror Ms, the directly
transmitted beam is brought to a vertical (¢) line focus at a position
we define as zxr = 0. Light that has been scattered by some angle #
is brought to line focus in the same plane, but at a displaced transverse
position

2xe(f) = fumstan 8 == fured, (2)

where fars = 100 em is the focal length of M. Therefore, for sufficiently
small values of 8, where tan # &2 6, angular deflection maps linearly
into lateral displacement at the focus with a position-angle dispersion
(PAD) constant given by

PAD(KE) = %0(‘9) = fars = 1 pm/prad. (3)

The knife-edge KE is located in this tangential focal plane with its
edge vertical and can be set to intercept the transmitted beam at

* See Section 3.1 for the definition of these quantities.
t See Section 3.2.
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8 = 0 to prevent it from entering the remaining portion of the optical
system. In normal practice, KE is adjusted to occult all light for which
6 < 30 to 50 prad. The position and orientation of KE relative to M
is fixed with diffraction-limited accuracy using the standard Foucault
knife-edge test procedure.

Lens pair L, re-images the focal plane of M onto the vertically
oriented main receiving slit SL with a magnification of about (2.54).
Therefore, the dispersion constant in the slit plane has the value

PAD(SL) = 2.54 pm/prad (4)
or

PAD(SL) = 0.0001 in./urad. (5)

The magnification by L; allows the scattering angle 8 to be read directly
on the ‘“‘english-units’”’ micrometer that positions the slit. More im-
portantly, it relaxes the stability and accuracy requirements that must
be imposed on the slit scan mechanism. Since SL has a minimum
opening setting of roughly 3 ym, the slit-limited angular resolution is
about 1 urad.

The proper locations and orientations for the main slit SL and lens
L, are determined by an iterative procedure in which one of the jaws
of SL and the tmage of the knife-edge formed by L. at the slit plane are
positioned to form an apparent two-jawed slit. The absence of distor-
tion in the Fraunhofer diffraction pattern formed when this “slit’’ is
illuminated by a collimated beam becomes a diffraction-limited test
for correct lens and slit alignment.

The scattered light passed by the main slit is collected by L; and
gent to the photodiode DET. The focal length and position of L, are
chosen such that the real image of the limiting aperture of M, formed
at the plane Mg by lens L, is re-imaged onto the detectors active area.

2.5 Observed angular-resolution performance

We can assess the 6 direction angular resolution of the MK VI
apparatus from measurements of intensity as a function of slit position
(z) in the absence of a scattering object. Two such “instrumental
profiles” are shown in Fig. 3. The ordinate scale is logarithmic in the
detector photocurrent with a rough correspondence of 200 pA/mW of
optical power. Curves A and B were taken under identical conditions
except for the position of the knife-edge KE. For curve A, the knife-
edge was withdrawn to allow the direct probe beam to reach the
scanning slit, while for curve B, it was positioned to occult all light
in the region 8 > 50 urad. Note that the use of the knife-edge provides
a significant decrease in observed stray-light level, the reduction
amounting to about an order of magnitude improvement for § 2 600
prad (see Section IV).
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Fig. 3—Observed instrumental profiles for the MK VI apparatus plotted on a
logarithmic intensity scale. Curve B was obtained with the knife-edge, IgE, occulting
the direct beam, while curve A was measured with KE retracted.

An expanded view of the # =2 0 region of Fig. 3 is shown in Fig. 4. The
dashed curve represents a best fit of the gaussian exp — [62/86%(1/e)]
to the instrumental line shape, as detailed in Section 3.1.- The full
width at half-maximum of the fitted curve is

A8(3) = 16 prad. (6)

For the traces shown in Figs. 3 and 4, the main slit width was set at
5 um which, from eq. (5), is equivalent to a 2-urad acceptance angle.
Under these conditions, the effect of artificial slit broadening on the
line shape may be neglected, as outlined in Appendix A.

Deriving a value for the sagittal, or ¢ direction, resolution is a more
complicated procedure because of the large instrumental astigmatism
(see Section 3.2). However, a pragmatic number can be given using
the following operational definition. If the sagittal resolution were
measured in the tangential focal plane of Mg, the location of the main
slit, the instrumental profile would have a full width at half maximum
given by

Ag(3) = 93 prad. @)
(See Section 3.2, especially Figs. 16 and 17.)

The overall angular resolution characteristics of the instrument are
illustrated in Fig. 5. This sketch shows various fraction-of-maximum-
intensity contours for the instrumental profile as determined at the
main slit plane.
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Fig. 4—Measured instrumental profiles for the MK VI apparatus in the region
around 8 = 0. Curve B was obtained with the knife-edge, KE, occulting the direct
beam, while curve A was measured with KE retracted. Dotted curve is best fit of
the function exp[ —*/66(1/¢)] to the transmitted beam profile.

The measured profiles presented in Figs. 3 and 4 and the corre-
sponding contours of Fig. 5 were obtained using the full g-axis beam
height of the instrument, that is, in the absence of aperturing of the
probe beam by slit S of Fig. 1. As such, the quoted A ¢ resolution does
not include any diffraction broadening associated with g direction
vignetting of the main beam. At full aperture, the instrument’s 8
resolution is essentially diffraction limited, while the ¢ resolution is
dominated by astigmatic blurring. However, as the beam height is
stopped down, diffraction spreading will eventually override the
astigmatism and the instrument will be solely diffraction limited. For
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the MK VI, this crossover point occurs at a beam height of about
0.5 ¢cm or roughly ¢ of the full design aperture. Therefore, the most
advantageous use can be made of the present apparatus when the
desired probe-beam geometry consists of a collimated “sheet” or ribbon
illumination.

2.6 Analysis of stray-light performance

A second crucial performance characteristic of any light-scattering
instrument is its stray-light level in relation to the scattering efficiency
of the sample under investigation. For the MK VI instrument, the
ratio of recorded stray-light photocurrent to the photocurrent observed
at the peak of the transmitted beam, say, can be read directly from
Figs. 3b and 4b; however, this ratio is not of immediate physical

b — LRADIANS
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[
11
11
|1
I
1

Fig. 5—Contours of constant intensity for the instrumental line shape. Each con-
tour is labelled in terms of a fraction of the peak intensity, I(f = 0, ¢ = 0).
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significance because of the effects of residual instrumental astigmatism.
The directly measured 7(6)/i(0) ratio requires a certain amount of
mathematical interpretation to provide the stray-light ratio values
that will be relevant in signal-to-noise or observability caleculations.*—%27
In general, the quantities that are most important in this regard are:

(?) The scattered power per unit solid angle divided by the incident
probe-beam power:

1 de.(6, ¢) _ dRs(8, ¢) ®)
®y dbde das

The ratio [d®, (8, ¢)/dQ] is a frequently used measure of the scattering
power of an object; calculating a value of this ratio appropriate to the
stray light [d®,.(8, ¢)/dQ] provides a basis for estimating the ob-
servability of a particular scattering feature. This quantity can be
extracted more or less directly from 7(6)/4(0) given (1) the effective
solid angle subtended by the main slit and detection optics, and (2)
the instrumental profile contours of Fig. 5.
(#) The normalized scattered power per scattering normal mode:

@, (KJ)
o0 ®

This latter quantity appears in scattered intensity calculations in
which the index-of-refraction perturbations in the illuminated scatter-
ing volume are represented in terms of an orthonormal plane wave
Fourier expansion.®2” The mean-square amplitude of these modes and
their scattering efficiency are, in general, easily calculated from the
known physical properties of the sample. Characterizing the stray-light
via a ratio ®,:(K;)/®, provides another convenient way of determining
the observability of the scattering from a particular sample object.
(#7) The normalized scattered power per coherence solid angle in
the scattered field:
1 d(?,(ﬂ, ®) d®, (6, ‘P)
Po dloor a0 Qcom. (10)

This quantity appears in signal-to-noise ratio calculations relevant
to determining the spectrum of the scattered light from measurements
of the temporal autocorrelation function or spectrum of the detected
photocurrent.?#27 In this case, it is useful to also characterize the
stray-light level in terms of the quantity [d®..(8, ¢)/dQcon]. The
ratio [d®./dQcon ] differs from that defined in eq. (8) in that the solid
angle is specified as being the solid angle of spatial coherence in the
scattered field, Qcon. The coherence solid angle is a measure of the
range in 6 and ¢ about some arbitrary reference direction (8, ¢) over
which the amplitude and/or phase of the scattered electric field exhibits
statistically correlated behavior. In the typical light-scattering experi-
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ment, the extent of spatial coherence in the scattered field is controlled
by the geometry of the scattering sample and wave diffraction. In a
first approximation,?” the coherence solid angle is just the diffraction
solid angle of the seattering source; that is,

A A
Qcor = Abcon X Agcon = (b_g)(nb_) , (11)
®

where by and b, are extremal dimensions of the illuminated sample
volume as viewed from a direction specified by (8, ¢). However, for
the MK VI instrument, the extent of the spatial coherence is partly
determined by residual aberration effects, and an evaluation of the
ratio [d®..(8, ¢)/dQcor] requires a specific calculation of the spatial-
coherence properties of the optical field at the main slit plane.

Obtaining expressions for the various stray-light ratios when aber-
rations are present requires a rather lengthy detailed analysis, as is
carried out in Section 3.3. For our purposes here, we merely quote
those results that lead to the numerical ratios appropriate to the
MK VI instrument. In each case, the procedure is to treat the observed
stray-light level as if it originated from a fictitious ‘“‘sample” placed
at the normal position of the scattering volume. After deriving the
expressions that relate slit-plane intensity to a real sample’s scattering
cross section, expressed for example as [d®, (8, ¢)/d2], we utilize these
results in reverse fashion to calculate the effective cross section of our
fictitious stray-light sample. Of course, these expressions derive from
the main slit-plane imaging characteristics of the instrument; there-
fore, in succeeding paragraphs, whenever angles or solid angles are
specified, they are to be interpreted as slit-plane coordinates or areas
converted to angular units via eq. (5). Consider first the quantity

A0 (0, ) _ 1 0w, o)
dQconr @0 dode °F

1 Mﬂ-_ﬁcoancaﬁ, (12)

TPy dbde

where Afcor and Apcon are the full-width coherence angles in the 6
and ¢ directions. When the main-slit acceptance angles Afg; and A gy
satisfy the inequalities
Adg K Eﬂo}[ = 241 prad
Apsr > Apcon = 140.4 ,ura.d,
as they do for the profiles of interest here, the right-hand side of eq.
(12) can be expressed in terms of the measured photocurrent, z(6), as

dR..(8, ¢ = 0) _ 2(6) Agcon
T Y= X V2T 14
dﬂcoﬂ Z(O) X Atpsz, ! ( )

where 7(0) is the photocurrent observed at the peak of the direct

(13)
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transmitted beam. In writing eq. (14), we have assumed that Aesy
is symmetrically placed around ¢ = 0. The ratio [Apsi/Aecon] is
essentially the number of slit-plane coherence areas sampled by the
detection opties. For the instrumental profiles shown in Figs. (3) and
(4), A sz was limited solely by the free aperture of lens Ls. Using the
proper lens free aperture diameter and the linear dispersion constant
given in eq. (5), we find an effective slit-acceptance angle

Apsr =2 1.4 X 104 yrad = 0.79°.

This value of A sz corresponds to a slit height that samples approxi-
mately 100 coherence areas. The ratio [Aesi/A¢con], eq. (14), and
the data of Fig. 3 combine to give the [d®..(8, 0)/dQc0x] values listed
in Table II.

The normalized stray-light power per mode can be found from
[d®,.(8, 0)/dQcox] by the methods detailed in Section 3.3. The basic
procedure involves calculating both the scattered power per coherence
area and @,(K;) from a common starting point to obtain the correction
term that relates them. In the present case, the required relationship
has the form

d®R.(6,0) _ @u(K;) o Aecon Abeon
= X (15)

dQcon ®o (A/by) (\/bs)’

where b, and b, are the clear aperture width and height of the instru-
ment and A is the optical wavelength. The product of the ratios

EC’OH A—H.COH
by P /by

is a weighted measure of the number of K; modes contributing to the
power observed in a single coherence area at the main slit. At the full
aperture of the MK VI instrument, b. = 5 em and b, = 5 cm, the
correction factor has the value

‘A?COH H(:‘OH

s —— = 33.6. (16

(\/be) (/b :

Table Il— Numerical values of various stray-light ratios for the

MK VI instrument at selected scattering angles

6-prad i(8)/4(0) d®a(8, 0)/d%0m ®at(K;)/ Co
50 1.07 X 104 1.5 X 10~¢ 4.5 X 10-8
100 2.82 X 105 4.0 X 1077 1.2 X 10°*
200 9.55 X 10-¢ 1.4 X 1077 4.0 X 10~
500 2.82 X 10~* 4.0 X 10-® 1.2 X 107®
1000 1.62 X 10-¢ 2.3 X 108 6.8 X 10710

Afgz, = 2 prad, Apsr. = 14,000 prad, Abgog = 24.1 urad, and A pcor = 140.4 urad.
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Combining eqs. (15) and (16) with the values of [d®..(6, 0)/dQcon ]
already calculated gives the stray-light-per-mode ratios to be found
in Table II.

The numerical values of the various stray-light ratios may be put
into perspective by calculating the amplitude of some physical per-
turbations that would generate a scattered intensity equal to the
observed stray-light level. Based on a theoretical analysis of the
scattering problem, it may be shown that, for sufficiently small
scattering angles, the actual three-dimensional scattering volume can
be taken to be equivalent to a two-dimensional phase-object placed
normal to the incoming probe beam.? In this two-dimensional phase-
plate equivalent, the scattering disturbances appear in the form of a
spatially varying phase thickness ¥ (x, y), which is the line integral of
the instantaneous index of refraction encountered by a ray traversing
the actual sample at the lateral position (z, ). If n(z, y, 2) is the local
index of refraction in the actual three-dimensional scattering problem
then ¢(z, ) is given by

vz, = 2 [ v, 2, (17)

where L, is the length of the illuminated volume along the direction of
the incident beam. The phase perturbation ¢ (z, ) may be represented
in terms of a two-dimensional plane-wave Fourier expansion

Yz, y) = L X P(KjeK=gHum, (18)
K: Ky

with the K; = (K., K,) chosen to make the expansion functions
orthonormal over the instrument’s full aperture. In this formulation
of the problem, the normalized scattered power per K; mode has the
simple form

e (L SIE (19

where the angular brackets denote an appropriate time or ensemble
average.

