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The processor in an electronic telephone switching system must be
designed to efficiently and reliably process telephone calls. Because of the
extended life span of a telephone switching system and the nature of the
function it provides, it s advantageous to build a great deal of flexibilily
into the processor design. This paper provides details of a microprogram
control design philosophy for the development of a medium-size processor*
that provides the required flexibility. The aspects of the microprogram
control that make it very suitable for the design of a processor in a fault-
tolerant system are also described.

l. MICROPROGRAMMING BACKGROUND

In the 22 years since M. V. Wilkes proposed the concept of micro-
program control,! the basic implementation has not varied significantly.
Wilkes recognized even then that replacing the complex, irregular
structure of the control section with a series of elementary and se-
quential microinstructions could result in the following advantages:

(7) A more regular and systematic approach to the design of the

control section of a machine.

(77) The ability to evolve the details of the implementation until
late in the design state of the machine.

(#47) The ability to change or add to the instruction set after con-
struction of the machine has been completed.

() A simplified architecture that more readily lends itself to
machine maintenance.

Because of the flexibility of a microcontrol design, many uses and
variations of the design can be made to optimize the particular design

*The name of this processor is the 3A cc. It will be used in No. 3 Ess, No.
2B Ess, and other applications where a fault-tolerant system is required.
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criteria involved. The design of a microprogram control architecture
that utilizes this flexibility to implement additional features in a
processor is covered in detail. This processor is used in small- to
medium-sized telephone switching systems? that must be fault-tolerant.
These features provide a processor design that is

() Self-checking.
(#) Highly maintenance-oriented.
(#55) An efficient microstore (i.e., minimizes number of microstore
words).
(i) Efficient in real time.
(v) Amenable to system interconnection to provide a fault-tolerant
system.

Il. GENERAL SYSTEM DESCRIPTION

In an electronic switching system (Ess) that performs a telephone
switching function, the processor complex*~” must have almost 100-
percent uptime. (The goal is 2 hours downtime in 40 years.) To pro-
vide such reliability, redundancy must be built into the system since
hardware failures are inevitable. With redundancy available, the
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Fig. 1—System block diagram.
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system can provide immediate detection of an error, a quick and effi-
cient recovery from error (i.e., it can switch to a functioning unit),
and the ability to diagnose and repair the failing unit before a second
error can cause complete system failure.

The system environment in which the microprogram-controlled pro-
cessor operates is shown in Fig. 1. The processor, main store, and tape
unit are duplicated for reliability. These control units are treated as a
single switchable entity since the quantity of equipment within each
switchable block is small enough to meet the reliability requirement.

One system-design goal was to make each functional unit as auton-
omous and self-checking as possible with a minimum number of
external signal leads. This provides sufficient flexibility to make the
units expandable and changeable without much difficulty.

A simple de store bus is used for communication between the stores
and processors. The main store uses a semiconductor memory design
and is contained within a small area. Even though the processors are
not run synchronously, both the on-line and off-line stores are kept
up to date by having the on-line processor write into both stores
simultaneously. Because of the volatile nature of the semiconductor
(dynamic 16GrET) writeable memory, bulk storage backup (the tape
unit) is required to reload program and translation data after a store
failure.

IIl. GENERAL PROCESSOR DESCRIPTION

Figure 2 shows a detailed block diagram of the processor. It is fune-
tionally divided into six parts. There are 16 general-purpose registers
and more than 30 special-purpose registers. Five of the special registers
are used as the interface to the semiconductor main store. The inter-
face is an asynchronous and relatively simple design. The micro-
control loads an address, data (if a write), and a eontrol register. It then
initiates a store cycle by issuing a start signal. Later the microcontrol
tests for a store completion.

The microprogram control portion provides the complex control
functions required to implement the instruction set and other sequenc-
ing functions, e.g., program reloading from the tape unit, trouble ini-
tialization, interrupt control, and man-to-machine interface functions.

The data-manipulation orders are designed specifically for imple-
menting call-processing programs. Therefore, the orders include bit
manipulation, testing, logical operations, ete., rather than complex
arithmetic operations. A binary add is included to allow indexing and
other simple arithmetic operations to be easily implemented. The data-
manipulation logic includes rotation, all Boolean functions of two
variables, first zero detection, and fast binary add.
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The remaining functional blocks in Fig. 2 are concerned with the
interface of external units. The 20 main 1/0 channels, each with 20
subchannels, allow the processor to control and access up to 400 pe-
ripheral units by means of the serial data link. The serial subchannel
transmits a 16-data-bit message using a 6.7-MHz bit rate. The tape
unit is accessed by one of these serial channels. In addition, a man-to-
machine interface with displays and manual inputs is integrated into
the processor and executed under microprogram control. Finally, a
maintenance channel can access the standby processor for diagnostic
and control purposes. The maintenance channel transmits a switch
message when an error is detected in the on-line processor. Control is
then transferred to the standby processor. The use of a serial channel
reduces the number of leads interconnecting the two processors and
causes them to be loosely coupled. In addition to being more economi-
cal, this channel facilitates a split mode or stand-alone configuration
for factory test or system test.

The basic execution of a macro-level instruction (op code) by the
processor is as follows (Fig. 3):

(7) The microcontrol issues a request to the main store and then
executes a previously fetched instruction.

(#7) This request is performed and the access instruction is placed
in a store-instruction register (SIR).

(747) The microcontrol, having completed the previous macro-level
instruction, tests for main store completion.

(2v) If the main store has not completed the requested cycle, the
microcontrol loops.

(v) When the main store has completed, the microcontrol loads the
SIR into an instruction buffer (1B) and a portion of the sIR into
the microstore address register (MAR).

(v7) The portion of the sir loaded into the MaR is the op code field
and it points to a starting address of a sequence of micro-
instruction that will perform or interpret the function of that
or code.

(v77) One of the functions of each op code sequence is to fetch the
next instruction from the main store, thus enabling the process
to repeat itself.

The processor is designed using a new Ess logic gate® with 5- to 6-ns
delay. An entire packaging technology is built around this gate. The
packaging allows 200 to 300 gates to be placed on a single, small circuit
pack. On each pack the gates are interconnected in a customized
manner. The processor design requires 55 of these logic packs to imple-
ment a 16,000-gate design. The microstore is implemented on additional

PROCESSOR DESIGN IN ESS 187



‘uorysIedo 511 pUB Iopng uononISu[—ge "B g

_ *Gl—8 SL18 SH3IA0D Hd ‘Z—0 SLI8 SHIAODD 1d ‘HOSSIDOHd
NI ONV JHOLS NIVW NI ¥1va HLIM
MMET Q3IHHYO SLI8 ALIHVd OML 34V Hd ONV 1d
WOH4 oL VN N|L B

I3 0 Ll d]d ‘HIS 3HL NI Q3HOLS ATIHVHOJWIL JHV
AHOW3IW NIYIW WOH4 Q3HDL3d4 SNOILINHLSNI

— 9/€ OL

AHVYNIE

9/€ OL

AHVNIE —

- .
UV Al X mooumo%c. | H
¥ /// dldld
o I L NN
w 2009 40 8l (031 “1d "Hd)
" M3N ¥
o [to-tn avol ]
L o)
3HO0LS m//.//./. ©

WYHO0HJOHIIN

OO0 W
I7IIIIT SIS

o
<
=

WIS ~

340LS NIVA

188 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



packs of which there are two for each group of 512 words (each word is
32 bits wide).

3.1 Microprogram control in an ESS environment

As in previous electronic switching systems, the goal is to provide a
highly reliable switching system. The use of stored program control in
Ess machines has provided easy implementation of customized features,
system changes, or new services by changing the contents of the stored
program. In addition, the microprogram memory provides a second
level of flexibility, which ereates further advantages.

The use of microprogram control permits designing a processor that
is very regular in structure. This is achieved by centralizing the
normally complex control section of a processor into one distinet unit
or portion. Then, by segmenting each control function into a series of
relatively simple microprogrammed steps, it is possible to achieve a
uniform eontrol entity. Control is easier to design through a systematic
approach, and the rest of the processor is also made less complex. This
results from the removal of most of the control and timing leads dis-
persed throughout each functional part in earlier types of processors.