The expression for the scattered power given in eq. (19) may be
used to interpret the stray-light levels observed in the MK VI instru-
ment in terms of a minimum detectable amplitude for a specific physi-
cal scattering mechanism. In succeeding paragraphs, we consider three
such scattering processes: (i) static index of refraction modulation in
a transparent slab, (i7) surface height modulation on a reflecting
mirror, and (#74) temperature modulation in an otherwise homogeneous
liquid.

2.6.1 Refractive modulation in a slab

The scattering from a static sinusoidal refractive-index modulation
in a plate is an interesting model problem relevant to holographie
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memories and general phase-grating problems. We take the sample
object to be a nominally homogeneous plate of thickness L. and
refractive index n, in which a small sinusoidal index disturbance

on(z, y, 2) = dne'or (20)
has been created. The index perturbation is assumed to be uniform in

the # direction such that Q lies in the (z, y) plane. The local index in
the plate is

n(o, 2, = o [ 14 2 o] (21)
0
which, when inserted in eq. (17), gives the phase function y¢(z, y) as
2 .
V(@ 1) = 5 [nols + onLe®@ ], (22)

The required Fourier amplitude, {|¢(K;)|?), is obtained by inspection
from eq. (22) as

(V@) = [(%)(%)u] 23)

This result may be used together with eq. (19) to obtain the pertur-
bation amplitude (8n/n,) necessary to produce a given scattered power
per mode. For example, taking L, = 1 em, ny = 1.5, and A, = 5000 A,
we find that a refractive-index amplitude én/no = 1.2 X 10~ yields a
normalized scattered power per mode equal to the MK VI's observed
stray-light value at # = 100 prad. To produce scattering at this angle,
the wavelength of the perturbation A = 2x/|Q| would have to be
A = (Ao/8) = 0.5 em. Table III lists the “background equivalent”
on/n, values corresponding to other values of 8(A).

2.6.2 Helght modulation on a refiecting surface

Another interesting example from the viewpoint of stray-light level
comparison is the scattering from a surface height disturbance on an
otherwise perfect reflecting mirror. Clearly, this problem can also
serve as a model for calculating the instrumental background when
mirror surface roughness (see Section IV) is the dominant source of
stray light.

Since the primary effect of a surface height deviation is to produce
a phase perturbation on the reflected wave-front, the phase function
¥ (z, y) can be written down immediately as

v, 9) = BLED ja,y), (24)

where h(z, y) gives the local physical height displacement from the
nominally perfect geometric surface.
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Table IIl— Amplitudes of three scattering perturbations
necessary to scatter an amount of light equal to
the instrument’s stray-light level

P A Refractive Surface Temperature
(urad) (em) @, (K;)/ ®o Perturbation Corrugation Perturbation
. (8n/n0) (8h-A) (8T7-°C)

50 1.0 4.5 X 108 2.2 X 107 0.16 6.8 X 107¢

100 0.5 1.2 X 1078 1.2 X 107 0.084 3.5 X 10-¢

200 0.25 4.0 X 107 6.7 X 10710 0.049 2.0 X 107

500 0.1 1.2 X 107 3.6 X 1071¢ 0.027 1.1 X 10—
1000 0.05 6.8 X 10710 2.8 X 1071 0.021 84 X 1077

We will take A(z, y) to be a small, static, sinusoidal corrugation
h(z, y) = dhe@r (25)
for which the phase function is just

v,y = T o, (26)

The Fourier amplitude (|¢(K;)|?) follows trivially as
4

1P 1 = [ 3 an]
0

Combining eqs. (27) and (19) with the data of Table II gives the
“background equivalent” surface corrugation amplitudes listed in
Table III. Again, these are the surface amplitudes necessary to yield
a normalized scattered power-per-mode equal to the MK VI’s stray-
light level. For example, when A = 27/|Q| = 0.5 cm, the “background
equivalent” corrugation has an amplitude of 3k = 0.084 A or, in the

usual surface-figure parlance,
6h = 1/60,000.

2

(27)

2.6.3 Temperature modulation in a liquid

As a final example, we consider an otherwise homogeneous slab of
liquid of thickness L. on which is impressed a small sinusoidal tem-
perature disturbance,

8T (z, v, 2) = 8Te'r, (28)

with Q lying in the (z, ) plane. The calculation of the scattering from
such an object is really just a simple extension of the result obtained
above for refractive index modulation. The temperature perturbation
produces an associated index disturbance that is responsible for the
scattering. If the temperature perturbation in eq. (28) is impressed
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isobarically, the associated index modulation is simply
n(z,1,2) = (57 ),87@ .2

on
Q- r
( 6T) 5Te (29)
Equations (20) through (23) may now be used to obtain the relevant
mean-square phase amplitude, namely,

v = [ 2 (&), 10| (30)

Taking L, = 1 em and Ao = 5000 A and using a typical value for
(dn/dT)p in liquids, (dn/dT)p = —5 X 10~4/°C, we find the back-
ground-equivalent temperature amplitudes listed in Table III.

2.7 Conclusion

In this section, we described the basic features of an optical instru-
ment capable of extending conventional light-scattering measurements
to an angular range (50 urad to 3 mrad) not previously accessible. In
addition to a diffraction-limited angular resolution of a few seconds of
are, the MK VI instrument exhibits an exceptionally low stray-light
background making it an effective tool for probing small-amplitude-
scattering processes. Besides its primary purpose of studying long-
wavelength (0.01 em to 1 em) thermal fluctuations, the present type
of apparatus should prove quite useful in other areas where long-wave-
length perturbations must be probed, such as,

(7) Holographic and optical memory imaging.
(#7) Surface roughness testing.
(728) Index of refraction profiling.

In general, the MK VI offers a sensitivity improvement of a factor
of about 1000 over the instrumentation normally used for such
measurements.

While we have given a rather broad overview of the apparatus in
the present section, we have not attempted to present the fundamental
considerations on which the design is based. We refer the reader who
is interested in these questions to the remaining sections of this paper.

Il. THEORETICAL CONSIDERATIONS IN THE DESIGN OF A
VERY-SMALL-ANGLE LIGHT-SCATTERING APPARATUS

3.1 Aperture apodization

In the simplest analysis, the ultimate angular resolution of any
optical instrument is limited solely by diffraction. The expression most
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widely used to estimate the limiting resolution is the so-called Rayleigh
criterion,®
(A0) (Ad) == X,. (31)

The quantities Af and Ad can be interpreted in two ways:

(#) If Ad is the diameter of a “collimated” beam, then A# is the
actual angular spread of the beam imposed by diffraction.

(#7) If Af is the collection angle for light emanating from an object,
then Ad is the smallest spatial detail that can be resolved on
that object.

Neglecting for the moment the off-axis features of the actual MK VI
instrument, we can duplicate its basic function with the two-lens
system sketched in Fig. 6. Applying the Rayleigh criterion to this
particular optical arrangement for a collimated beam diameter
b=Ad =5 em, and with A, = 5000 f&, predicts an instrumental
angular spread

Afgavieice = 10 .ura.d. (32)

Unfortunately, taken by itself, this value for Afravrrice contributes
little in the way of a quantitative understanding of the instrument’s
small-angle performance. In fact, the Rayleigh criterion can be mis-
leading in a number of ways. First, it does not indicate how much light
an object would have to scatter to be ‘“visible’” when the scattering
angle approaches Afpayreica. Second, it implies that the angular
diffraction spread can be decreased to an arbitrarily small value by
simply increasing the beam diameter b = Ad. In reality, the presence
of unavoidable optical aberrations will always limit the attainable
angular resolution. In designing an instrument which is to attain a
resolution approaching the diffraction limit, a quantitative approach
to the problem is mandatory.

b
RS S N |
!
1
H'IN

[}
)
[}
L v !
i |-— SCATTERING !
! OBJECT i
1
:
APERTURE
PLANE

Fig. 6—A simplified “lens equivalent’’ version of the MK VI optical system.
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An exact expression for the diffraction-limit resolution charac-
teristics of an optical system may be obtained as follows. Let us assume
we know the spatial dependence of the incident beam intensity on
some surface in the optical system, say the aperture plane of Fig. 6.
In our case, the electric field on this surface is of the form

En(ﬂ), y)ei(kuzn—wnl)_ (33)

This aperture plane field can be decomposed into a set of infinitely
extended plane waves,

Ep(8, ¢) = EH(6, p)e (@0, (34)

propagating toward Ls at various angles with respect to the 2 axis.®
The plane-wave amplitudes, E%(f, ¢), are found from the Fourier

integral
E(.)D(or (P) = ;—0 fj; dIdyEo(z, 'y)gl'(QzZ+Qw) (35)

together with the relations,

Q| = ko = 27/Xo
Q.= Q& =rkosing =k (36)
Q, = Q - 9§ = kosin ¢ = koo

Equation (35) is just a slightly modified form of the usual scalar
diffraction theory result which utilizes spherically spreading waves as
basis funetions.®

Assume for the moment that lens L, in Fig. 6 is infinitely large and
free of aberrations. Then each of the plane waves, Ep(8, ¢), is brought
to a point focus in the slit plane at a position

§= ftanf@ = fo
7 = ftan ¢ = fo, 37

where f is the focal length of L,, and the approximate signs hold for
small angles. Combining (35), (36), and (37) gives the field in the
slit plane as

Boltn) = 75, [ [ Bolw, yeicrino estwdzdy, (38)

As eq. (38) shows, the field at the slit plane and the field at the aperture
plane are related as Fourier transform pairs. It should be evident
that eq. (38) can also be applied “backwards” in Fig. 6 to relate
Eo(z, y) to the field at the spatial filter aperture, Eo(¢, 7"). We will

* The cartesian coordinate and angle notation follows that adopted in Section II.
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refer to the field Ey(z, y) or its intensity

In(z, y) = Weeo/noEo(z, y) Eo(z, y)

as the illumination or aperture function. The slit-plane field Eq(£, 7)
or its intensity, I.(%, 1), is the corresponding instrumental profile.

The procedure of aperture apodizing may be described simply as
follows. The basic problem is to find and implement an instrumental
illumination funetion, such that both the function itself and its trans-
form have minimum spatial extent. The goal in a loose sense is to
optimize the angular resolution per unit aperture opening. Of course,
one of the general properties of Fourier transform pairs is that the
second moments or ‘“widths’ of the pair members have an approximate
inverse relationship. The Rayleigh criterion, in fact, is a simplified
statement of this property. Even within the confines of this inverse
relationship, however, there is still wide latitude for aperture apodizing,
i.e., shaping the instrumental profile to obtain particularly desirable
angular or spatial characteristics. Although the Fourier transform
relationship between the illumination function and the instrumental
profile in coherently illuminated optical systems is well known %
aperture apodizing schemes are not often applied in optical instrument
design. Apodizing schemes are, however, extensively employed in
high-frequency and microwave antenna design,*:® where they are
used to create antenna systems exhibiting an angular directivity
pattern that satisfies a particular objective.

In designing an apparatus for very-small-angle light scattering, the
principal objective is the ability to observe the weak scattered light
in close angular proximity to the unscattered beam. The goal, then, is
an instrumental profile that not only has small angular half-power
points but, more importantly, continues down rapidly to the 10~% to
10-8 level. The proper shaping of the illumination function, Ey(z, ) is
absolutely crucial in obtaining this desired ‘‘steep-skirt” behavior.

In treating the question of aperture apodization for the MK VI
instrument, we consider the optical system in the simplified form
shown in Fig. 6. Therefore, the calculated instrumental profiles that
are obtained below represent the instrument’s ideal, diffraction-limited
performance in the absence of all aberrations. The ways in which the
residual aberrations of the actual off-axis configuration modify these
results are taken up in detail in Section 3.2.

Given the idealized geometry of Fig. 6, the process of evaluating
various illumination function/instrumental profile combinations can
be further simplified by the following considerations. First, most of
the interesting illumination functions and, therefore, their Fourier
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transforms can be factored to the form

Eo(z, y) = Eo(x)Eo(y) (39)
Eo(& n) = Eo(§)Eo(n).
Second, in the MK VI apparatus, the open height of the main scanning
glit guarantees that the measured slit-plane profile is the integral over
all  of the slit-plane intensity Io(£ 7). Under either of these circums-
stances, we need consider only a one-dimensional form of eq. (38),
namely,

EO(E) — (—ﬁl\n_)_* fEu(x)ei&rl'ﬂo)Ezdx, (40)

where £ = f8. The corresponding aperture and slit-plane intensities are
1
Io(z) = 3 o[ Bo()Ei(a)
Ho

1 . 2
To(8) = 5,/%‘; jih [ Bo@earnotis

In presenting the results of calculations based on eq. (41), it is
convenient to adopt a concise terminology to describe the spatial and
angular widths of the functions involved. We use the following
notation:

D.(%)—TFull width at half-maximum intensity for [ o(z)

d.(3)—Half width at half-maximum intensity for / o(x)

D¢(3)—Full width at half-maximum intensity for I o(&) or Io(E)

d¢(3)—Half width at half-maximum intensity for Io(£) or I o &)

A8(1)—Full width at half-maximum intensity for Io(£) or Iy(¢),
expressed as an angular equivalent via eq. (37), A6(3)
= (1/)D¢(3)

30(1)—Half width at half-maximum intensity for / o(8) or I(¥),
expressed as an angular equivalent.

For arguments other than (1) these quantities, give the width at the
specified fraction of the peak intensity. Since the absolute normaliza-
tion of the various intensity functions depends only on the total beam
power, we present all results in terms of the ratio quantities:

Io(z)/10(0), Io(£)/10(0), 10(6)/10(0),
where I4(6) describes the slit-plane intensity with position ¢ given in
terms of the equivalent angular deflection 8 = £/f.
Figure 7 shows the instrumental profiles calculated for two interest-
ing illumination functions. The first is the uniform field
_|Eo; —b/2=Zx=0b/2
Boz) = {0; otherwise

(41)
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Fig. 7—Calculated instrumental profiles for uniform and gaussian illumination
with b = 5.0 em and & chosen to give equal values of 56(}) for both profiles. The
normalized illumination functions for each case are shown inset on a linear intensity
scale.

for which one can easily ealculate the following intensity ratios:
1; —b/2<z=b/2

fol@/ L) = 0; otherwise
10(8)/1o(0) = S (Kb/2)

(kob8/2)% ’
where ko = (27/\0). The second profile results from a gaussian aperture
illumination,
Eo(x) = Eye=*2"
for which the relevant intensity ratios are
Io(z)/14(0) = exp (— 2*/d%)

10(8)/10(0) = exp (— *ka&/f*) (43)
10(6)/10(0) = exp (— o*kif?).
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The numerical parameters used in obtaining the curves plotted in
Fig. 7 were

\o = 5000 A, b=>50cm, o= 1496cm. (44)

The b value is representative of the maximum clear aperture of the
MK VI apparatus; the value of ¢ was arbitrarily chosen to give equal
86(3) for both instrumental profiles. Also shown inset in Fig. 7 are
the two aperture-plane intensity ratios, Io(z)/I0(0). Note that the
latter are plotted using a linear ordinate scale.

As is evident from these two calculated instrumental line shapes,
the use of gaussian apodization is vastly superior to uniform illumi-
nation in regard to the observability of weak small-angle features even
though the two I4(6)/1,(0) profiles have identical half-widths. For
example, at the 10~° level we find

56(10—%) = 19.8 prad GAUSSIAN I(x)
36(10—%) = 3183 urad uNIFORM I (Z).

In fact, from a theoretical standpoint, the gaussian is the ideal form
of aperture functional. Among the families of possible illumination
functions, it possesses a unique combination of two properties: (2)
it has an extremely rapid shirt fall-off, and (#7) it goes over into itself
under the Fourier transform operation. In a general situation where the
available aperture illumination has some arbitrary (z, y) behavior,
gaussian apodization would have to be accomplished by interposing a
suitable neutral density mask at the aperture plane. Fortunately, laser
sources with a reasonable cavity configuration and oscillating only on
TEM g modes have an output beam intensity pattern which is accu-
rately gaussian, except in the extreme tails of the profile. The avail-
ability of such a source represents a crucial factor in the feasibility of
constructing an instrument having the resolution and stray-light per-
formance of the MK VI apparatus.

In the actual MK VI instrument, the ratio of the focal length of
lens L, to that of mirror M5 was chosen to generate a gaussian illumi-
nation function with an effective width

c* = d.(1/e) = 0.826 cm (45)

in the collimated beam portion of the apparatus (see Fig. 1). The
instrumental profile calculated via eq. (41) for this value of ¢ is plotted
in Fig. 8. Also shown for comparison purposes is the profile to be
expected if we uniformly illuminated the instrument’s maximum
design aperture

b* = 5.0 cm.
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It is clear that for these specific values of ¢ and b, gaussian apodizing
no longer exhibits an absolute superiority over uniform illumination.
Although the “gaussian” profile still reaches the 10~° level much more
rapidly, it does sacrifice resolving power to the ‘‘uniform’ profile down
to approximately the 10~% level. What this means to vsa scattering
performance is the following. The “gaussian’’ instrument will excel in
its ability to detect small amounts of light at very small scattering
angles; however, it will not resolve approximately equal intensity
features with as much detail as would the “uniform” instrument. As
we see in the following paragraphs, the tradeoff, roughly speaking,
involves paying for small-angle weak-intensity performance by sacri-
ficing some ability to resolve the angular dependent features of the
scattered light. This comparison can be made more quantitative by
reference to Table IV, which gives various half-width angles for the
profiles of Fig. 8.

1072 UNIFORM ILLUMINATION [
Io (X} /14 (O)

Ig (8) /19 (O)

oo™

i GAUSSIAN |LLUMINATION
10710 /
i

\
i
i

H
1072 1 I J ] | 1 1
0 20 40 60 80 100 120

# IN LRADIANS

Fig. 8—Calculated instrumental profiles for uniform and gaussian illumination
with b = 5.0 em and ¢ = 0.826 em. The b value corresponds to the maximum clear
aperture of the MK VI instrument, while the o value corresponds to the width of the
gaussian illumination actually used in the present apparatus. Normalized illumination
functions for each case are shown inset on a linear intensity scale.
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Table IV—Calculated instrumental profile half-widths at various
fractions of peak intensity for three different
illumination functions

Gaussian Uniform Truncated Gaussian
Illumination Illumination Illumination
o = 5000 & d.(1/e) = ¢* d. (l/e) b*/2 b=b* oc=¢"
o* = 0.826 cm = 5.0 cem b/e = 6.06
(urad) (urad) (urad)

30(1/2) 8.0 443 8.09
80(1/e) 9.6 523 9.69
60210‘1; 14.6 7.36 14.62
86(102 20.7 31.8 20.6
86(10-%) 25.3 100.6 25.5
56(104) 29.2 318 20.7
56(10—%) 32.7 1006 32.6
80(107¢) 35.8 3183 76.8
56(1077) 38.7 10,060 243
86(1078) 41.3 31,830 768

From the inset plots of I(x)/I(0) shown in Fig. 8, it may seem that
the gaussian illumination profile used in the present apparatus was
unnecessarily narrowed relative to the instrumental full aperture. This
is, in fact, not the case. One crucial detail which has been omitted in
obtaining the results presented in Figs. 7 and 8 is the possible vignetting
effect of the instrument’s maximum aperture. In calculating E,(£) for
the gaussian Eq(x), for example, the integral in eq. (40) was taken over
all z, thereby neglecting any aperturing effects that might occur.

For the actual vsa scattering instrument, which has a fixed maximum
aperture, b, Eo(£), and E(z) are related via the finite domain transform

bi2
Eo(d) = f_mE'u(x)e"‘“"”‘“”’dx. (46)

1
(Aot
Except for a few special cases, an analytical evaluation of this integral
is not possible, and one must resort to a numerical approach to investi-
gate various apodizing schemes. For the experimentally relevant case
of gaussian illumination, eq. (46) becomes

Ey(8) = _EP_ f o == 2a*+i@nl fho)éxgy 47
(f)\[))l —b/2

On completing the square in the exponential and a change of variable,
we can rewrite this expression in the form

Eo(8) = V20~ (+*K*2) f * ewtdu, (48)

(ﬂ\ )‘ w
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where K, w, w,, and w_ are defined as follows:

w= 2 ;7K
T V2e 2\"2
K=(21r/)\o)%
(49)
b .cK
W =t o, Tt
___b _ K
Y- =" oV2s 1RY/]

The analyticity of exp (—w?) near w = 0 allows the complex plane
w integral to be split into two terms, each having the form of an error
function of complex argument. Tabulated values of this function are
available in the literature® for a restricted range of the parameters
(b/e) and (cK).

In searching out an optimum configuration for the MK VI instru-
ment, it was decidely more convenient to adopt a fully numerical
approach in evaluating eq. (47). Appendix B outlines the methods
that were used. The modified instrumental profile calculations were
carried out for a range of values of the ratio (b/¢) with the aperture
opening, b, held fixed at b = b* = 5.0 cm.

Figure 9 shows four such profiles plotted in terms of the normalized
intensity ratio I4(6)/T0(0). Also shown are the corresponding aperture
ratios Io(x)/1s(0). The curve for (b/g) = 0.01 is essentially equivalent
to the result obtained above for uniform aperture illumination. The
most striking feature of the remaining three I4(8)/1 0(0) curves is the
presence of an effective background or floor contribution to the profile
caused by edge diffraction at the aperture. This “shelf”’ or wing on the
profile has the slow oscillatory decay of a (sin®=z) /a? functional de-
pendence. In each case, however, the § =0 portion of the curves
closely approximates the gaussian profile expected from unapertured
gaussian illumination.

The results given in Fig. 9 clearly illustrate the tradeoff involved
in selecting a value of ¢. In circumstances requiring an instrumental
line shape with a very low background level, we are forced to accept a
moderate increase in 60(3) and, therefore, a loss in angular resolving
power. The curve given in Fig. 9 for (b/s) = 6.05 corresponds to the
choice that was made for the MK VI apparatus. Various half-width
values for this profile have been included in Table IV for comparison
with the results for unapertured gaussian and uniform illumination.
In the actual instrument, this choice for (b/s) guarantees that the
calculated edge-diffraction “floor”” constitutes less than 10 percent of
the overall stray-light level. This point is illustrated in Fig. 10 which
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Fig. 9—Calculated instrumental profiles for truncated gaussian illumination and
various values of (b/¢). Also shown, on a logarithmic intensity scale, are the cor-
responding normalized illumination functions [Io(z)/I0(0)]. The curves labelled
(b%) = 6.05 are appropriate to the b and o values used in the present apparatus.
shows the theoretical profile for (b/¢) = 6.05 superimposed on the
measured profiles of the MK IV instrument.

At this point, it is crucial to realize that the truncated transform
results apply not only downstream from the aperture plane of Fig. 6
but also upstream toward the spatial filter. There are, in fact, two
other possible sources of beam vignetting in the system. The most
obvious is the spatial filter itself. Since the field at the spatial filter
and the field at the aperture plane are Fourier transform pairs, the
same considerations involved in choosing (b/¢) also apply to the choice
of spatial filter pinhole size. If edge-diffraction effects at the aperture
plane are to dominate the system profile, then the ratio of pinhole
diameter, bpy, to the gaussian focal width at the pinhole, d¢ (1/e),
must exceed (b/e). Specifically, for the present instrument, bpy must
satisfy the inequality

bpy b _
96um 5 000 (50)

bpr > 58 pm.
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The pinhole diameter actually used is bpy = 100 um. We note that a
[bpu/de(1/€)] ratio this large is contrary to usual spatial filtering
practices.

A much more subtle source of possible beam aperturing is the internal
cavity configuration of the laser source itself. Clearly, the ratio of
laser tube inside diameter, bp,sgr, to the mode (1/e) radius, epasgs,
must also satisfy the inequality

@ > é (51)

TLASER g
The laser used in the MK VI has a gaussian mode diameter given as

Drassn(1/€) = 1.4 mm, (52)

1072
103

10

NORMALIZED INTENSITY

1077

~200 ~100 0 100 200 300 400
#IN LRADIANS
Fig. 10—Calculated instrumental profile for truncated gaussian illumination
ed

(das curve) superimposed on the measured profiles of the MK VI instrument.
Curves A and B correspond to the two measurements described in Fig. 4.
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which is equivalent to

D 1/e?
OLASER = _ﬁgl\‘éﬁ = (0.5 mm. (53)

The plasma tube 1p for the laser is braggr = 5.0 mm yielding a b/c
ratio
) (54)
OLASER
Therefore, in the MK VI instrument, the maximum design aperture
available to the collimated beam is, in fact, the principal source of
truncation effects.

In situations where it is advantageous to alter this resolution-back-
ground tradeoff by varying (b/c), it soon becomes apparent that the
numerical profile calculations of Appendix B are a rather unwieldy
design tool. Instead, based on an examination of the results shown in
Fig. 9, it seemed tempting to fit the profile tails to the form

1:(6)
1(0)

sin? (kqbf/2)
(kob8/2)

= A, (55)
and look for an interpolation formula relating the amplitude 4, to
the ratio (b/¢). By a trial-and-error procedure, the following relation
was found to reproduce the best-fit A values to within 10-percent error:

2
A% = (1 + Sb—ae) e, (56)

Table V gives the fitted and interpolated values of A, corresponding
to the four (b/¢) ratios of Fig. 9. It is interesting to note that the
exponential factor exp (—b%*/4¢?), which dominates the (b/c) de-
pendence, is just the normalized aperture illumination at the aper-
ture edge.

3.2 Optical aberrations

The fundamental diffraction limitations set out in Section 3.1 are
really only a prediction regarding the ideal performance of an optical
system. In the final analysis, the inherent optical aberrations of any
particular apparatus design determine how close one will come to
achieving the ideal of diffraction-limited performance. In this section,
we give a brief summary of those aspects of optical aberration theory®
that are relevant to the design of the MK VI apparatus. From a
qualitative understanding of and analytical expressions for each of the
various aberrations, we then determine the extent to which aberrations
modify the ideal diffraction-limited characteristics of the instrument.
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Table V—Fractional amplitude of the edge diffraction contribu-
tion to the instrumental profile of truncated gaussian illumi-
nation. The first column gives the A, values obtained by
fitting eq. (55) to the tails of the profiles shown in
Fig. 9; the second column gives the A, value
predicted by the interpolation formula

in eq. (56)
(b/e) A-Fitted AI.Interpo]a.ted
0 1.0 1.0
3.333 1.33 X 107 149 X 10!
6.056 5.823 X 10— 592 X 10—
8.333 2.782 X 1077 2,79 X 1077

Finally, a number of measurements taken on the MK VI instrument
are compared to the quantitative predictions of the aberration theory.
Because the present instrument is illuminated with monochromatic
light, the various chromatic aberrations are absent, and the lowest-
order non-zero distortions come from the third-order or primary
aberrations. Here we follow the order-naming convention associated
with the Taylor expansion of the function sin ¢, i.e.,
. _ "bﬂ ll’ﬁ
sing =¥ — 51+ 5, (57)
where ¢ is the angle of incidence of a ray on a reflecting or refracting
surface. The approximation sin ¢ = y leads to the usual paraxial opties
formulae. The next term in the expansion, proportional to ¥?, describes
the primary aberrations,

The principle aberration-producing elements of the MK VI ap-
paratus are the off-axis spherical mirrors M5 and M, (see Fig. 1).
Figure 11 shows the basic optical configuration in which the mirrors
are used. The labelled geometrical parameters are:

Up = 21 —The half-field angle or off-axis angle

@—The semi-aperture (58)
R—The mirror radius of curvature.