Overall uniformity allows a self-checking design to be implemented
without difficulty. One of the benefits of the self-checking machine in
the Ess environment is that when an error is detected, the processor
known to be faulty can be switched off-line immediately. That is, in a
system where error detection is achieved through the synchronized
operation of the on-line and off-line processors, the error indication
from the matech function between the two processors is unable to
identify the faulty unit. As a result, other means must be provided to
identify it.

In each processor, the logic is partitioned in such a way that maxi-
mum error detectability and immediate error indications are provided.
For example, data registers are bit-sliced onto individual circuit packs
so that multiple failures within a eircuit pack will not go undetected by
the parity check carried on each data register. As a result, the error
circuit gives an immediate failure indication, and the problem of re-
solving which proeessor is faulty does not arise. In addition, immediate
diagnostic results are achieved by sending the output of each error
circuit to individual bits in an error register for easy analysis by diag-
nostic programs. Twenty-two error circuits in the processor are moni-
tored by the error register. Because of the regular structure of the
processor, each of these error bits tends to point to a unique portion
of the machine (within a few circuit packs) that has failed and caused
an error.
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The use of a read-only memory (roM) for the microstore in the
microprogram control has facilitated additional simplifications in the
control structure of the processor. In the event of a hardware failure
or a start-up procedure caused by software problems, it is necessary to
evoke a predetermined sequence of control functions. The use of a non-
volatile microstore permits the start-up procedure or initialization to be
microcoded and initiated easily when required. Hence, even if initiali-
zation is caused by a power interruption, these control sequences are
available. This initialization may vary from a simple transfer to a
starting location in main memory to full initialization that requires
reloading main memory from the tape unit. The ability to microcode
this sequence of functions not only eliminates complex sequencing
logic but also provides the initialization procedures with all the ad-
vantages of microprogram control (e.g., self-checking, flexibility, and
easy modification).

The ability to easily modify the macro-level instruction set even
after the processor has been designed is a very attractive feature,
especially in an ®ss environment. Due to their function, Esss must
have an extended life. This extended life makes them vulnerable to in-
creasing demands for more capacity and new features. Therefore, it is
advantageous to be able to add to or modify the instruction set of the
processor if increased throughput or other significant improvements can
be obtained.

Another advantage is the potential to adapt to applications where a
highly reliable stored program processor is required. This potential pro-
vides a step toward standardization of processors, or at least a reduction
in the number of processors used in ss applications. This adaptability,
for example, could take the form of emulation of another processor’s
op code set.

Most of the man-machine interface functions, which in past designs
consisted of irregular and difficult-to-maintain logic, have been in-
corporated into the microprogram control (i.e., displaying register
and/or memory contents). The use of microprogram control in this
instance not only provides a relatively maintenance-free console panel
but also provides a flexible man-machine interface.

The primary peripheral communication link in this processor is a
serial 1/0 channel. There can be 20 autonomous 1/0 channels. With
microprogramming, the 1/0 interfaces can be customized to the 1/0
task or the application. In addition, as other peripheral communication
interfaces evolve (e.g., a parallel 1/0 bus is used), the microcode can
easily be adapted to accommodate them.

Although this is a relatively small processor, significant real-time
improvements can be attained with microprogramming. That is,
register-to-register gating takes only 150 ns in the microcontrol, and
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transfers take place concurrently with microinstructions. As a result,
there is about an 8-to-1 real-time improvement over main memory
operations. As a result, the speed and flexibility of microprogram con-
trol can be customized to meet diverse requirements in an on-line, real-
time, fault-tolerant control system.

3.2 General structure of the microprogram control

The self-checking microprogram control design is built around a high-
speed rRoM. The microstore has a 32-bit output and a maximum size of
4096 words (32 bits) and grows in increments of 512 words. The maxi-
mum access time is 65 ns. As shown in Fig. 4, the output of the micro-
store has three major fields:

(#) A o field which normally defines a source register for a gating
operation to be performed on each microcycle (a 150-ns

interval),
o
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Fig. 4—Normal microinstruction execution.
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(5) A From field which defines a destination register under the
same conditions.

(i1) A next address (Na) field that defines the location of the next
microinstruction to be performed.

The correct sequencing of the microcontrol is checked by carrying a
parity bit with the next-address field (pNa) and matching it with the
parity of the accessed location (pra). The To and FroM fields are
checked by encoding the control information in the microstore using
a 4-out-of-8 code in each field. The control information is then decoded
into a l-out-of-70 code to enable a particular function and then re-
encoded to a 4-out-of-8 code and checked.® The combination of these
two checking techniques provides a microcontrol design that is highly
self-checking.!

In this processor, the basic microinstruction set is centered around
a register-to-register gating operation. In its simplest form, this
gating function may be to set or clear individual flip-flops. To perform
the gating operation, the To and the From encoded control fields are
read out of the microstore on each microinstruction. These fields are
decoded and are used to enable a source and destination register for the
normal gating command. Because an Ess environment emphasizes data
processing rather than arithmetic operations, the register-to-register
oriented microcommand set is very efficient. It is also useful in imple-
menting the self-checking design of the processor. That is, by bit-slicing
the processor’s data registers (including the control and data access
to each bit on individual circuit packs), the operation of a data transfer
can easily be checked. This is done by performing the hardware check
of the correct operation of the To and Frowm field decoders on each
microcyele. The “checked” control signals are then fed to the bit-
sliced data register circuit packs. By maintaining parity over the
registers, a single failure of either the control or the data paths will
result in a parity check failure.

A single failure in this context implies the failure of a single circuit
pack. This could, of course, be caused by multiple failures within the
circuit pack. The data registers as well as all of main store are, in fact,
9-bit-sliced to minimize the replication of the control signals to each
bit of the respective registers and memory cells. As a result, there are
two parity bits associated with each data word, pL, and PH (see Fig. 3).
PL covers bits 0 through 7, and pH covers bits 8 through 15. In the
actual partitioning, bits are paired on each circuit pack as follows: bits
0and 8, 1 and 9, etc., and pL and . If a parity check error fires, either
pL or PH or both could be in error.

When nongating types of microinstructions such as arithmetic or
Boolean functions are to be performed, a different strategy is used.
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These functions are performed in a separate entity in the processor
called the data manipulation logic (pML). The pML is operated by first
gating from the bit-sliced data registers to its operand fields which are
buffered internally in the pmL. A control field is loaded into the pMmL
which defines the function to be performed on the operands previously
loaded. The control field comes directly from the microstore and is
defined by the microinstruction to be executed. Since the control field
and the operands are buffered internally to the pmL, the execution of
a particular function is independent of the microsequence timing. In
this way, functions that take longer than the basic register-to-register
gating operation do not penalize the normal microinstruction execution
time, nor do they require any special timing sequence. At a prede-
termined number of microcycles after the oML has been loaded, the
microcontrol returns to the oML and gates the resultant data, as de-
termined by the pmL internal control states, to a data register.
Operations in the pmL are checked by duplicating this section of the
processor and matching. This approach has a number of advantages:

(7) Duplication is the most complete and most efficient check on
the pmL functions.

(#7) Since there is complete duplication in the pmy, the logic par-
titioning can be optimized without concern for the failure
modes for a given partitioning.

(#47) Duplication allows one uniform check to be performed on all
miscellaneous functions that can be conveniently placed in the
DML.

(zv) The match circuitry needs to be enabled only when gating out
of the pmL, and synchronization does not need to be applied
to the duplicated copies of the pML other than when loading
them with identical copies of operands and control states.
The resulting functional execution of the pML as well as the
parity generation of the resultant data can be performed inde-
pendently of microsequence timing. As a result, duplicating
and matching are easy to implement,.

The processor’s interface with main memory and 1/0 devices is
performed in an asynchronous manner similar to that found in the pML
operation. That is, interface or buffer registers are loaded with the
normal register-to-register gating microinstructions. Then an execution
signal is given, and a main memory cycle or an 1/0 cycle is started.
The termination of the cyele is indicated by a completion signal which
is then tested directly by the microcontrol. The result of this asyn-
chronism is that the processor design is independent of the memory or
1/0 device execution times. The obvious advantage is that a variety
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of memory systems and 1/0 units can be used with this processor. With
rapidly changing technology and the cost savings that may result,
this is a major benefit of the processor’s architecture.