The primary aberrations for an off-axis spherical mirror depend
parametrically on two angles: u,, the half-field angle and (@/R), the
semi-aperture angle. The aberrations associated with the various
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---- AXIAL RAY--

Fig. 11—Off-axis mirror configuration used in the MK VI instrument showing the
important geometrical parameters.

third-order products of these angles are:
(@/R)*—Spherical aberration
(@/R)*u;,—Coma
(@/R)ui—Astigmatism
ud—Distortion.

(59)

3.2.1 Spherical aberration

Spherical aberration is a longitudinal focussing defect that is present
even when the off-axis angle goes to zero. Figure 12 sketches the basic
ray geometry for a spherical mirror exhibiting pure spherical aber-
ration. As illustrated in the enlarged detail of the sketch, the marginal
rays of an incoming parallel bundle are brought to a focus at a point
closer to the mirror’s surface than those lying nearer the axial ray.
This constantly changing longitudinal focal position results in a trans-
versely smeared focal spot rather than a focal point.

One common measure of the amount of spherical aberration is the
minimum beam waist size produced in the focal region. For a spherical
reflector, the diameter of this blur spot is given by

2TS8C* = @Y/ R (60)

Since transverse displacement at the foeus is equivalent to an angular

deviation in the parallel bundle, we can also express the spherical

aberration in terms of a full-width angular blur,

278C*
f

where f = RB/2 is the focal length of the reflector.

Afse = = 2(G/R)?, (61)

3.2.2 Astigmatism

Astigmatism, like spherical aberration, is the result of a longitudinal
focussing defect. In contrast to the spherical aberration defect, how-
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ever, the longitudinal focussing error depends not on aperture diameter,
2@, but on the off-axis angle, u,. Figure 13 illustrates the ray geometry
of pure astigmatism for a spherical reflector.

One of the fundamental characteristics of the u, dependent aber-
rations is the loss of rotational symmetry in the focal region. A non-
zero off-axis angle destroys this symmetry and establishes two unique
directions or planes of transverse blurring. The plane defined by the
incident and reflected axial ray is the tangential plane. Cartesian or
angular displacements perpendicular to the axial ray and lying in this
plane are referred to as tangential displacements. The two planes
orthogonal to this tangential surface and containing either the incident
or reflected axial ray are called the sagittal planes. Cartesian or angular
displacements from the axial ray in these planes are sagittal
displacements.

For a spherical reflector exhibiting pure astigmatism, a fan of
parallel tangential plane rays are brought to a focus closer to the mirror
surface than an identical sagittal fan. The focal region pattern found
by decomposing the entire illuminated aperture into such ray fans
consists of the two longitudinally separated focal lines depicted in
Fig. 13a. The longitudinal (2) separation of the S and T' foei (24C¥)

PARAXIAL MARGINAL
PARAXIAL
PARA \ FOCUS \/Focus
~ -
AXIAL RAY --- ———F e ———
- S
MARGINAL
RAYS
SPHERICAL
ABERRATION
PARAXIAL \ } X / MARGINAL
FOCUS T~ _~7  Focus
~—_ —

Fig. 12—Ray diagram for a single spherical mirror exhibiting a pure spherical
aberration defect.
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can be calculated from the relation

AC*=%2,

(62)
and depends only on the semi-field angle.

In the absence of other aberrations (and the effects of diffraction),
the S and T focal lines are infinitely narrow in their respective planes.
This means that the sagittal height of the tangential focus and the
tangential width of the sagittal focus can be obtained from simple
extremal ray geometry. For example, Fig. 13b shows the extremal rays
seen in a tangential plane projection. Normally 24 C* is small compared
to the reflectors focal length (R/2). It follows that the lengths of the
two focal lines are identical and given by

2a
* — [ 2% ) _ 2
OTAC* = 24C ( 2 /2) 2aul. (63)
The full-width angular spread equivalent to this spatial blur is
Abracs = 4(&/R)u,2, (64)

3.2.3 Coma

When the off-axis angle is non-zero, the longitudinal focussing error
that produces spherical aberration also gives rise to an asymmetric
transverse blurring called coma. Figure 14a sketches the basic elements
of the focal region pattern for a spherical reflector exhibiting a pure
coma defect. Rays in the paraxial region are brought to a focus at the
axial focus, P, while rays from larger-diameter annular zones on the
mirror’s surface form focal circles whose centers are tangentially dis-
placed from P. The radius of a particular focal circle increases as the
square of the radius of the zone producing it.

Figure 14b gives a qualitative representation of the characteristics
of the focal pattern as found by dividing up the illuminated aperture
into these annular zones. Mathematically speaking, the focal circles
are not sharp unless the radial thickness of the corresponding zones
vanish; however, the sketch does predict quite nicely the overall
exterior outline of the coma blur patch.

The continuum of focal eircles nest into a 60° wedge extending out
from the axial focus forming a pattern commonly called comatic flare.
The largest-diameter foecal circle, produced by the annular zone at the
edge of the illuminated aperture, has a radius CC* given by

_ G‘F'u,,_
T 2R

cc* (65)
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(a)

Fig. 14—Partial ray diagram, (A), of an off-axis spherical mirror exhibiting a

pure coma defect. The details of the focal plane pattern are illustrated in (B).

Its center is tangentially displaced from the axial focus by an amount

20C*

Although coma is a highly asymmetric aberration, it is still con-
venient to specify its effect in terms of transverse and/or angular blur
sizes. The numbers ordinarily quoted for coma correspond to the
extremal dimensions of the coma patch in the tangential and sagittal
directions. It follows easily from Fig. 14b that the full-width trans-

verse spatial blurs are

" 2
T pirEcTiON 2TCC* = 3CC* = 32’;’
S pirecTiON  28CC* = 20C* = a;u,,_

The equivalent full-width blur angles are

T pIRECTION Afyee = 3(@/R)%u,
S DIRECTION Afsce = 2(@/R)*u,.
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3.2.4 Distortion

The last of the primary aberrations is a defect of off-axis magnifi-
cation called distortion. This particular aberration is associated prinei-
pally with optical systems that form a real image of an extended object
at finite magnification. For example, the image of a rectangular grid
of regularly spaced points will exhibit the classic ‘““barrel” or “pin-
cushion” appearance in an optical system involving pure distortion.
For the situation of interest here, namely a spherical reflector with
the image at infinity or at the focus, the amplitude of the pure distor-
tion aberration vanishes identically.

3.2.5 Application of the aberration results to the MK IV instrument

The third-order aberration theory results for the off-axis spherical
reflector are summarized in Table VI which gives the expressions for
the various transverse and angular blurs. It must be emphasized that
the aberration theory results outlined above are derived from purely
geometric ray tracing. In no sense does this theory predict the actual
intensity distribution in the image plane for a specific aperture illumi-
nation. The transverse and angular blur patterns define the outlines
of a boundary between focal illumination and strict geometric shadow
in the absence of all wave interference and diffraction effects. However,
in certain situations, it is possible to combine the geometric aberration
results with aberration-free diffraction calculations to obtain useful
instrumental profile information. The approach works well when one
or more of the following conditions are satisfied :

(¢) Diffraction blurring is large or small compared to spherical
aberration.
(72) One primary aberration is dominant.
(772) The ideal diffraction-limited system profile is free of large
interference maxima and minima.

Table VI— Summary of the analytic expressions for the
transverse and angular aberration blurs for a single
off-axis spherical mirror

Aberration Full-Width Transverse Blur Full-Width Angular Blur
Spherical aiy/R? (2 TS8C*) 2(a/R)
Coma T —3aw,/2R (3CC*) —3(@/R)u,
8 —2aw,/2R (2CCY) —2(a@/RYu,
Astigmatism 2au; (2TACY) 4(@/R)u;
Distortion Bu;R 2 Buj
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In these cases, one can intuitively construct the aberration-affected
profiles with a fair degree of accuracy using the one-to-one geometric
mapping of regions of the aperture onto the focal plane. For example,
it can be argued from Fig. 13b that for pure astigmatism the tangential
direction intensity profile at the sagittal focus should be a demagnified
replica of the aperture illumination. This type of analysis is essential
in obtaining quantitative results from the aberration expressions.

In the MK VI instrument, the off-axis angle and radii of mirrors
M, and Mg are

v = 2|up| = 0.116 rad
R = 200 cm.

(68)

Assigning a value to be used for the semi-aperture @ is a more subtle
question, especially since we are interested in gaussian rather than
uniform aperture illumination. However, in the spirit of the astigma-
tism example given in the preceding paragraph, we take

@ = d.(1/e) = o* = 0.826 cm (69)

and assume that the focal plane profiles will also be gaussian. On the
basis of geometrical imaging, the blur values calculated via Table VI
should then be (with the exception of coma) the full-width to the
(1/e) points of a foeal plane gaussian profile. We show in succeeding
paragraphs that these assumptions lead to a selfconsistent picture
of the experimentally observed aberration effects in the MK VI
instrument.

Table VII gives the transverse and angular blurs for a single spherical
reflector in the MK VI configuration. The table also includes the
longitudinal separation of the S and T focal planes as well as the full
angular width of the focus imposed by diffraction. From the viewpoint
of small-angle-scattering performance, the most serious of the aber-

Table VII— Numerical values of the aberration blurs for a single
spherical mirror used in the MK VI configuration

Aberration Fuﬂ-\ﬂg(li]fll} (T#1$,§lsverse Full—Widt.& 1%,?1 lar Blur
Spherical 0.141 0.141
Coma T 296 2.96
S 1.97 1.97
Astigmatism 55.6 55.6
Distortion 0 0

(S-T)sepnm.hlun =2 AC* = 0.336 cm. Aﬂ(l/e)ammcmn = 19.3 ,uI‘B,d.
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Table VIIl— Numerical values of the aberration blurs for the
system of two off-axis spherical mirrors used
in the MK VI apparatus

Aberration Full—Vgtlilﬂfx ('f‘:gl)nsverse Full-Widt(l:‘lﬁlclﬁu.lar Blur
Spherical 0.282 0.282
Coma T 0 0
S 0 0
Astigmatism 111.2 111.2
Distortion 0 0

(S-T )separation = 2(2 AC*) = 0.672 cm. A8(L/e)aittraction = 19.3 urad.

rations is coma. IZven though the calculated comatic blurs are numeri-
cally small compared to the diffraction spread, the presence of coma
can result in a distinctly asymmetrie instrumental profile. Moreover,
in a coherently illuminated system, the coma flare is criss-crossed by
interference patterns whose tails extend far beyond the calculated
geometric limits. This latter effect can significantly raise the effective
“floor”’ level of the instrumental profile.

Fortunately, in a symmetric two-mirror system like the MK VI,
the geometry may be chosen such that the total coma vanishes identi-
cally. In fact, all aberrations that depend on an odd power of the half-
field angle u, disappear if the field angles at the two elements are
made equal and of opposite sign. By convention, u, is defined as the
angle through which the incoming axial ray must be rotated to bring
it into coincidence with the local radius vector of the element’s spheri-
cal surface (see Fig. 8). An inspection of Fig. 1 shows that in the MK VI
apparatus the field angle rotations at M and Mg are of opposite sense.
In this case, when the two off-axis angles are made equal in magnitude
the coma and distortion aberrations vanish while the spherical aber-
ration and astigmatism double.

The total calculated aberration blurs for the instrument are sum-
marized in Table VIII. Since the spherical aberration is small com-
pared to the diffraction spread, it is reasonable to expect that the
interpretation of these blur values as (1/e) full-widths of a gaussian
blur profile should work quite well. This is in fact the case.

The tangential and sagittal foei of the MK VI instrument were
located using a modified Foucault knife-edge procedure, and 7" direc-
tion scans of the intensity profiles were taken in each case. The mea-
sured S-T separation was

(S-T) separation = 0.660 = 0.013 cm. (70)
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Fig. 15—Observed instrumental profile as measured by a tangential direction
scan in the instrument’s tangential foeal plane. The heavy dots are a best fit to the
function exp [ —62/86%(1/e)].

At the T focus, only diffraction and spherical aberration contribute
to the profile width. From the standard gaussian convolution formula,
we can calculate the expected Af(1/e):

Il

T PLANE
T soan A6(1/e) = V(19.30)% + (0.282)2 urad
19.302 prad. (71)

Clearly the spherical aberration has a negligible effect on the ideal
diffraction-limited broadening. Figure 15 shows a typical high-resolu-
tion T-plane scan for the instrument. The large apparent noise in this
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trace is produced by residual air currents and vibration in the ap-
paratus and corresponds to a peak-to-peak beam wander of roughly
0.5 prad (0.7 arc second). The results of fitting the observed profile
with a gaussian shape are indicated by the points in Fig. 15 and give
an experimental full width

Ab(1/e) = 260(1/e) = 19.2 prad. (72)

In the S focal plane, diffraction, astigmatism, and spherical aberration
all contribute to the instrumental line shape. The full-width calculated
from Table VIII is

S PLANE
T scan

A6(1/e) = V(19.3)* + (0.282)2 + (111.2)2 urad
= 113 prad. (73)

The predicted width comes predominately from the astigmatic blur-
ring. Figures 16 and 17 give two experimental S-plane profiles recorded
with logarithmic and linear intensity scales, respectively. A gaussian
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Fig. 16—Observed instrumental profile as measured by a tangential direction scan

in the instrument’s sagittal focal plane. The heavy dots and dashed curve a are
best fit to the function exp [ — ¢?/8¢*(1/e)].
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Fig. 17—Observed instrumental profile as measured by a tangential direction scan
in the instrument’s sagittal focal plane. The heavy dots are a best fit to the function

exp [— ¢*/5¢%(1/e)].

fit to the logarithmic curve, indicated by the points in Fig. 16, gives
very good agreement with the observed line shape over roughly four
orders of magnitude in intensity. The range and precision of the fit
provide strong support to our assumptions regarding the interpretation
of the aberration blur values. The best-fit half-width values for the
logarithmic and linear scans are 86(1/e) = 57 urad and 88(1/e) = 55
prad, respectively. The mean observed full-width

A6(1/e) = 112 prad

is in excellent agreement with the calculated value given in eq. (73).
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3.2.6 Conclusions

In summarizing the discussion of aberrations, a number of general
points deserve to be made and reiterated regarding the relationship
between aberrations and small-angle-scattering performance.