In this microcontrol design, the microinstruction to be performed
and an address are included each time a word is read out of the micro-
store. The address is then used to transfer to the next microinstruction
in a particular sequence. To maintain simplicity in the design, the 12-bit
address field can transfer to any word in the microstore address range
(i.e., maximum size of microstore is 4096).

To provide a flexible and efficient microcontrol design, a number of
alternative methods are provided for sequencing the microcontrol.
The options or alternative ways that the next address can be obtained
in a microinstruction sequence are as follows:

() The initial microinstruction of a machine op code is initiated
by having the microcontrol sitting in a microloop waiting for
the main memory to fetch an instruction. The loop is excited
when the main memory fetch is completed. The result of the
fetch is gated into MAR, starting the microinstruction sequence
that will perform that op code.

(4) On a number of microinstructions, it is desirable to obtain
data constants from the microstore. To efficiently use the
microstore, it is advantageous to store these data in the Na field
and to obtain the next address by incrementing the previous
contents of the MaRr. This type of operation has been used as
follows:

(1) To obtain data constants. Data constants, for example, can
be used to generate target addresses in main memory.

(2) To obtain additional control constants. The main use of
this is the simultaneous loading of the control states into
the pML with a normal microinstruction loading of the
operand fields. This not only reduces the amount of micro-
code required, but also increases the speed of pML functions.

(3) To load a return-address register (RaR) that is used in
conjunction with the microcontrol to implement micro-
subroutine returns. This also reduces the amount of micro-
code needed.

(#7) Conditionally branching on a number of status bits allows con-
venient testing of various machine states such as adder over-
flows from the pML or completion states from external units.
The latter is most useful for providing the asynchronous timing
between the processor and its memory, as well as between the
processor and peripheral units.
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(7v) The ability to index into microstore is provided by oring a
4-bit binary field into the address in Mar. Indexing effectively
utilizes the microstore by providing an efficient method of
extracting data or control from table structures in the
microstore.

(v) Interrupts are initiated by jamming a hard-wired address into
the maR. This address points to a microinstruction sequence
which interrogates various machine states and then determines
what action is to be taken. This feature simplifies implementa-
tion and checking of complicated and difficult logie. It also
provides a highly flexible and easily modified interrupt
structure.

(vi) Through the maintenance reset function (Mrr), a hard-wired
address is jammed into the MaR. The MrF produces a series of
microinstructions that perform the bootstrapping operation
of the processor during a start-up procedure.

The preceding list of alternative methods for sequencing the micro-
control represents an economic compromise. The increased cost and
complexity of more exotic, more powerful microcontrol sequencing
would not be offset sufficiently by reduced microstore requirements.
Of course, if real time is the prime concern, the increased speed of a
more powerful microcontrol would justify the increased cost. Since
this machine is intended for the small- to medium-sized Ess offices, cost
is the dominant factor. To minimize cost, sufficient microsequencing
flexibility has been implemented to reduce costly microstore and at the
same time achieve a reasonably good throughput. The standard micro-
code provided with this processor will be implemented with about 1000
words. For those applications that need additional real time or other
features, the ability to expand to 4096 words is provided.

The microcontrol uses a high-speed roM which has a read access range
of 30 to 65 ns. The minimum cycle time of a microinstruction sequence
is determined by the maximum access time of the rRom plus the time
necessary to calculate the address of the word to be accessed and/or
the maximum time to execute each microinstruction. The processor
has a gate with a 5- to 6-ns delay. The use of the gate, its associated
technology, and the 65-ns roM results in a microcycle execution time
of 150 ns.

The design of the main memory for this processor uses a dynamic
IGFET refreshable cell with an access time of about 750 ns as seen at the
store itself. Taking into account the control and data delays between
the processor and the store, the effective main memory access time will.
be about 1 us. It should be again noted that the timing between the
processor and the store is completely asynchronous and, if faster or
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cheaper memories become available, they will be readily adaptable to
the architecture of the processor.

The effective execution rate of main memory o codes is, therefore,
determined by three main variables:

(©) A 150-ns microinstruction cycle time.
(#7) A 1-ps main store access time.
(#47) The number and type of microinstructions that are used to
implement a main memory or code.

As far as the architecture of the processor is concerned, the 150-ns
microinstruction cycle time is a constant. The memory cycle time is a
variable since it depends upon the main memory chosen. The number
and type of microinstructions for each op code is a function of how the
microcode sequences are designed. The use of subroutines in the micro-
code, as well as other techniques to limit the total amount of micro-
store, minimizes the initial cost of the processor. The resulting mix of
the number of microinstructions per op code tends to make the
effective execution rate of op codes processor-limited, assuming the
1-us access time for the 1GFET refreshable main memory. It can be
shown that by recoding the microprogram of the op codes using more
straight in-line coding and more microstore, it is possible to make the
effective execution main-memory bound rather than processor bound.

IV. DETAILS OF THE MICROPROGRAM CONTROL DESIGN
4.1 Microinstructions

The processor, excluding the microcontrol, consists of a collection of
distinct sets of registers. The set partitioning is done on a functional
basis with each set optimized to provide a particular task (see Fig. 2).
The various sets and the number of registers included are:

(7) General registers (16). These registers provide a set of general-
purpose program-addressable registers that are used for high-
speed buffer storage for the macro-level (main-memory)
programmer.

(i) Special registers (16). These registers are used for a number of
special-purpose functions such as generating interrupts, pro-
viding error indications, displaying system status, and inter-
facing with main memory.

(#47) pML registers (3). These registers provide the buffer storage
required to hold the operands and control states in the pML so
that the pML execution timing is asynchronous with respect to
the microcontrol timing.

196 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



(7v) Main memory registers (4). These registers provide addresses
to main memory and receive instructions and data coming from
main memory.

(v) 1/0 registers (3). One of these registers buffers the control
information needed to access the 1/0 channels. The other
registers provide the means of transmitting data to and from
the 1/0 channels.

(v7) Console associated registers (5). These registers are used in
conjunction with the console panel to load and display various
other registers in the machine and to provide match functions
on address and data constants associated with main-memory
operations.

With the use of the microcontrol, most of the irregular machine
structure has been removed. In its place is the collection of register
sets just listed. Special functions such as additions, subtractions,
Boolean operations, or other operations not easily handled in a single
microcycle are performed by attaching combinational logic to the out-
puts of some of the register sets. The outputs of this logic are then gated
under microprogram control to other registers or to status bits in the
microcontrol where they can be easily tested by the microcontrol.

In the description to follow, the microinstructions that control the
data flow in and out of the registers are partitioned into functional
groups. Each group function is described. It should be noted that the
set partitioning of the registers previously listed is not related to the
functional grouping of the microinstructions that control the registers,
although in some cases the partitioning corresponds with them.

4.2 Register-to-register gating

Because of the machine’s dependence on register-to-register gating,
the microcontrol architecture is centered around this microinstruction.
On each microcycle, a To field and a From field are gated out of the
microstore and buffered in the microinstruction register (Mir). These
fields are decoded and then are used to enable a source and a destination
register (see Fig. 4). The control fields are encoded in a 4-out-of-8
code so that faults in the microstore, the MIR, or the decoder will be
detected. One of the methods of obtaining the 4-out-of-8 codes that
enable the gating To and FroM registers is to read them directly from
the microstore. A disadvantage of this approach is that to provide all
the gating combinations between the 16 general registers requires 256
entries in the microstore. Because of the relatively high cost of the
microstore, which in turn influences the limited amount of microstore
available for use, an alternative method is desirable. The following
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implementation appears to be the most flexible and requires a minimum
amount of circuitry.

It should first be noted that when an or code is obtained from main
memory, it is loaded into the MR and the 1B. (See Fig. 3.) In addition
to the 7-bit op code, two 4-bit binary operand fields may be loaded
into the 18, as shown in Fig. 5. These two fields, X and Y, have binary
to 3-out-of-6 translators attached to their outputs. The outputs of
X and Y 3-out-of-6 translators are conditionally gated to the low 6 bits
of the To and FroM field in the mir. This conditional gating is enabled
when all zeros are detected coming from the microstore in the same 6-bit
positions. In the upper 2 bits coming from the microstore, a 1-out-of-2
code is normally supplied. This code, which is determined by the op
code, can be used to select either the general register set or the special
register set in either the To or the rroM field. This permits gating of
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INDICATES INDICATES
ADDRESSABLE  ADDRESSABLE
GENERAL MAINTENANCE
REGISTERS REGISTERS
y ,-21
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BINARY TO [ 000111
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ENABLE( peTecTOR

101010

BINARY TO
3/6
-
GATE| @
16—-8 7-0
5-0
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MI‘R
7 TO 0|7 FROM 0
01101010 10000111
X Y

Fig. 5—oPERAND translation (normal).
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any general register to any special register in a single microinstruction.
One word of microstore provides the enabling signal. As indicated in
Fig. 5, the signal coming from the microstore is not inhibited. The
result is the logical or of the microstore output and the 3-out-of-6
translators.

In a number of instances, it is desirable to exchange the roles of the
X and Y operand fields. This is useful when the contents of various
general registers are to be exchanged or swapped. Again, a number of
solutions to this problem are possible. The following solution is pre-
ferred because it offers simplicity and speed, resulting from an extension
of the method described previously. By storing 1s in the upper 2 bits
of the To or FroM field, and using a 2-input gate to detect this condition,
a swap of the 3-out-of-6 codes coming from the X and Y fields can be
implemented (Fig. 6). Note that the swap is not performed unless the
low 6 bits of the respective To or FROM coming from the microstore
are zeros. It is also necessary in this instance to clear the high-order
bit in the Mir field in which a swap is enabled. Because of this, the only
combination allowed in the swap operation occurs when the swap in-
volves general registers (01 in the upper 2 bits of the field).

Complete independence exists between the To and rFrom fields
relative to the circuitry involved in the operand translation just de-
scribed. It is therefore possible, for example, to have a 4-out-of-8 code
loaded directly from the microstore in the rrom field and to have
11000000 in the To field from the microstore. The latter results in
swapping of the binary to 3-out-of-6 translator from the ¥ field into
the To field. As a result, most combinations of control signals for the
microinstructions that involve register gating can be provided effi-
ciently with a minimum amount of circuitry. Also, because of the use
of ‘the m-out-of-n checking techniques on the 4-out-of-8 decoders,
all of the circuitry involved in the operand translations described are
checked by circuitry that has already been provided.

4.3 DML operation

The pML is that portion of the machine that performs the arithmetic,
Boolean, rotates, and other miscellaneous functions. These functions
are collected into one entity, duplicated, and matched. The grouping
of these functions is advantageous for the microcontrol design as well.
A number of the operations that are to be performed in the pML take
longer to execute than the basic gating cycle, and, therefore, a single
and unified approach can be used for all the pmL functions.

A function (¥N) register is provided internal to each duplicated
copy of the pmL (Fig. 7). When the pmy funetion to be performed is
not a gating operation, the ~ register is loaded with a control constant.
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This control enables the appropriate control signals to execute the
desired function. The function to be performed is executed on the oper-
ands which have been loaded into buffer registers AR and BR in the
pML. Not only does the FN register set up the combinational logic to
perform the logic operation on these registers, but it also determines
what status bits are to be gated to the microcontrol status (mcs)
register. In this way, the microcontrol can easily test for adder over-
flows, low-order zero test failures, etc. The use of the FN register and
the buffer register for operands makes the ML execution asynchronous
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with respect to the microcontrol. That is, the appropriate register in
the pML can be loaded, and at a predetermined number of microcyles
later, depending upon the function to be performed, the results of ML
operation can be gated to some destination register with the normal
gating microinstruction.

To increase the efficiency of the oML and to reduce the amount of
microcode needed to set up pML functions, the N register and one of
the operand buffers can be loaded in parallel. The operand register is
loaded in the usual manner over the data bus with the To and From

control signals.
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The ¥~ register is loaded over a dedicated path directly from the na
field in the mir. This data path is 8 bits wide. The remaining 4 bits of
the Na field are used to enable a decoder which enables this gating
path. To check that the data coming from the microstore are correct,
a parity tree is attached to the output of one of the copies of the ¥~
register (Fig. 7) and is checked against a parity bit (pTA) that is stored
with this data constant in microstore. Note that the status outputs from
each copy of the microcontrol are gated to associated duplicated copies
of the microcontrol status register in the microcontrol.

4.4 Setting and clearing miscellaneous flip-flops and enabling
dedicated gating paths

Scattered throughout the machine are a number of miscellaneous
flip-flops that must be set and cleared under microprogram control.
Because of the number of flip-flops, it is desirable to use a more efficient
method of controlling them than dedicating a To or FrRomM decoder
crosspoint for each clear or set function. The 4-out-of-8 codes them-
selves generate only 70 possible combinations. By assigning, for
example, only ten crosspoints from each of the To and the rrowm field
decoders and using these two sets of 1-out-of-10 codes to drive a third
decoder (designated the miscellaneous decoder), 100 miscellaneous
crosspoints can be easily generated. In addition to setting or clearing
flip-flops, the miscellaneous decoder outputs are used to enable dedi-
cated gating paths. That is, in places where both a source and a desti-
nation do not have to be simultaneously defined for a gating operation,
a miscellaneous decoder crosspoint can be used. This is advantageous
for 1/0 interfaces where, for example, an external register can be gated
to the processor with a miscellaneous decoder crosspoint. Note that
this minimizes any timing restrictions between the processor’s basic
microcycle and any 1/0 timing requirements.

4.5 Control bits (CA, CB) and the auxiliary control decoder

In addition to the To and FrowM set, there is another set of control
signals. The method of implementing this set of control functions is
shown in Fig. 7. As indicated, there are 12 bits in the na field. Two
parity check bits (pNa, pTa) check the address sequencing of the micro-
store. The remaining two bits of the 32-bit readout of the microstore
are control bits. They are encoded into four binary states which cor-
respond to the following:

(7) The null state is used for the normal sequencing where no con-
trol function is required and the Na field is gated to the MAR.

(%) The main-memory instruction fetch is used to initiate a new
main-memory operation.
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(1)

The data control is used to control the gating of the ~a field
to the Mar. This is for data operations when the Na field con-
tains data to be gated to some destination register other than
the MAR. The data control thus inhibits the normal sequencing
and adds a 1 to the previous microstore address contained in
the MAR.

The auxiliary control is used to enable an auxiliary decoder
attached to the upper four bits of the na field. This is a 2-out-
of-4 decoder and, as such, has six possible control states, four
of which are presently used.

(1) The first state enables the gating of the low 8 bits of the
NA field directly into the function register in the pML. As a
result, the function register can be loaded at the same time
that the To and FroM fields are loading one of the operand
registers in the pmrL. Therefore, both time and microcode
are saved on DML operations.

(2) The second state, 1/0 parity divert, checks the parity on
incoming 1/0 messages. As outlined in Appendix A, in-
coming serial messages from the peripheral world are
autonomously shifted into a serial channel buffer (10D).
Then a miscellaneous decoder instruction gates the 10D to
register R11 over a dedicated path. After the data from
the periphery are in the machine, they must be checked for
correct parity. Note that if these data had bad parity and
they were gated from R11 to any other register over the
processor’s gating bus (GB), a processor parity error would
result. This would stop the processor and switch control
to the standby processor. To avoid this condition, the out-
put of the bus parity checker is diverted to a nonfatal error
which causes an interrupt rather than an error. The con-
trol to divert this check is implemented by the auxiliary
control decoder. Although its use is intended for unloading
R11, it can be used to divert the parity check on any source
register using the aB.

(3) The third state, 1/0 pML match divert, performs a similar
function. Again referring to Appendix A, the operation of
the 1/0 channel is such that a microcoded loop-around
check is made of the correct loading of the 1op. As such, it
is necessary to matech R10, which was the source register
to load the 10D, and R11, into which the 1op is returned.
The following design implements this matching without
adding a special hardware matcher. It uses a matcher
attached to the outputs of the duplicated pML units.
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The match on these two registers is performed by loading
R10 into Ar1 of pML1 and R11 into ARO of DMLO and then
gating the AR register onto the gating bus. As was the case
for the parity check on these two registers, the normal
pML match error represents a hardware fault within the
machine. As a result, the machine stops, and a switch is
performed to the good machine. Again, the state of the
auxiliary control decoder diverts the fatal error to an error
condition which is handled by an interrupt. In this way,
even if a switch of machines is to take place, the software
chooses the appropriate point in the processing to initiate
the switch. This minimizes the information lost in an initial-
ization procedure.