(i) The cancellation of the asymmetric aberrations, coma especially,
is crucial in obtaining an instrumental profile that has symmetry, the
necessary steep skirt fall-off, and a low background value.

(77) Spherical aberration, although it has a negligible effect relative
to diffraction in the present instrument, can rapidly grow to serious
proportions with increasing aperture size, @ = d.(1/e). The angular
blur of this aberration, Afs., increases as the cube of the aperture size
while the diffraction spread varies inversely with d.(1/e). The relative
contribution of spherical aberration to the profile width will, therefore,
increase as @*. Since Af. depends only on the reduced quantity (@/R),
however, a constant ratio of spherical blur to diffraction spread can
always be obtained by scaling the mirror radius B to keep @*/R?
constant. For example, an instrument with 10 times better angular
resolution than the MK VI might conceivably utilize 80-cm-diameter
mirrors with a 21.5-meter focal length.

(27i) The presence of a large residual astigmatism need not be
detrimental if one is satisfied with an instrumental performance that
is diffraction limited in only a single angular direction. It might appear
from Fig. 13 that simultaneous sagittal and tangential resolution could
be achieved by placing separate slits at the S and T foci of the collecting
mirror. This is true if the wavefronts of the incoming ray bundle are
perfectly parallel. However, in a two-mirror symmetric apparatus, such
a bundle cannot be produced because of the collimating mirror astig-
matism. For example, with reference to Fig. 1, the spatial filter pinhole,
As, can be placed at either the T or S focus of mirror M5 In the first
case, the wavefronts of the beam travelling toward A are tangentially
collimated but sagittally curved; in the second case, the converse is
true. From the viewpoint of light-scattering kinematies, this ‘““col-
limated” beam will be able to conserve momentum with a relatively
broad range of scattering vectors lying in the plane containing the
wavefront curvature. Thus, even though mirror Mg forms S and T
focal lines of equal sharpness, only a single high-resolution axis actually
exists for either position of pinhole 4.,.

In the MK VI instrument, the spatial filter pinhole is at the T
focus of the collimating mirror so that the probe beam is tangentially
collimated. The nature of the wavefront curvature in the sagittal plane
may be calculated in a simple fashion from the known (S-T') separation
2AC*. Since the pinhole (at the T focus) is closer to the mirror’s surface
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Fig. 18—Illustration of the wavefront curvature existing in the off-axis mirror
collimating arm of the MK VI instrument.

than the S focus, the sagittal plane wavefronts appear to diverge from
a point source lying behind the mirror. The object distance, ¢, between
this virtual point source and the mirror, may be calculated via the
usual paraxial formula. Since (S-7) = 2AC* is small compared to the
focal length of M5, we have

9=354C* ~ 1(24C% (74)

Inserting the appropriate numerical values, B = 200 em and 24C*
= 0.336 cm, gives

g=3.98 X 10 cm. (75)

Figure 18 shows a sketch of the probe-beam constant-phase surfaces
with the sagittal curvature greatly exaggerated for clarity. The magni-
tude of the curvature can be specified in terms of the longitudinal
spatial separation between the wavefront and a reference plane which
is tangent to the wavefront at the axial ray. Since the virtual sagittal
source point lies so far behind the mirror, it does not matter exactly
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where in the optical path we calculate this separation. The maximum
deviation between the wavefront surface and the reference plane, Vz,
occurs at the sagittal extremes of the beam and is easily found to be
given by
&2

Vz = % (76)
If we take @ = b*/2, where b* = 5.0 cm is the maximum clear aperture
diameter in the MK VI instrument, we have

Vz =~ 10.5 X 105 cm,

or roughly 2X of peak deviation from perfect collimation. In a situation
where the full sagittal (j) aperture height need not be used, it is
possible to reduce this deviation substantially since Vz is propor-
tional to @2 For example, if we aperture the height of the probe beam
to b = 5 mm, the peak wave-front deviation is reduced to Vz =% \/50,
or essentially perfect collimation. Thus, the most desirable probe-
beam configuration in the MK VI instrument corresponds to a ‘“flat
ribbon’’ or “sheet’” type of illumination.

3.3 Scattered field intensity, spatial coherence, and scattering kinematics
in the presence of aberrations

In a light-scattering optical system whose angular resolution capa-
bilities are in some respect dominated by aberration effects—for
example, the astigmatic ¢ blurring in the present instance—we find
that other important properties of the observed scattered field are
modified by the aberrations as well. In this section, we examine three
aspects of normal light-scattering theory that are qualitatively altered
by the presence of aberrations:

(?) The form of the spatial coherence function for the scattered
field.
(¢7) The application of the normal kinematic restrictions (or wave
vector conservation conditions) in the scattering process.
(7%1) The calculation of the amplitude of the perturbations that
give rise to observed levels of scattered or stray light.

The effects of aberrations in all three cases have a straightforward
physical interpretation connected with the fact that light scattered
into a specific direction (6, ¢) is no longer brought to a diffraction-
limited spot focus at the observation plane.

In typical calculations of the scattered field, in which an incoming
plane wave is assumed to impinge on the sample, the far-field angular
distribution of scattered intensity is shown to be simply the spatial
Fourier transform of the refractive-index perturbations in the illumi-
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nated volume.!® The light observed at a particular angular position
(8, ¢) is contributed by a Fourier component of the refractive index K
given by

K=k, — k, (77)
where k, is the wave vector of the incident beam and k, points in the
direction of observation (8, ¢) and has a magnitude |k,| = |k

= 27/N\o. For a finite illuminated volume, the refractive-index per-
turbations are most usefully represented in terms of a plane-wave
Fourier expansion

2. on; exp (1K; 1), (78)

with the K; chosen to make the expansion funetions orthonormal over
the scattering volume.?” The scattering of a collimated incident beam
by this assembly of plane waves consists of a family of diffracted
beams that originate from the K;s satisfying the Bragg condition,
eq. (77). On the surface of a sphere in the far field, these diffracted
beams form a contiguous but essentially nonoverlapping series of
diffraction “spots,” each associated with a particular K;. In the usual
situation, where the amplitudes of the individual K; disturbances are
statistically independent, these patterns also delineate areas or solid
angles of statistical field correlation. If the far-field scattered radiation
is focussed onto the observation plane by an ideal lens or mirror, this
contiguous angular distribution of “spots” is imaged one-for-one onto
the focal plane. A ray penetrating the reference sphere at an angular
position (8, ¢) is imaged onto the focal plane at a transverse position
(¢, n), where, in the small angle limit,

£ =16, 7= feo. (79)

In this ideal situation, the intensity observed at some (£, 5) is scattered
essentially by a single K; plane-wave mode. The measured intensity
may, in theory, be used to calculate the mean-square-amplitude of
the mode, or vice-versa. Furthermore, the spatial coherence properties
of the field at the observation plane are determined uniquely by the
angular distribution of intensity within one of the diffracted beams.

Formally speaking, the presence of aberrations in the imaging of
the reference sphere scattered field produces qualitatively the same
effects as any other imperfect focussing of the far-field pattern. The
pattern of diffraction spots will be formed with a degree of spot
broadening and overlap that depends on the nature and extent of the
focussing defect. The scattered light reaching a specific (£, 5) point
at the observation plane is no longer associated with a single K;
disturbance, but is an appropriately weighted sum of contributions
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from a number of modes. As a result, the Bragg condition, eq. (77),
is not strictly applicable in relating a particular (£ ») observation
point to a specific plane-wave disturbance. The aberration or defocus-
sing effect must be understood in detail before the measured intensity,
or its time evolution may be used to infer the physical behavior of
modes responsible for the scattering. Under defocussed conditions the
spatial correlation function is also modified, though its functional form
does retain a close resemblance to the intensity pattern associated
with a single K; diffraction “spot.” In the following paragraphs we
consider how the residual astigmatic blurring in the MK VI instrument
affects the three slit-plane field properties enumerated in the opening
paragraph.

3.3.1 Kinematic relations

To understand how the wave vector conservation criterion is to be
applied at the slit plane of the present apparatus, we need to know
() the slit-plane intensity pattern formed by scattering from a single
plane-wave disturbance, and (%) the relative positioning of the spots
from the various allowed K;. In the MK VI instrument, the intensity
pattern associated with a single K; is identical to the diffraction- and
aberration-affected instrumental profile whose properties were treated
in detail in Sections 3.1 and 3.2. At the slit plane, therefore, the single
K, diffraction spots have the elongated gaussian shape depicted in
Fig. 5. Expressed in terms of angular coordinates via eq. (79), the
normalized intensity distribution within a ‘“‘spot” is simply

16, ¢) _ _ (8 -6y _ (o= @)?].
I(6;, e &P { o (1/e) } exp { 5°(1/0) } (80)

The reference point (6;, ¢;) specifies the angular position of the spot
center, which, in the present case, is correctly predicted by the Bragg
condition, eq. (77).

Given a correct form for the intensity distribution within a single
K; pattern, we must still determine the slit-plane spacing of the spots
associated with the family of allowed K;. Clearly, this spacing depends
on the reciprocal lattice of the orthonormal expansion functions
exp (iK;-r') which, in turn, is fixed by the geometry of the scat-
tering volume. For sufficiently small scattering angles, the actual
three-dimensional scattering sample can be taken to be equivalent to
a two-dimensional phase object placed normal to the incoming probe
beam.?® The scattering disturbances in this “phase-sheet’”” may be rep-
resented in terms of a two-dimensional plane-wave Fourier expansion

> % - -exp (1K.x) exp (1K),

K: Ky
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with the (K., K,) chosen to make the expansion functions orthonormal
over the instrument’s full aperture. For a rectangular aperture with
full-width z and y dimensions b, and b,, the allowed K; can be obtained
from the eyclic boundary condition relations

Ko(m) = 2%, Kym) = 27, (81)
b, b,
where m and » are the integers
m,n =0, %1, £2, ---. ‘ (82)

The scattering angles (8;, ¢;) for the central ray of the diffracted beam
produced by a particular K(m, n) are then given by the small-angle
Bragg conditions,

Ko(m) = ket = 22"
o (83)
m
Ky(n) = bogn = -
v

It follows that the family of diffracted beams are brought to a focus
at the slit plane on the vertices of a rectangular mesh whose grid
spacings are given by

tsr = four = 1 () (84)

7?SP=f‘PSP=f(%:)' (85)

For the MK VT instrument at full aperture (b, = 5.0 cm, b, = 5.0 cm),
the equivalent angular mesh spacings are

fsp = wsp = 10 ,uI‘ELd. (86)

If we imagine the instrumental profile contours of Fig. 5 arranged on
such a mesh, there will be little overlap in the 8 direction but consider-
able overlap along @. The light received at some (6, ¢) point in the
slit plane will contain contributions from roughly 10 distinct K(m, n),
each having the same m(K.) index but differing n(K,) components.
Because the MK VI instrument is capable of probing 6 values so close
to the diffraction limit, corresponding to a very small m index,
m = 5-300, these multiple contributions can prove a serious problem.
This point is illustrated in Fig. 19, which shows the (1/e) contour of
a single K(m, n) intensity pattern centered at § = 80 urad, ¢ =0
superimposed on the slit-plane mesh of the (8., ¢.). The 8 and ¢ axes
of the figure can also be labelled in terms of the wave vector com-
ponents K, and K, to which the angles are directly proportional as
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Fig. 19—Resolution function of the MK VI instrument superimposed on the
slit-plane mesh points corresponding to the allowed scattering vectors K.

indicated in eq. (83). For the eleven mesh points falling within the
contour, the magnitude of the associated K(m, n) varies considerably.
For the point at the center of the contour, we have (m = 8, n = 0) and

|K| = 2a[(m/b.)* + (n/b,)*]} = 10.0 em™,
while for the points at the ¢ extremes (m = 8, n = 5), we find
|[K| = 11.9 em™,

When the physical properties of the modes are strongly |K| dependent,
this overlap can lead to a difficult task in the interpretation of the
measured intensity and/or its time dependence.

Clearly, the |K| smearing effect becomes less significant as 6 in-
creases. Less obvious is the fact that the problem of multiple K;
contributions can be alleviated by stopping down the beam height of
the instrument, b,. As was pointed out in the conclusion of Section
3.2, the eylindrieal distortion of the probe-beam wave fronts, which is
a manifestation of the collimating mirror’s astigmatism, can be made
negligibly small by reducing b,. With b, < 0.5 e¢m, for example, the
beam incident on the sample can be considered as collimated to within
the diffraction limit. In this case, the usual kinematic conditions apply
in relation to the far-field scattered light; that is, the far-field array of
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“gpots” now form a contiguous and nonoverlapping pattern. Of course,
each spot is elongated along ¢ by diffraction-spreading because of the
imposed asymmetry of the probe-beam dimensions, i.e, b, = 5.0 cm and
b, < 0.5 cm, but the angular spot spacings 8sp = (A/b;) and
@sp = (A/b,) are correspondingly asymmetric. Given this particular
situation in the far field, we must still consider the effect of the astig-
matism associated with the light-collecting mirror. As b, is decreased,
the ¢ direction astigmatic blurring at the slit plane is decreased pro-
portionally,* while ¢ blurring due to diffraction increases. At some
point, a crossover occurs beyond which diffraction spread dominates
the slit-plane imaging. In this limit, the collecting mirror appears
aberration free and the far-field pattern of K; spots undergoes the
normal one-to-one, no-overlap mapping onto the slit plane. For the
MK VI configuration, the crossover occurs at b, &2 0.5 cm or roughly
£ of the full design aperture height. Of course, it should be noted that
under fully diffraction-limited conditions (b, = 5.0 em, b, < 0.5 ¢cm),
the instrument retains its very asymmetric resolution profile. What we
have done is to make the instrument appear to be in “good focus” by
introducing a sufficient amount of ¢ direction diffraction spreading to
swamp the aberration defocussing. The price paid for this is that the
instrument becomes incapable of probing scattering disturbances
having as long a 7 direction wavelength (that is as small a value of K,)
as can be resolved in the £ direction.

3.3.2 Relation between the slit-plane intensity and the scattering
cross-section ol the sample

In the absence of aberrations or other defocussing problems, the
far-field or observation plane scattered intensity can be related easily
to the mean-square amplitude of the scattering perturbations using the
standard integral expression for the scattered field.!:3" In the presence
of imaging aberrations, the total scattered power per plane-wave mode
is unchanged ; however, now the caleulation of the slit-plane intensity
is complicated by the overlap of the various K; diffraction spots. For
the MK VI instrument, a relation between the scattered power per
mode and the observed slit-plane intensity may be obtained as follows.

The slit-plane intensity corresponding to a single K; disturbance
can be written down formally as

| Eam(8, ¢)|? .
(8 — em)z] [ (¢ — ‘Pn)2
— 2 — _\¥ ¥
| Bun0m, o) [exp | — Gl |exp | — S22 | (8D
with slit-plane position specified in angular units. The position of the

*See Figure 13 and the discussion pertaining to this figure.
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central ray of the pattern (6., ¢.) is given by eq. (83). The total
scattered power in the single K; pattern is just

f f 0| Eom(6, ¢)|?
780(1/€)50(1/€) | E (6, 1) |2 (88)

The problem now is to relate the observed total slit-plane intensity
to the peak mode intensities, |E.m(fm, ©.)|% The intensity observed
at the position (8, ¢) is the sum over all possible mode contributions:

|E(6, )|

= B VBt e e = Gy | e[ - G ] o

If |E.m(Bm, ¢n)|?is independent of (n, m) over the range where the
gaussian terms are nonvanishing, eq. (89) can be simplified to give

P!(K.f)

B0, )1 = | Ban(On, 00)*SnSn, (90)

where §,, and S, are the factored sums
Sm =2 exp — {[0 — m(No/:) J*/36*(1/e)} (91)
Sn =L exp — (Lo — n(ho/b) F/06%(1/)}. (92)

Consider the S,, sum expressed in the following dimensionless form

] A 1 2
Sn =2 oxp = {ae(l/e) - (b‘) 59(1/e) }
= 2 exp (—[u — mal), (93)

where

. B — 1 AD.
“w/e) “ T s6(1/e) b,

u (94)

Although the indicated summation cannot be carried out explicitly,
it can be expressed in a more useful form via the identity

2exp[—(u — ma)] = % > exp (ﬁ m;f) cos (2mmu/a), (95)

m

which is an immediate corollary of Poisson’s formula.*® Applying this
identity to the S,, summation yields

_ \f;ﬁﬁ(l/e) _ m*x%86%(1/e) 2mwf |
S = iy Tow | = O | eos [ &g | @
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For the numerical parameters relevant to the MK VI instrument,
30(1/e) = 9.6 urad, (A\/b:;) = 10 prad, we need retain only the m = 0
term in the right-hand side of eq. (96). With an error less than 107*,
we may take

5. = Ymoo(1/e)
T (Vb))

A similar result follows easily for S,. We then have for the total slit-
plane intensity

(97)

N7 60(1/e) Vr se(1/e)
(A\/bz) (A/by)

As this result shows, the various elongated gaussian patterns associated
with the individual K; modes overlap in the slit plane to produce an
essentially uniform illumination.

The unknown intensity factors | E,m(f-, ¢.)|?can now be eliminated
between eqs. (88) and (98) to give the desired relationship between
the overall slit-plane intensity and the scattered power per mode,
namely,

IEI(BJ ‘0)|2 = |Eﬂﬂ’l(6ml ‘Pﬂ)lz (98)

P.(K)) = |E.(6), ) [2(A/bz) (\/by). (99)

Equation (99) is the basic result which allows the measured intensity
to be related quantitatively to the amplitudes of the individual
scattering perturbations.*

Note that the power actually contained within the angular area of
a single K; pattern

| EL(0;, ;) |*88(1/€)d¢(1/e)
is larger than the scattered power per mode by the factor

86(1/e) se(1/e)

(A/bz)  (N/by)
This ratio gives a rough gaussian weighted measure of the number of
modes that contribute to the intensity reaching a particular (8, ¢).

3.3.3. The spatial coherence function of the slit-plane field

In light-scattering experiments designed to extract spectral infor-
mation from the scattered field using photocurrent correlation tech-
niques, the feasibility of a particular measurement is critically de-
pendent on the range of transverse spatial correlation that characterizes
the observation plane field.22" The extent of the correlation is de-

*See the discussion which follows eq. (113) and leads to eq. (124).
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scribed quantitatively by the normalized mutual coherence function® 4%

(E.(§ 9;0)-ES(t + AL, n + An; 1))
{(IE(& n; ) [ )(|E.(E + AL, 9 + An; 0) [}

where (£ 7) and (¢ 4 AE n + An) are two arbitrary points in the
observation plane. The angular brackets denote an appropriate en-
semble or time average. The function T(---) reaches its maximum
value, T(---) =1, for At = An =0 and, in general, decreases
smoothly to zero as Af and/or Ay increase. The contour in Af and Aqy
around (&, #) on which the coherence function reaches some specified
numerical value may be taken as a measure of the area over which
there is correlated temporal behavior of the two field amplitudes.

When the main probe beam is derived from a source having perfect
transverse spatial coherence, as is the case here, then the presence of
the spatial incoherence in the scattered field is totally attributable to
the scattering processes taking place in the illuminated volume. The
spatial coherence properties of the scattered field are uniquely deter-
mined at the exit face of the sample and are most easily specified
analytically by calculating the mutual coherence function on a far-
field reference sphere, 0, centered on the scattering volume. In purely
formal terms, we can write

(B )B4 0,0)
ot ) = TR, 0BG T 6, O]

where r and r + p both terminate on the surface of the far-field sphere,
0. Generally speaking, Ts(r, p) can be calculated in a straightforward
fashion once it is assumed that the scattering perturbations satisfy
certain basie stochastic criteria.

The relationship between the observation plane coherence function
T(E n; AE, An) and the far-field function T(r, ¢) depends, of course,
on the detailed characteristics of the optical system which collects and
images the scattered light, and must include the effects of aberrations.
There are two alternative procedures that may be used to obtain this
relationship. The first involves the use of the plane wave K; expansion
of the scattering perturbations that was introduced in the beginning
of this section. For the MK VI instrument, we have already calculated
the slit-plane field produced by the scattering from the individual K;.
In the notation of eq. (89), we have

Ea(E: n; KJ)

- _ (- &) (= na)?
= Enm(&m, na) exp [ 27 (1/e) ] exp [ 2/ e(1/e) :| , (102)

where f is the effective focal length of the light collection system. In

T(E; 7 AE: Aﬂ) =

(100)

(101)
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theory, therefore, we could calculate T'(, n; Af, An) directly by ex-
pressing the total slit-plane field as a sum over the E,(, 7; K;) and
then performing the statistical average indicated in eq. (100). In the
absence of aberrations or other imaging defects, this direct method
represents the simplest approach. For perfect imaging, the individual
plane-wave scattered field patterns are essentially nonoverlapping at
the observation plane and the coherence function is effectively domi-
nated by the contribution of a single K; term. However, when imaging
errors produce a significant overlap of the E.(%, 9; K;) at the obser-
vation plane, as is the case for the present apparatus, then obtaining
the analytical form of T(%, n; Af, An) by the direct method becomes
a difficult mathematical problem.

The second alternative approach involves a direct calculation of
the far-field coherence function T'y(r, o) from which T (£, n; A&, An) is
obtained by using the fundamental laws that govern the ‘‘propagation”
of mutual coherence in an optical system. This latter method is
generally the more useful when the light-collection system departs
significantly from ideal imaging.

For the scattering angles relevant to the MK VI instrument, the
two-dimensional ‘“‘phase sheet”” model of the scattering sample may
be used to simplify the calculation of Ty(r, g). For this two-dimensional
model object, the reference sphere coherence function is given by the
van Cittert-Zernike theorem® as

To(8, 0;0 —6'; 0 — ¢')
2 j f dedy| Ba(z, y) |2 exp {ike[ (0 — 0)2 + (¢ — @")y])
— S
o fsfdxdylEu(:c, ML

where both r and g have been expressed in the cartesian angular
coordinates # and ¢. In eq. (103), the factor | Eo(z, y)|? is the illumi-
nation function of the object, in our case the “phase-sheet” sample.
The surface integral is to be taken over the entire (z, y) plane or over
the open aperture of the object, as appropriate. It should be noted
that the van Cittert-Zernike theorem will hold as long as the pertur-
bations in the scattering “phase sheet” have a correlation distance,
which is short compared to the characteristic spatial dimensions of
| Eo(x, y)|2 This condition is, in general, well satisfied in the typical
scattering experiment.

At small angles, where eq. (103) is valid, the far-field spatial co-
herence function is independent of the absolute angular position of
either observation point and depends only on the separations (6 — ')
and (¢ — ¢'). In terms of these difference variables, To(---) is just

, (103)
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the normalized Fourier transform of the source inlensity. As such, it
bears an extremely close resemblance to the instrumental profile
calculated in Sections 3.1 and 3.2.

For the MK VI instrument, the illumination function is the gaussian

| Eox, 9)|* = B3 exp (— palan yﬂ) (104)

a

and we have from eq. (103)

bz /2

exp (—a?/c?) exp [iko(60 — ¢')x]dx

Tod, ¢;0 — 0, ¢ — ¢) = ——0pp
f exp (—a22/o?)dz

—bz/2

27 exp (/0% exp Likalo — o1y

—by/
byl2 ’
f exp (—y*/a%)dy
—by/2

v

X

(105)

where b, and b, are the aperture dimensions at the scattering sample.
As is evident from eq. (105), the coherence function factors for the
case of gaussian illumination and we can write

To(0, ¢;0 — 0, ¢ — ¢') = To(260)To(Av),

where A = 8 — 6 and A¢ = ¢ — ¢. The functions To(A8) and
To(A @) are given by the appropriate integrals in eq. (103). Each of
these integrals is a finite domain Fourier transform of a gaussian kernel
of the type considered in detail in Section 3.1 with respect to aper-
ture apodization and vignetting. The only difference is that in eq. (105),
the “intensity,” exp (—2?/¢?), replaces the ‘“field,” exp (—z?/2¢%),
which appeared in the diffraction ecalculations. It is not hard to show
that the factored coherence functions To(A#) and Ty(A¢) are identical
to the normalized intensity profiles of Fig. 9 if one uses the corre-
spondence

[To(¥)| = 1%)2)- (106)

Given the form of the far-field reference sphere function 7'y, we must
now determine the relationship between T, and the desired slit-plane
correlation funetion.

One of the fundamental results of coherence theory is that second-
order mutual coherence functions, such as T'(- - - ), propagate according
to the wave equations as ‘“field”” variables. That is, once T'(---) is
specified on any surface in an optical system, its form on any other
surface in the system may be found by treating the coherence function
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as one would any electric field distribution. Therefore, all of the usual
wave-diffraction and /or geometrical-optics approaches used to analyze
wave-front, propagation in an optical system are directly applicable to
the coherence function.