(4) The fourth state, disable B parity checker, permits the
microprogrammer to turn off parity checks on individual
microinstructions. The hardware is such that parity checks
are normally suspended for all microinstructions that do
not use the @B. In addition, the use of this state in the
auxiliary decoder allows turning off the checker when the
GB is being used. This is especially valuable during main-
tenance programming. When it is known that a register
has bad parity or when there is a question concerning
parity, the register contents can be gated over @B to the
pML, for instance, without causing a parity error. Once in
the pML, the register parity can be checked, or it can be
regenerated.

4.6 Main-memory control

The use of the microprogram control presents a number of possible
alternatives in controlling the main store operation. As in the design of
the microstore sequencing itself, a compromise between a design that
would optimize the real-time capabilities of the memory operations
and the economics of such an implementation was made. As such, the
main-memory control is, for the most part, sequenced by the micro-
control. This implementation removes the complex sequencing logic,
which not only reduces the hardware required but also eliminates
circuitry that would be difficult to make self-checking. The control
interface between the microprogram control and the main store is
performed by a logic entity called the processor’s bus controller (pBc).
Microprogram control loads a register in the pBc [the main-memory
state (MMs) register] with a control constant that defines the basic
static mode of operation of the memory bus. For example, if writes
are to be issued to both the on-line and off-line store, an appropriate

204 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



bit in this control register is set. The microcontrol also loads an address
register and a data register (if a write). With the static mode of the
memory bus defined and the address and data (if necessary) loaded, the
microcontrol can then initiate a main-store operation. The type of
operation (i.e., instruction fetch, data fetch, or data write) is de-
termined by the microinstruction that is used to initiate the main-store
request. The microinstruction will set a request (reqQ) flip-flop, set or
clear the instruction or data (1.n) flip-flop, set or clear the read or write
(r.w) flip-flop, and clear the main-memory cycle complete flip-flop
[i.e., data ready (pr) flip-flop]. The 1.0 flip-flop determines to which
register the accessed data are returned. The functions of the r.w
flip-flop is obvious. Once the rEqQ flip-flop is set, the microcontrol
can perform other functions. The main-store eycle will be performed
concurrently, asynchronously, and autonomously to the processor.
When the main store has completed the requested cycle, it will set the
pr flip-flop. After the appropriate interval, the pr flip-flop is tested
by the microcontrol, and the procedure is repeated.

The only major autonomous function built into the pBc is the ability
to time-share the memory bus. This time-sharing capability allows the
processor to be used in a multiprocessor configuration or in situations
where a direct memory access device (pmMA) time-shares the memory
resources. This time-sharing capability consists of buffering the main-
store request in the reQ flip-flop and testing the memory bus for its
occupancy. If the bus is busy, the main-store cycle is delayed. When the
bus is idle, the request is placed on the memory bus and the main-store
cycle begins. The asynchronous nature of the processor and the main-
store interface makes this design very straightforward.

Four registers are used to buffer address and data to and from the
memory. These registers, together with a portion of the control that is
used to operate them, are shown in Fig. 8. The operation of these
registers as it relates to the microcontrol is outlined below.

4.7 Normal instruction fetch

An instruction is fetched from main memory by adding a 1 to the
last instruction address located in the pa register. The control to
initiate this fetch is performed by the ca, cB control decoder, as pre-
viously described. The active ca, ¢B combination is normally read out
of the microstore on the first microcycle of the previously fetched or
code. Thus, if this op code is, for example, an absolute transfer, the
main memory control does not have to initiate the fetch for the next
sequential instruction. If the next address is to be accessed, the ca,
cB control enables the output of the pa + 1 logic to be gated into the
store address register (sar). It also sets two flip-flops in the memory

PROCESSOR DESIGN IN ESS 205



208Ul Alowew-urBw-[o1juod weidordoiN—s ‘Sig

3JHOLS NIVIW
SNE AVYM—OML
\
. (av3ay) \
L= (0-SL"1d'Hd) § _ vival ssauaav]
HOLS -
WoH4 - (0—61"1d'Hd)
(viva) (NOILONH LSNI) anv Ol
UL o an L=al STVYNOIS mm
i ° TOHLNOD . H3L1SID3Y SS3HAQY ”.EoEm_ a4
(3L1EM) t ¢ | R ~ f
0=MH 1 1 I 1 1 |
1 1 1 1 1
o ] [o 1 0
J u His “ u MH al LEM .
0 51 0 gl 2 s| [0 s 2 S
iy SR
HOL34 H31710HLNOD | SN S,HOSSIDOHd
NOILONHLSNI 319YNI~~ i e
Y3LNNOD L+ ALIHYd
H300030 ) _
AHVYNIE
Ya S13S TVNOIS
_ NOIL3TdWOD 3HOLS SUI1SID3Y SSIHAAY WYHOOHJ “ _“
0 6l
2K
Wou4 oL N n(L|8|Y
alo Tz d
dld 4(s a|n|, |3
o|a M _H alul' (g5
0 LE HVW 4
L S3HO134
JHOLS v NOILONHISNI NO
WYHDOHOHOIW W vd OL HVS 31vD
0

206 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



controller. The rEq flip-flop buffers the request for the store in case
the bus is busy. The 1.0 flip-flop steers the return memory contents
into the sIR or spR. As a result of buffering the request, the micro-
control can continue executing the present o code. When the memory
bus becomes idle, the memory controller issues a request to the store.
In addition, the controller gates the contents of sAR back around to
the pa. This enables the A + 1 counter to formulate the next address
while the memory fetch is being performed. As a result, the design
of the counter can be simplified. The counter is a slow ripple type that
takes about 400 ns to increment. The counter is composed only of
combination logic, which is attached to the output of the pa, because
the pa and the sam are bit-sliced. The resulting design provides a
counter which can be easily checked by a parity predict circuit because
of the partitioning which tends to force single-bit errors. It should be
noted that most of the logic associated with the counter pertains to a
given bit and the failure of even multiple gates within a circuit pack
will cause an immediate parity error.

4.8 Data requesis

When an op code data requires a data operation, the microcontrol is
used to load the data address in the sar. If the data address must be
calculated, the microcontrol uses the pML logic where additions may be
performed. Once the data address is loaded in the sar, a microinstrue-
tion crosspoint is used to initiate the store request. This memory
request is again buffered in the request flip-flop, but the 1.p0 flip-flop
is put in the data state. Because the 1.p is in the data state, the sar-
to-ra gating is inhibited so that the pa is preserved. The only distinc-
tion between data reads and data writes is that, for write instruction,
the spr is loaded with the data word before issuing the store request.
The loading of the spr sets the r.w flip-flop. This flip-flop is used by
the bus controller and results in writing the contents of the spr into
main memory at the address defined by the sar.

4.9 Central control panel operation

In keeping with the design goal of self-checking, each processor is
assigned its own man-machine interface. This interface is called the
central-control (cc) panel. The cc panel provides the ability to set
and display registers in the processor, to read or write locations in
main store, and to single-cycle macro-level instructions. In addition,
the cc panel provides the ability to perform address-matching and
data-matching functions on main-store programs. All of these functions
are performed under microprogram eontrol with only a few additional
registers that provide buffer storage. The registers that are added for
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these panel functions are bit-sliced and incorporated into the basic
self-checking architecture of the processor.

The microcontrol executes panel functions by receiving a panel
interrupt when the processor is in the MANUAL mode and off-line. The
interrupt begins by gating the contents of a set of three switch input
registers into the display buffer (oB) (Fig. 2) with one of three possible
microinstructions. The microcontrol then interrogates the switch
inputs and translates them into the appropriate panel functions. Thus,
the normally complex control functions of the cc panel are incorporated
into, the self-checking microprogramming structure of the machine,
which results in a very flexible and relatively maintenance-free cc
panel.