Tor the MK VI apparatus, the coherence ‘‘field” described by T
is identical to the far-field electric field that describes the instrument’s
directly transmitted probe beam, except for a numerical change in
the beam-width parameter ¢. The effective beam width which charac-
terizes the mutual coherence ‘‘field,” o7, is related to the actual beam
width of the instrument, ¢*, by the result
(a*)

5
Except for this numerical change, the diffraction and aberration re-
sults of Sections 3.1 and 3.2 may be used intact to describe the slit-
plane coherence function. In terms of angular coordinates at the slit
and the widths 80(1/e) and 8¢(1/e), which were used to characterize
the instrumental profile, we have easily

T, 0;06—0,0— ¢)=T'(A0)T"(Ag)

= ©—o) _(e— ],
- {_ 456°(1/e) ] exp { 8552 (1/0) }
(108)

In the slit plane, as was the case on the surface of the far-field reference
sphere, the slit-plane coherence functions are related to the intensity
profile of the transmitted beam by the transformation

7" = 1%)2)

Equation (108) is the basic result which may be used to evaluate the
scattered or stray-light power-per-coherence region or estimate the
number of coherence regions encompassed by a particular choice of
main-slit size. For example, given the slit-plane scattered intensity
|E.(8, ) |?, we can form the weighted integral

0.9 _ [ [agay | B, )T 0~ OT (o = )T, (109
con

which is a useful measure of the power-per-coherence solid angle as
measured at the slit.232" In general, |E,(¢', ¢')|* is slowly varying
over the angular range where [7"(6 — ¢')T'(¢ — ¢')J* is nonvanishing
and can be removed from the integral to give

dP.(6, ¢) _ |E.(8, ¢)|*AbconA econ, (110)
dQcon

(107)

o =
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where the mean full-width coherence angles, Afcor and Aecou, are
defined by the integrals

Qcon = Abcond econ
- [t @oTds) [T (a0 Td@ae). (111)
Combining egs. (108) and (109) gives for the MK VI instrument

mcoﬁ = @59(1/9) =241 ,ul'&d

2 112
Agcon = V2mio(1/e) = 140.4 prad (112)

and eq. (110) becomes

%‘Q = | E.(8, ¢)|2V2ro0(1/e)V2md (1 /e). (113)
COH

Earlier in this section, we obtained an expression for | E.(6, ¢) |2 based
on a plane-wave-mode expansion of the scattering perturbations. That
result may be used in eq. (113) to yield a relationship between the
observed scattered power-per-coherence solid angle and the scattered
power-per-K; mode. From egs. (99) and (113), we find

dP,(6;, ¢;) _ V2mo0(1/e) ., V2w e(1/e)

Qoon /b)) X (Vb

The product of the correction factors

V2736(1/e) x V278 (1/e)
(A/bz) (A/by)

is a rough measure of the number of modes that contribute to the
power observed in a single coherence region at the slit plane, while the
individual terms indicate the extent of the multiple mode contribution
in the 8 and ¢ directions. For the MK VI instrument at full aperture,
the numerical values of the correction factors are

P.(K;). (114)

2r 56(1/€) _

a/b) as)
2r o(l/e) _ 140

(\/b,) -

The results given in eqs. (99), (113), and (114) together with the
known form of the instrumental profile may be combined in various
ways to caleulate normalized scattering cross sections from measured
slit-plane intensities. One important calculation of this type is to
express the observed stray-light levels in the MK VI apparatus in
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terms of an equivalent scattering cross section. For the experimental
profile curves shown in Fig. 4, we may write down an analytical ex-
pression for the measured stray-light photocurrent, #(6), as

ABgri2 fhAespl?
iO) =a [ " [ B o) dade, (116)
_Abgps2 J—Aegp/?
where |E..(8, ¢)|? is the stray-light intensity at the slit plane and
Afsr, and A gy, specify the full-width slit dimensions in angular units.
The proportionality factor « relates the photocurrent to the optical
power passed by the slit and includes the detector quantum efficiency,
light-collection losses, etc. If the intensity |E.(6, ¢)|* is relatively
constant over the slit aperture, we have simply

’t(ﬂ) = CEIE“(Q, 0) IQABSLA PSL, (117)

where we have assumed that A gy is situated symmetrically around
¢ = 0. Combining this result with eq. (110) gives the relation between
the measured photocurrent and the stray-light power-per-coherence
solid angle as

dP,,(8,0) Absr. Aegst
dQcor  Afcon Apcon

i(0) = @ (118)
To eliminate the unknown proportionality constant o, we make use of
photocurrent observed at § = 0, the peak of the directly transmitted
beam. Given the normalized slit-plane intensity profile of the direct
beam, 7(8, ¢)/I(0, 0), we can calculate the fraction of the total beam
power, Py, passed by the slit at 8 = 0 as

ABSLI2 ApSLl2 I(g, qa)

ded
—ABSL/2 J—ApSL/2 I(OJ 0) v

[1.a 705 02

where for the MK VI apparatus we have

165 - o[-t |o [~ |

The numerical value of the error function integrals in eq. (119) could
be obtained from tabulated results for particular values of Afsr and
Agsy; however, in the present case where the slit dimensions satisfy
the inequalities

= (119)

Abgr, K 80(1/€)
Agsy, > so(l/e), (120)
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we have the more useful analytical result

— mab(1/e) (121)
The measured peak photocurrent, 7(0), is then
. Afgr,
0) = aPo——Sk
1(0) = aPy Vo0 (1/0) (122)
Dividing eq. (118) by eq. (122) gives the useful result
i) _ 1 dPu(8,0) 1 Aos
i0) ~ Py dRon V2 Apgon’ (123)

If desired, the quantity dP,.(8, 0)/dQcon can be replaced with the
stray-light power per mode, P,,(K;), by using eq. (114). This gives the
very useful relationship

i(6) _ ®u(K,) V2 88(1/¢) Apss
W0 " @ (Wb (Vb

(124)

IV. EMPIRICAL OBSERVATIONS ON THE STRAY-LIGHT BEHAVIOR
OF OPTICAL ELEMENTS AT VERY SMALL ANGLES

Very little information of a quantitative nature is available con-
cerning the imperfection scattering of optical elements at very small
angles. As a result, the design and testing process leading to the
present vsa instrument involved a significant amount of trial and error
evaluation of various optical systems in a search for the desired stray-
light performance. During this process, a certain amount of empirical
information was obtained relating to the imperfection-scattering ques-
tion. This section presents a brief discussion of these observations and
their influence on the configuration adopted for the MK VI instrument.

4.1 Reflecting versus refracting optics

It is clear from a comparison of Figs. 1 and 6 that the implementation
of a vsa scattering instrument using lenses would be significantly less
involved than the MK VI off-axis mirror arrangement. The refracting
system also has the advantage of strictly zero off-axis aberrations
(coma, astigmatism, and distortion), although a “best form’ single-
element lens does have eight times the spherical aberration of an
equivalent spherical mirror.?” In fact, the earliest version of the present
apparatus utilized precisely the kind of “straight-through’ lens system
illustrated in Fig. 6. This arrangement was abandoned because of
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two problems:

() The presence of Newton’s interference fringes crossing the
illuminated field.
(77) An excessive stray-light background.

The first problem arises because of the partial reflectivity of the two
lens surfaces and can be solved to some extent through the use of anti-
reflection (AR) coatings. However, even the best antireflection coated
lens will form far-field Newton fringes with an integrated inten-
sity of about } percent of the incident beam power. This fact makes
the refracting components generally unacceptable in a vsa system.
The presence of these extraneous reflections and their associated
interference fringes creates an intense fixed-pattern nuisance back-
ground which can make it impossible to observe the angular de-
pendence of the sample scattered light. The stray-light background
problem is a manifestation of small-angle scattering at the lens which
may originate from three possible sources:

(?) Lens surface ‘“‘roughness” or nonconformity (at least two
surfaces).

(77) Index of refraction inhomogeneity in the lens bulk material.

(77) AR coating thickness nonuniformity (at least two surfaces).

By way of comparison, the possible sources of imperfection scattering
from a first-surface reflector are

() Mirror surface ‘“roughness” or nonconformity (one surface).
(#2) Reflective coating(s) thickness nonuniformity.
(77%) Reflective coating reflectivity nonuniformity.

From a theoretical standpoint, one should be able to evaluate the
seriousness of each of these defects a prior: by calculating the surface
and/or bulk inhomogeneity scattering. This calculation is straight-
forward if one has available the spatial form of the roughness in terms
of the spatial correlation function and the rms roughness amplitude.
The effect of roughness or inhomogeneity is to impose a spatially
random-phase perturbation in the optical path. The scattering that
takes place as a result of this perturbation can be caleulated via the
same ‘‘phase-object’’ approach which is used for the primary scattering
sample (see Section 2.6). The stray-light intensity observed at some
specified scattering angles # and ¢ is given by the Fourier transform
of the roughness correlation function at a wave vector |[K| = 2x/A
satisfying the appropriate small-angle kinematic conditions. Un-
fortunately, the roughness wavelengths corresponding to the angular
range of interest here (10~ em Z A Z 1 ecm) are determined by a
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spatial region of the roughness correlation function about which very
little is presently known. This wavelength regime presents difficult
measurement, problems and is generally not probed by conventional
roughness-testing techniques. The data that is available comes from
two measurement techniques that tend to flank this regime on the
short and long wavelength sides:

() The FEco* interferometer and allied methods* 4 that exhibit
good surface deviation resolution, 1 A to 10 A, but are useful
only at short wavelengths (A = 1000 A).

(2) Conventional “surface-conformity’” techniques such as the
Foucault knife-edge and Twyman-Green interferometer tests
that are useful primarily at longer roughness wavelengths
(0.1 em to 100 em) and which exhibit relatively poor surface
deviation resolution (50 A — 2000 A).

The stray-light measurements that were made during the course of
the evolution of the present instrument provided the most sensitive
roughness and inhomogeneity test for this awkward wavelength range.
It was found experimentally that, for lenses and mirrors of the same
fraction of the “‘state-of-the-art,”’ the stray-light level of a refracting
instrument was roughly 20 times that of its reflecting counterpart. In
neither case did the vsa stray-light level correlate well with known
short wavelength roughness and inhomogeneity data. Both types of
components exhibited a spatial roughness spectrum that was strongly
enhanced at long wavelengths. This enhancement did not appear to
depend as strongly on the ‘“‘surface-figure’’ of the component as one
might be led to expect by qualitative theoretical arguments.

Comparisons were also made between mirror components having
multilayer dielectric coatings and those with a conventional SiO-
protected aluminized surface. The aluminized coatings ean suffer from
a spatially varying reflectivity caused by surface oxidation while high-
reflectivity dielectric films tend to have a significantly smaller reflec-
tivity modulation. However, the stray-light measurements showed no
significant difference between the two types of coatings on similar
“quality’”’ substrates. Apparently the cumulative roughness of the
greater number of dielectric layers offsets the dielectric coating’s
potential advantage.

4.2 Main scanning slit

Another major contributor to the stray-light level in earlier versions
of the MK VI apparatus was the main angle-scanning slit. The slit
selected for this application is a commercial Spex unit normally used

* Fringes of Equal Chromatic Order.
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as an intermediate or exit slit on a double-grating spectrometer known
for its low stray-light background. This fact not withstanding, severe
stray-light problems were encountered in predecessors of the MK VI
that had this slit located directly at the focal plane of the collecting
mirror (mirror M shown in Fig. 1). The origin of this problem was
traced to scattering of the direct beam by the beveled surfaces of the
slit jaws and to quasi-specular reflection from the slightly flattened
and rounded jaw edges. This source of background by itself was of
sufficient intensity to completely swamp the sum total of all other
stray-light sources in the instrument.

This problem was solved in the MK VI apparatus by occulting the
directly transmitted beam, before it reached the main scanning slit,
with a precision knife-edge fabricated of highly attenuating black glass
plate. The use of glass instead of metal permits the edge defining
surfaces to be optically polished without cold flaw and rounding. In
addition, the included angle formed by the edge surfaces is made
obtuse, rather than the acute angle normally used, to avoid the
feathering problems and surface irregularity enhancement associated
with small included angles. The salient geometrical features of the
knife-edge are illustrated in Fig. 20. The actual occulting edge is formed
by a single beveling operation on polished flat stock and is oriented in
use such that an incoming ray strikes the beveled face at the quasi-
Brewster angle. The beveling angle is chosen so that the ray which is
refracted into the plate travels parallel to the plate surfaces and is
totally absorbed.

The improvement in stray-light level obtained by using the knife-edge
to occult the direct beam, rather than relying solely on the main scan-
ning slit, can be seen in Figs. 3 and 4. The improvement amounts to
roughly an order of magnitude over the angular range of interest.

4.3 Aberration corrections and stray light

The reader familiar with optical system design will realize that the
aberrations present in the MK VI instrument could be “corrected”
using well-known techniques. However, the application of these cor-
rection methods has two drawbacks: cost and reduced stray-light
performance. The simplest corrective measures, those which add the
fewest number of optical elements to the basic apparatus, entail the
use of off-axis fabricated, aspheric reflecting and/or refracting elements.
These types of elements are, in general, exceedingly costly to fabricate.
More sophisticated aberration-corrective designs, utilizing only spheri-
cal optics, require a larger number of additional elements. In either
case, of course, the presence of additional optical surfaces means
degraded stray-light performance. Furthermore, any corrective design
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Fig. 20—Geometrical features of the occulting knife-edge used in the MK VI
apparatus.

relying on the use of refracting elements will be further penalized by
the excessive small-angle stray light which these elements generate.

APPENDIX A
Finite Slit-Width Effects in the Scanning of Gaussian Intensity Profiles

When a gaussian focal-plane profile is scanned by a finite-width slit,
the transmitted power is proportional to the integral

Eot+
£

T(n 8) = [ exp [— g/50201/6)1d¢, (125)

where £, gives the position of the center of a slit whose width is 2A.
By writing the spatial coordinate £ as

E=6+¢ (126)

and making a change of variable, we may put eq. (125) into the form
J (&, A) = exp [—&/68(1/e)]
A

X [ exp [— (2t + $/68(1/0) 1k, (127)
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Table IX— Angular displacement, 6,, at which an unbroadened
gaussian and a slit-broadened gaussian reach specified
fractions of peak intensity

6o 8o
J (Bq, A) Unbroadened Slit Broadened A
J(0, A) Ay = 0 prad As = 1 prad Increase
(urad) (urad)

1 0 0 —
1/2 7.993 8.022 0.36
1/e 9.600 9.635 0.36
107 14.567 14.620 0.36
102 20.601 20.675 0.36
103 25.231 25.322 0.36
10— 29.135 29.239 0.36
10—8 32.573 32.690 0.36
10§ 35.682 35.810 0.36
107 38.541 38.678 0.36
108 41.203 4]1.348 0.36

For reasonably small values of the ratio [A/3£(1/e)], the gaussian term
in the integrand of eq. (127) may be approximated by the leading
term in its Taylor's series expansion

oxp [—§2/58(1/e)] = 1 — wgﬁ e

with a maximum error exp [ — A2/5£2(1/e)]. Within this approximation,
the remaining integral can be calculated in a straightforward manner
to give

Tt &) = (28) exp [ t/2601/0)] | SELZEABELOIL - (1

Since the function (sinh )/ tends to unity as x goes to zero, the
normalized slit-broadened profile is

1 2
1) - o [ SHEALEN)
or its equivalent written in terms of the scattering angle 6 = &/f.
Clearly, in the limit A — 0, eq. (129) describes the correct unbroadened
gaussian. For A > 0, the principal effect of the (sinh z)/z correction
term is to push up the tails of the profile while leaving the peak of the
gaussian relatively unaffected. A good quantitative feeling for the
nature of this correction may be obtained by solving for the off-zero
displacements, &, at which the broadened and unbroadened profiles
reach specified fractions of their peak intensity. These £, values then
specify the profile half-widths at the corresponding intensity level.
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For the curves presented in Section II, the relevant numerical
parameters, expressed in angular units, are:

80(1/e) = (1/f)8&(1/e) = 9.6 urad
Ay = (1/)A = 1.0 urad.
Table IX gives the calculated half-width values 8, = (£¢/f) obtained
from eq. (129) for various choices of the ratio J (8, A)/J (0, A). For
comparison, the table also lists the corresponding half-widths of the
uncorrected gaussian, and the percentage of line-width increase caused
by the slit-width correction. As is evident from these results, the
effect of the (1/2) sinh 2 correction term is to alter the gaussian profile
in such a way that the observed half-widths are an essentially constant
percentage larger than the true values.