V. SEQUENCING

Several attributes characterize the design goals of the microcontrol
sequencing logic.

(5) Self-checking. Since the machine is self-checking, the miero-
control sequencing must also be self-checking.

(#7) Flexible. To provide all the advantages of microprogram control,
the sequencing scheme must be flexible. For example, the
ability to conditionally transfer on a number of status bits
provides an efficient means to loop or branch in the microcode.
The flexibility in the sequencing logic also reduces the amount
of store needed to perform a given task. Indexing, the use of
the next address field for the auxiliary control, and the sub-
routine capability are examples of this.

(i1i) Simplistic. To make the sequencing logic as fast as possible,
as well as to make checking easier, it is necessary to keep the
design simple and straightforward. This is accomplished by
restricting the microstore addresses that can be incremented.
When a 1 is added to the mMar, the MAR must contain a 0
in the low-order bit and, as a result, 1 can be jammed into
that bit position to avoid the use of the inherently slow and/or
complex carry-propagate circuitry. The same approach is
taken for indexing by forcing the indexing table to fall on
restricted boundaries. ’

With. these characteristics as design criteria, each of the various
methods for obtaining the next address (sequencing) will be examined
individually.

5.1 Loading an OP code

As previously indicated, a fetched instruction at the completion of a
main-gtore cycle is loaded into sir. Simultaneously, the pr bit is
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set asynchronously to the microcontrol. While the main store is fetch-
ing the instruction, the microcontrol is operating on the previously
fetched instruction. At the termination of the series of microinstructions
that constitute this instruction, ALL zEROs is encountered in the Na
field of the microstore. ALL zEROs is placed in the MIR Na field of the
last microinstruction of all op codes. A special all-zeros detector is
used to monitor this condition. The coincidence of the all zeros and
the DR bit set results in a new instruction or or code being loaded into
the microcontrol (Fig. 9). If the main store has not completed the
instruction fetch (i.e., prR = 0), then the ALL zEROs in the Na field is
gated into the MAR. At the ALL zEROs location in the microstore, ALL
zZEROs is also placed in the Na field. As a result, the microstore will
loop on ALL zEROs waiting for the main store to complete the instrue-
tion fetch. Note that null (no operation) microinstructions (Nops) are
placed in the To and FroM fields of the ALL zEROs location. These Nops
are valid 4-out-of-8 codes required to keep the 4-out-of-8 checks
“happy.” If the main store is ready when the last microinstruction of
the previous o code is read out of the microstore, the next op code will
be loaded immediately. As a result, microinstruction Nops will not be
executed between main-memory instructions.

When an op code is loaded into the MAR from the sIR, it is also gated
into the 1B and the raRr. The 1B is loaded with the complete contents
of the sir. Although the op code is loaded into the 1B, it is not used there.
This feature was implemented to preserve bit-slicing. In addition to
loading the op code into the 1B, the branch allowed (BA) bit is also
loaded into the 1B (Fig. 3). This bit must equal a 1 for target addresses
on branch instructions. An op code that calls for a branch performs
a microinstruction that sets a Ba check bit which in turn enables a
check for the BA = 1 on the next instruction fetch.

5.2 Normal sequencing

Each time a word is read out of the microstore on a normal miero-
instruction, an address is read into the ~a field. After being gated to
MAR, this address points to the next microinstruction in that sequence.
Thus, loading an or code into MAR initiates a sequence of microinstrue-
tions that is programmed to perform that op code. The last micro-
instruction of that sequence contains all zeros in its Na field. Con-
sequently, a new oP code is loaded into the maR, and the process is
repeated. The inherent simplicity of the sequencing scheme permits a
simple parity check code to verify the proper operation.

Fach time a word is read out of the microstore, two parity check
bits are included. One check bit (pTa) is matched against the parity
of the address that accessed the word (see Fig. 3). The other parity bit
(pNaA) is associated with the 12-bit ~a field and is gated into the MARr
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parity (PMAR) to check the next word to be accessed. Two control bits,
ca and cB, are also included in the parity check of the accessing.

5.3 Data

It is useful to be able to store data constants in the microstore so
that they can be easily and quickly generated by the microcontrol. For
example, the machine has 16 hardware interrupt levels. Using micro-
program control and the data facility, these interrupt levels can be
translated from a bit position in the interrupt set (18) register into
address locations in main memory where the appropriate software can
implement each one of the individual interrupts. The microcontrol
tests for the bit position and then provides access to the word in
micromemory that corresponds to this bit. Residing in this word is a
data constant which points to a main-memory location. Because the
contents of micromemory are changeable, the implementation is a
flexible one.

When data are read out of the microstore, they are contained in the
Na field. As shown in Fig. 10, the data can be gated on either the high
12 or the low 8 bits of the ¢B. The From decoder determines which
bits are used, and the To decoder selects an arbitrary destination
register.

Since the na field contains data, the next address must be obtained
from another source. In this instance, it is generated by saving the last
address and adding a 1 to it. As previously outlined, data words are
forced to be on even word boundaries. As a result, a 1 is jammed into
bit 0 to implement an add. In addition, the parity for this data address
can be easily predetermined. It is formed by complementing the present
parity bit PMAR in MAR. The ca and cB control bits save the contents
of MaR, add a 1 to it, and complement PMAR.

5.4 Auxiliary control

The sequencing of the next address for auxiliary control is identical
to the data operation just outlined. In this instance, the na field con-
tains control information and, in the case of the loading the Fn
register, data as well. Thus, the next address is obtained by adding a
1 to the address saved in mMar. As with data, the auxiliary control
functions must occur on even word boundaries. The ca bit equals 1
for both data and auxiliary control operations. This bit is used as the
control to save the MAR and to jam a 1 into it. In checking the operation
of the ca, ¢B control decoder, the data and auxiliary control decoder
leads are used to complement the MAR parity bit.
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Fig. 10—Data command.

5.5 Microsubroutine

To describe the function of a microsubroutine, it is necessary to
outline the normal operation of the return address register (RAR).
Each time a word is read out of the microstore, the Na field is gated
into the RAR. As outlined in Appendix B, this provides an additional
check on the address sequencing at a very minimum cost. When a
subroutine is to be entered, a data command is used (see Fig. 11).
This data command contains the return address in its Na field, which
is then gated both into the Mir and the rar. Contained in this same
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Fig. 11—Subroutine return.

command is a microinstruction which clears the rAr update (rU)
flip-flop. This flip-flop saves the contents of the rar and therefore
inhibits gating into the rRAR on the subsequent microcyeles. As with
normal data operations, the first address for the subroutine is obtained
by jamming a 1 into the old contents of the MaRr. The subroutine con-
tinues to sequence the microstore in the normal manner. Except for
calling another subroutine, all sequencing operations of the micro-
control can be performed in the subroutine. On the last microinstruction
of the subroutine, ALL-ONES are placed in the ~Na field. An ALL-ONES
detector placed on the output of the ~a field results in the return
address in RAR being gated to the maRr, and the subroutine is excited.
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In addition, the ALL-oNEs detector sets the rU flip-flop so that it is
again in the update mode.

5.6 Conditional branches

The ability to conditionally branch within a microsequence is one
of the basic operations of the microcontrol. To facilitate this operation,
a microcontrol status (Mcs) register was implemented (see Fig. 12).
Each of the bits of the Mcs can be individually tested: a conditional
transfer is performed as a function of their respective states. Some of
the bits and their primary function in this register are:

(i) ps—Stores the results of DML operations (i.e., adder overflows).
(#7) pr—Indicates the completion of main store cycles.
(#41) TR1—General-purpose status bit intended for use by micro-
control.
(i) TR2—Same as TRI.
(v) cF—Passes status information between macro-level program
sequences (i.e., condition flip-flop).

On a conditional branch instruction, a microinstruction selects
which Mcs bit is to be tested. The state of this bit is then gated into the
MAR bit 0. By forcing conditional branch instructions to fall on even
word boundaries, the implementation is simple. The Na field from the
MIR is gated into the MAR in the normal manner. If the Mcs bit is a one,
the branch is made to address X + 1, and if not, the address X is
chosen. The mcs is duplicated. One copy of the Mcs feeds the MaR bit
0, and the other copy feeds the MAR parity bit which, if the branch is
taken, is complemented.

5.7 Indexing

Indexing is used to permit the microprogram to easily branch into
blocks of microstore so that operations like binary to m-out-of-n code
conversions can be easily performed. The index operation results in
either of the two 4-bit binary fields X or ¥ in the 1B being ored into the
lower four bits of the MAR, as shown in Fig. 13. Again, to provide
simplification, indexing tables are forced to start on 16-word bound-
aries. The implementation is then analogous to the conditional branch.
A microinstruction selects either X or ¥ and jams it into the low four
bits of the Mar, which are guaranteed to be zero. The parity for this
address is generated by using the parity trees attached to the X and
Y fields. If Xp or ¥ p is odd, the PNa bit is complemented when it is
gated to the MAR register (PMAR).
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5.8 Interrupts

Interrupts are buffered in the 18 register, which contains 16 bits;
16 different levels of interrupts are possible. An interrupt mask (1m)
register is also provided. This register can selectively block any one of
the 16 interrupts. When an interrupt enters the 18 register and is not
masked by the M register, this condition is monitored by the micro-
program control. This monitoring or testing is performed at the end of
each microinstruction sequence when ALL zEROS is read out of the
microstore.

Before a new op code is loaded into the MaR, the state of the interrupt
lead is checked. If an interrupt is present, whether a main-memory
fetch is completed (pr = 1) or not, an interrupt address constant is
hard-wired jammed into the MAR. At this address in the microcontrol,
an interrupt microroutine is initiated. It tests which of the 16 interrupt
levels is present and transfers the control to the appropriate program
in main memory. This transfer consists of translating a bit position
in the 1s to a data constant in the microstore that points to the main-
memory program that handles the interrupt. Before control is passed
to software in the main store, the interrupt microcode saves critical
registers and states of the processor in a save area in main memory.
Thus, when control is returned from the interrupt, the processor can be
returned to its original state.

If real time is critical, high usage or frequently called interrupts
can be handled entirely with microprogram control. Because of the
8-to-1 speedup of microcycles versus main-memory cycles, this capa-
bility represents a very powerful feature. The only change is an in-
crease in the amount of microcode used.

A block interrupts (BIn) flip-flop inhibits the interrupt mechanism.
BIN inhibits additional interrupts from being serviced before the inter-
rupt-handling software has recorded the presence of the original inter-
rupt (Fig. 14).

5.9 Maintenance reset functions (MRF)

Several conditions require the processor to be initialized. The source
of the initialization may vary from a processor error, where the proces-
sor is on-line, to turning on the power in the off-line. All these varied
conditions are funneled into a state which results in a hard-wired
address being jammed into the MaR. In addition, a few processor state
flip-flops must be initialized to ensure that the machine will start up
correctly. For example, the clock must be initialized before the micro-
control will sequence. At the MRF address, a microroutine (bootstrap
sequence) performs all the complex decisions concerning what caused
the initialization and what actions are to be taken. The ability to reduce
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Fig. 14—Interrupt hardware.

the circuitry required to initialize the processor to a flip-flop, a few
gates, and a couple of clock phases is a very significant advantage
provided by mierocontrol. In addition, the use of the bootstrap micro-
sequence provides the ability to implement a very versatile initializa-
tion start-up procedure. For example, the bootstrap sequence may be
changed to suit the application, such as using a disk instead of a tape
unit for backup storage.

VI. MAINTENANCE OF THE MICROCONTROL

The microstore for the standard processor consists of about 1000
words 32 bits each, and it grows in 512-word blocks up to 4096 words.
Because of the size and the different applications containing dissimilar
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contents, it is necessary to provide maintenance access to verify the
operation and contents of the microstore. It is also quite useful to be
able to exercise the machine without using the microstore itself. The
most useful tool for maintenance access to the processor is via the
maintenance channel (Fig. 15). The maintenance channel inhibits the
microcontrol and loads microinstruction directly into the Mir. This
permits the on-line processor to perform maintenance operations on the
off-line processor. The feature also allows microinstructions stored in
the on-line main memory to be executed in the off-line processor. This
ability to access and control a unit at its most elementary level of
control allows a very high degree of diagnostic access. In addition to
executing microinstructions, the maintenance channel can load the
MAR with an arbitrary address and in turn read the contents of that
microstore location. Thus, an image of the microstore contents kept
in main store can be matched against the contents of the off-line
processor.

6.1 Maintenance-channel access

Before the maintenance channel can gain access to the processor, it
is necessary to stop the microsequencing. Also, if a processor error is
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detected, that processor must be stopped so that it does not attempt
to interfere with the healthy processor, which is then switched on-
line. To implement this, a stop flip-flop is used. Setting the srop flip-
flop results in a hard-wired address being jammed and held in the MAR.
This prevents the microstore from sequencing until the sTop is cleared.
At the stop address in the microstore, all zeros are contained in the
32 bits. The effect of this is to remove the microstore from the input
gating to the mir. This allows the output of the maintenance channel
to be ored directly onto the output of the microstore. As a result, no
additional control signals or gates are needed. The data that are ored
onto these leads, using a NAND gate collector-tie, are clocked into the
MIR in the normal manner.

The maintenance channel gains access to the standby processor by
setting the stop flip-flop. With the sTop flip-flop set, the maintenance
channel has access to the MIR. As such, it has almost complete control
to exercise the processor since all microinstructions emanate from the
MIR. :

The description and operation of the maintenance channel are
covered in other material,” but two of its more important functions
and one that is implemented for the most part within the microcontrol
itself are covered here.

6.2 Single-cycling a microinstruction

With the processor held in the stopped state (sTop FF = 1), all
microsequencing ceases, and zeros are read out of the microstore. The
stopped state, however, does not inhibit the processor’s clock. Conse-
quently, on each microcycle, the data presented to the input of the
Mir are clocked into that register. For the stopped state, these data are
all zeros, but no errors are registered by the error register because the
output of the stop flip-flop inhibits the 4-out-of-8 checkers on the To
and FroM fields, as well as other checks that are normally performed
on each cyele of the microcontrol. Thus, the maintenance channel
needs only to gate data onto the inputs of the Mz To and From fields
for the duration of the clock phase, which loads the Mir. The result is
the execution of a single microinstruction, which uses all of the normal
timing and hardware within the machine. To turn on the decoder
checkers, the maintenance channel also needs to activate a control
lead to the To and FroM checkers that will override the sTop flip-flop
inhibit function of the checker for that single microinstruction.

6.3 Freeze and read microstore

The ability to read the microstore is provided by the freeze state.
As has been indicated for single cycling, the input to the MIR represents
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the key to gaining access to the microcontrol and to the processor. To
execute a microinstruction, it is necessary to load the low 16 bits of the
mir. To access a particular word in the microstore, the upper 16 bits
of the 32-bit register are loaded. Similar to loading a microinstruction,
the same type of operation of the maintenance channel is required for
loading the upper 16 bits (Na field). Once in the mir Na field, the
microstore address is gated up to the mar by the normal clock
timing. At this point, the processor uses a control signal from the main-
tenance channel to set the freeze flip-flop and also to clear the sror
flip-flop. Note that the srop flip-flop must be cleared because, in its
set state, it jams a hard-wired address into the mar. When set, the
freeze flip-flop inhibits further clearing of the MAR after the register
contains the address loaded from the maintenance channel via the
upper half of the MIgr.

One of the added benefits of this implementation is that the inhibiting
circuitry on the MAR is already provided. As previously described, the
data command functions by inhibiting the clearing of the MaAR and
adding a 1 to it to obtain its next address. Thus, only a single flip-flop
is required to buffer the freeze control signal from the maintenance
channel. The output of this freeze flip-flop is ored into the inhibit
circuitry already implemented on the MAR.

Once an address has been loaded and frozen in the MAR, the contents
of this address are presented on the outputs of microstore on a de basis.
The maintenance channel can now read the upper and lower halves
in succession and send the response back to the controlling source
(i.e., the other processor). If another word is to be read out of the
microstore, the maintenance channel must first put the processor
back into the stopped state so that the output of microstore will re-
turn to all-zeros state, allowing the oring into the input of the MIR
again.