APPENDIX B

Numerical Evaluation of the Diffraction Profile of Apertured
Gaussian lllumination

Equation (47) gives the basic integral for the truncated gaussian
diffraction profile as

E, b/2 .
E() = L f_mexp (—a2/a?) exp [2(27/fNo) Ex]dz.  (130)

This expression may be put into a form more suited to numerical
computation as follows. We write the exp (- --) term as
exp [1(2r/fAo)tx] = cos Ko + isin Kz

with

_2nt _ 2w

e Ao
and note that the sin Kz integral vanishes by symmetry. Next by a
change of variable

(131)

z = %, (132)
we obtain
w=]1
E(f) = % fw=n cos cw exp (—aw?)dw, (133)
where a and ¢ are defined as
_ Kb _ (2rE\b _ wbb 2 O
6_2_(1,?\0)2_“, @ =2 (134)

The gaussian in the integrand is now expressed in terms of its Taylor’s
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series expansion

exp (—at) = ¥ (ZE)”

to give E(§) as

bE, & (—1)"(a)" [
E(f) = ol TEO ( 2@!( ) fm=0 w"cos (cw) dw.  (135)
Equation (135) forms the basis for the numerical computation of the
profiles.

A simple closed-function form for the w integrals in eq. (135) does
not exist; however, recursive relations among these integrals can be
found from the standard integrals

1 1 1
f amcos ez dz = o2 ¢ M [ w1 gin cx da (136)
0 c c Jo
and
1 1
j 1 gin ez dz = — 228 4 (m + 1) f ™2 cos cx dz. (137)
0 c c 0
Defining

1
Ln(ec) = fn ™ cos cx dz, (138)

we easily obtain the following recursion formulae from egs. (136)
and (137):

(m + 8)Lmy2(c) = (%ﬁ') sin ¢ + (m + 32:2(m +2) cos ¢
_ (m+3)(m + 2)

c?

[(m + 1)Lu(c)] (139)
(m — 1)Lpm_s(c) = (%) sine + cosc

- ?ﬁ [(m + 1)La(c)].  (140)

From eq. (136), we also have for m = 0
sin ¢
c

In terms of the Ln(c), the expression for the diffracted field takes the
series form

Lo(c) = (141)

bEy (=1)"(a*)"Lan(c)

E(E) - (fxﬂ)% n=0 nl

(142)
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and the desired normalized intensity profile is

(=1 (az)"LG(G)
I(E) — { ngﬂ ]
1(0) { 5 (—1)» (a’)"LG(O)]

(143)

n!

The zero argument L,’s can be written down explicitly from eq.
(138), wiz.

1
m+1

For the numerical results reported here, the series in eq. (143) were
truncated at some n = nuax by testing the value of (1/n!)(a?) "L2.(0)
and terminating when this quantity was smaller than some chosen
convergence criterion, . In the present case, ¢ was set at ¢ = 10712
For the largest (b/¢) value, (b/e) = 8.33, where the gaussian kernel
of eq. (133) is

Ln(0) = (144)

exp (—a?w?) = exp (—8.68w?),

49 terms in the series were required for convergence.
For each individual pair of values for ¢ and nuax, the required string
of Ln's are generated by two subroutine programs.

B.1 Subroutine No. 1, c <1
When the quantity ¢ = (Kb/2) is less than one, the L,’s are obtained
by the following procedure.

(7) Calculate L,(c) for m = 2nmax directly from the defining
equation (138), using the Taylor expansion for cos cx to write

Ln(c) = EU( (an;fz" f Wentnd
B SR Gt A (145)

o (2n)!(m + 2n + 1)

(1) Truncate the sum in eq. (145) when ¢2*/(2n)!(m + 2n + 1) is
less than 1072,

(741) Use this result for L...(c) to obtain the required Ln's via
the backward recursion formula, eq. (140).

B.2 Subroutine No. 2,c > 1

When the quantity ¢ = (Kb/2) is greater than 1, the Ln’s are found
by a two-part procedure that depends on the value of nmax.

(¢) For m = 2n values for which the inequality m = 2n <c is
satisfied, use Li(c) = (sin c)/c and the forward recursion rela-
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tion, eq. (140). If 2nmax is less than ¢ this first step gives
all required L,’s.
(77) If 2nmax is greater than c, set

cos ¢
m =+ 1

Ln(c) =~

for some m >> 2nmax and work backward using recursion relation eq.
(140). The calculated string of L,’s is joined onto the forward recursion
values from step (z) for some m & ¢ and then renormalized.

This rather elaborate procedure for calculating the L,’s is made
necessary by the rapid accumulation of numerical round-off errors
which arise in the repetitive application of the basic recursion formulae.

REFERENCES

1. I. L. Fabelinskii, Molecular Scattering of Light, New York: Plenum Press, 1968,
Chapter III, pp. 155-246.

2. H. Z. Cummins and H. L. Swinney, “Light Beating Spectroscopy,” in Progress
in Optics, Vol. VIII, Emil Wolf, ed., Amsterdam, Netherlands : North Holland
Publishing, 1970, pp. 135-200.

3. B. Chu, Laser Light Secattering, New York: Academic Press, 1974, Chapters
IV-VII, IX, and X.

4. Small Angle X-Ray Scattering, H. Brumberger, ed., Proc. of Conf. at Syracuse
University, June 24-26, 1965; sponsored by American Crystallogn:iphic

Society, the Army Research Office, the National Science Foundation, and the
University of Syracuse; New York: Gordon and Breach, 1967.

. A.J. Renouprez, “Diffusion des Rayons X aux Petits Angle,’’ International Union
of Crystallography, Commission on Crystallographic Apparatus, Bibliography 4,
1970, pp. 19-24.

W. H. Aughey and F. J. Baum, “Angular Dependence Light Scattering—A
High Resolution Recording Instrument for the Angular Range 0.05°-140°,"
J. Opt. Soe. Amer. 44, No. 11 (November 1954), pp. 833-837.

. C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev.
Lett. 15, No. 25 (December 1965), pp. 964—966.

. 8. P. 8. Porto, B. Tell, and T. C. Damen, “Near Forward Raman Scattering in
Zinc Oxide,”” Phys. Rev. Lett., 16, No. 11 (March 1966), pp. 450-452.

. J. B. Lastovka and G. B. Benedek, “Spectrum of Light Scattered Quasielastically
from a Normal Liquid,” Phys. Rev. Lett., 17, No. 20 (November 1966),
pp. 1039-1042.

10. J. B. Lastovka and G. B. Benedek, “‘Light Beating Techniques for the Study of
the Rayleigh-Brillouin Spectrum,” in Physics of Quantum Electronics, P. L.
Kelly, B. Lax, and P. E. Tannenwald, eds., Proceedings of the Physics of
Quantum Electronics Conference, San Juan, Puerto Rico, June 28-30, 1965,
sponsored by the Office of Naval Research, New York: McGraw-Hill, 1966,

. 231-240.

11. D.I])E.!.]den and H. L. Swinney, ‘“Optical Heterodyne Studies of Brillouin Scattering
in Xenon Near the grit.ica.l Point,”’ Opt. Commun., 10, No. 2 (February
1974), pp. 191-194.

12. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, London : Oxford
University Press, 1961.

13. V. M. Zaitsev and M. I. Shliomis, “Hydrodynamic Fluctuations Near the
Convection Threshold,” Zh. Eksp. Teor. Fiz., §9, No. 5 (November 1970),
pp. 1583-1592 [Sov. Phys. JEPT, 32, No. 5 (May 1971), pp. 866-870].

14. R. Graham, “Generalized Thermodynamic Potential for the Convection In-
stability,” Phys. Rev. Lett., 31, No. 25 (December 1973), pp. 1479-1482.

15. M. G. Velarde, in Hydrodynamics, Proc. of the 1973 session of the Ecole d’été de
Physique Théorique, Les Houches, R. Balian, ed., New York: Gordon and
Breach, in press.

(=13

© =

1292 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1976



16

17
18

19

20. G

21
22

23.
24,
25.

26.
27.
28.
29.
30.
31.

32.
33.

34.

35.
36.

37.

39.
40,

41.

42

. P. Bergé and M. Dubois, “Convective Velocity Field in the Rayleigh-Bénard
Inst,:ll(l))‘iility 0 Ecperimenta.l Results,” Phys. Rev. Lett., 32, No. 19 (May 1974),
PP- 1-1044.

. W. A. Smith, “Temporal Correlations Near the Convection Instability Thresh-
old,”” Phys. Rev. Lett., 32, No. 21 (May 1974), pp. 1164-1167.

. R. Farhadieh and R. S. Tankin, “Interferometric gtudy of Two-Dimensional
%&na;g Convection Cells,” J. Fluid Mech., 66, No. 4 (December 1974), pp.

9-752.

. H. N. W. Lekkerkerker and J.-P. Boon, “Hydrodynamic Modes and Light
Scattering Near the Convective Instability,”” Phys. Rev., A10, No. 4 (October
1974), pp. 1355-1360.

. Ahlers, “Low Temperature Studies of the Rayleigh-Bénard Instability and
Turbulence,”” Phys. Rev. Lett., 33, No. 20 (November 1974), pp. 1185-1188.

. J. B. McLaugiﬂin and P. C. Martin, “Transition to Turbulence of a Statically

Stressed Fluid,”” Phys. Rev. Lett., 33, No. 20 (November 1974), pp. 1189-1192.

. J. P. Gollub and M. H. Freilich, “Optical Heterodyne Study of the Taylor
Instability in a Rotating Fluid,”” Phys. Rev. Lett., 33, No. 25 (December
1974), pp. 1465-1468.

R. Graham, “Hydrodynamic Fluctuations Near the Convection Instability,”
Phys. Rev., A10, No. 5 (November 1974), pp. 1762-1784.

E. Guyon and P. Pieranski, “Convective Instabilities in Nematic Liquid Crys-
tals,”” Physica (Utrecht), 73, No. 1 (April 1974), pp. 184-194.

H. B. Moller and T. Riste, “Neutron-Scattering Study of Transitions to Con-
vection and Turbulence in Nematic Para-azoxyanisole,”” Phys. Rev. Lett.,
34, No. 16 (April 1975), pp. 996-999.

Fluctuations, Instabilities, and Phase Transitions, T. Riste, ed., Proceedings of
the NATO Advanced Study Institute, Geilo, Norway, April 11-20, 1975,
New York: Plenum Press, 1975.

J. B. Lastovka, “‘Light Mixing Spectroscopy and the Spectrum of Light Scattered
by Thermal Fluctuations in Liquids,” Ph.D. Thesis, Massachusetts Institute
of Technology, 1967, Chapter III, pp. 156-357.

J. B. Lastovka, unpublished paper.

F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed., New York:
McGraw-Hill, 1957, pp. 298ff.

J. 2]%0 J;.gécsnn, Classical Electrodynamics, New York: John Wiley, 1962, pp.

M. Born and E. Wolf, Principles of Optics, 2nd ed., New York: MacMillan,
1964, pp. 414418,

M. Frangon, Diffraction-Coherence in Optics, Oxford: Pergamon Press, 1966,
Chapter VI, Section 6.5.

P. Jacquinot and B. Roizen Dossier, ‘“Apodization,” in Progress in Optics, Vol.
I11, Emil Wolf, ed., Amsterdam, Netherlands: North Holland Publishing,
1964, pp. 30-186.

R. C. Hansen, “Aperture Theory,” in Microwave Scanning Antennas, Volume I:
Apertures, R. C. Hansen, ed., New York: Academic Press, 1964, pp. 47-101.

E. A. Wolff, Antenna Analysis, New York: John Wiley, 1966, p!). 109-135.
K. A. Karpov, Tables of the Functions F(Z) = fo? e**dx in the Complex Domain,

New York: MacMillan, 1964.

W. J. Smith, Modern Optical Engineering, New York: McGraw-Hill, 1966, pp.
385—-387.

. E. C. Titchmarsh, Iniroduction to the Theory of Fourier Iniegrals, Oxford:
Clarendon, 1948, pp. 61-66.

Jan Pefina, Coherence of Light, London: Van Nostrand Reinhold, 1972, pp. 32-42.

M. J. Beran and G. B. Parrent, Theory of Partial Coherence, Englewood Cliffs,
New Jersey : Prentice-Hall, 1964, pp. 27-44. .

H.E.Bennett and J. M. Bennett, “Precision Measurements in Thin Film Optics,”’
in Physics of Thin Films, Vol. 4, G. Hass, ed., New York: Academic Press,
1967, pp. 1-96.

. 8. Tola'ng v, Multiple-Beam Interferometry of Surfaces and Films, New York:

Dover Publications, 1970, Chapter IX, pp. 104-108.

LIGHT SCATTERING 1293