6.4 Start microcontrol sequencing

When an arbitrary address has been frozen in the Mar, the mainte-
nance channel can easily implement a start (beginning at this address)
of the normal microsequencing by clearing the freeze flip-flop. The
ability to start the microcontrol at an arbitrary address gives the
maintenance programmer added flexibility, but the primary source of
initiating a microcontrol startup is via the mrr hardware. The advan-
tage of using MrF hardware is that it jams a number of key flip-flops in
the machine to a predetermined state and then transfers control to the
microcode by use of a hard-wired constant into the MARr. The result
is an MRF sequence that can start from an unknown state and go first
to a known state determined by initializing flip-flops and then to a
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running condition using minimal hardware. This MRF sequence is
invoked by the maintenance channel when a fatal or serious error is
detected in the on-line processor. When this error is detected, the on-line
processor stops. In turn, maintenance initiates a switch message which
results in an MRF or start-up to the off-line processor.

6.5 Microinterpret

Microinterpret allows microinstructions to be stored in main memory
of the on-line processor to be executed by the microcontrol of that
processor (Fig. 16). One of the advantages of microinterpret is that
maintenance instructions (being nonreal-time critical) can be performed
without using microinstruction sequences stored in the costly micro-
store. The maintenance programmer, therefore, has the full use of the
microcontrol and yet has the freedom to write microinstruction in a
manner best suited to his needs. Not only does the microinterpret
reduce microstore requirements, but, as described later, its implemen-
tation is such that a very minimal amount of additional hardware is
needed to design it into the processor’s architecture.

The microinterpret mode essentially allows the enhancement of the
instruction set in the on-line processor to perform maintenance-oriented
or seldom-needed functions at a minimal cost. The maintenance
channel, on the other hand, provides the diagnostic capability to detect
and locate troubles in the off-line processor as well as to monitor the
general state of affairs in that off-line processor.

The initiation of the microinterpret mode is performed by one of
two macro-level or codes which are executed in the normal manner
by the microcontrol. One or code indicates a single-cycle microinter-
pret; the other indicates a multiple-cycle microinterpret instruction.
The microsequence of each op code first sends the main memory on
for the next instruction located at pa + 1. This fetch request is per-
formed in the usual manner by the ca, cB bit combination set to the
fetch state. At this A + 1 address, a microinstruction is stored (ie.,
two 4-out-of-8 codes instead of an op code). The next step of the micro-
code is to set or clear the general-purpose microcontrol test bit, TR1.
The microinterpret op code determines whether TRl is set or cleared.
If only a single microinterpret instruction is to be fetched from main
memory, the TR1 bit is set.

The third and last function of the microinterpret op codes results
in setting the microinterpret (mint) flip-flop. Setting the minT flip-flop
enables the next word fetched from main memory to be gated directly
from the sIr to the Mir To and FroM fields. As shown in Fig. 16, this
gating is also conditioned on the No = ALL zERos and the pr bit = 1,
exactly analogous to the loading of a new op code. As a result, the
mierostore loops on the all-zeros address until the main memory has

222 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



uorysjuswadur ja1dejurotA—91 “Jig

PROCESSOR DESIGN IN ESS 223

430023a 4300230
Wo44d oL v Vv
N 1L 8V
| I 4400
T T “ T 1
LL10 L1000 ﬁ 1000 LOLL XXAX XXXX XAXX “x__. “_.“u
1 0 Lhy | 1
[ ]
HYW 4 T
m 11101000 ” L000LOL L
3JHOILS 0 L8 Sl
WYHO0H40HIIW
st
HYW
T T 1
0000 0000 — 0000 0000 XXXX XXXX XXX _x“_.“_._o
1 1
{ 0
A)
\ 3HOLS
N L 3NO.. gHOom ’ NIVA
40 SLN3LNOD JTOAD0HIIW 3NO 40 AVI3Q—-—
¥N NI SOH3Z 1TV
L=1NIW

l=4d



completed the fetch for the microinterpret instruction. When the store
has indicated a completion, a 1 is jammed into the MaAR, and the gating
from the sir to the MIR is initiated (see next paragraph). The next
address for the microcontrol is then at location 1"’ where the start of
the special microsequence handles the microinterpret operation. At
word “1,” the ca, cB bits are again in the fetch state. They result in
the PA + 1 being loaded in the sar so that the next instruction will
be fetched. This instruction can either be a microinterpret instruction
or a normal op code which is determined by the TR1 bit. The micro-
control tests this bit and, if it is set to the single-cycle microinterpret,
a microinstruction clears the mint flip-flop. When this flip-flop is
cleared, the microcontrol is returned to its normal state and loops on
all zeros. At the completion of the store request in progress, the con-
tents of the sir are loaded to the MaR to begin the next op code cycle.
If Tr1 # 1, then a multiple-cycle microinterpret is assumed. Each
time the main memory fetches a new microinstruction, the contents of
the sir are gated to the Mir and the cycle is repeated. The termination
of the multiple-cycle microinterpret is indicated by clearing the minT
flip-flop. This is accomplished by having the last microinstruction of
a microinterpret multiple sequence clear it.

When a microinstruction is performed by microinterpret, the two
4-out-of-8 codes representing that instruction are gated from the sir
to the mir To and rroM fields. This gating takes place only once. It is
coincident with the reading of the contents of the microstore word
located at address “1.” Address “1”’ is unique in that it contains all
geros in its To and FroM fields. As a result, the contents of sir can be
gated into the MIr To and FroM fields. In this way, a gating signal need
only be applied to the sir, and no new circuitry or eritical timing is
required to gate the control fields into the mir itself, as shown in Fig. 16.
Note that a delay of 1 microcyele is required from the time the comple-
tion signal is given (i.e., bk = 1) to the time the gating is enabled from
the sIr to the mir. The all-zeros location cannot contain all zeros in
its To and FroM fields since the ALL zEROs is used as a looping address
to await main-memory completions. All zeros in the To and FROM
fields would cause the 4-out-of-8 checker to indicate an error, stopping
the processor.

The operation of the microinterpret instructions is also self-checking.
It must sequence properly and provide valid 4-out-of-8 codes to the To
and rrowm fields or the already-described check circuits will fire.

6.6 Maintainability

One of the most beneficial results of microprogram control design
from a maintenance aspect is the absence of complex timing circuitry.
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The clock consists of only an oscillator and a simple circuit to generate
four clock phases. In addition, these clock phases are used almost
entirely within the microcontrol itself. Use within the microcontrol is
limited for the most part to gating or strobing data and control in-
formation into the MAR, MIR, and RAR registers. The loss of these gating
pulses will typically cause the contents of the affected register cells to
be stuck in a “1”" or “0” state, resulting in immediate fault conditions
in the check circuit monitoring these registers and their outputs. This
is contrasted to a conventional machine that uses complex timing and
clock pulses to avoid race conditions and the like in such areas as the
command decoder. In addition, in a conventional machine, the clock
is typieally distributed throughout the entire processor, making fault
analysis difficult. If a fault does occur in a clock phase that is designed
to eliminate spikes or race conditions, the problem of fault diagnosis
becomes very difficult. A fault of this kind is hard to reproduce con-
sistently and may elude the diagnostic programmer because of its
possible transient nature. In addition to the simplified clocking scheme,
the inherent regular structure of a microprogram control machine lends
itself not only to a self-checking philosophy but also to the diagnosis of
the fault.

VIl. LOGIC IMPLEMENTATION OF THE MICROCONTROL

The microcontrol is contained on eleven 1A-type logic-cireuit packs.
A total of 2948 gates are used to implement the microcontrol. Of these,
1158 gates are used in the microinstruction decoders and the check
circuits. The remaining 1790 gates are used to design the sequencing
logic and its check circuits. Approximately 30 percent of the gates in
both the decoders and sequencing logic are associated with check logic.
The 2948 gates used in the microcontrol represent approximately 20
percent of the total gates used in the processor.

The standard processor will use approximately one-quarter of the
microstore’s maximum address space (4K* 32-bit words). These 1K
words are used as follows:

Funection Words

Implementation of the op code set 560
Central control (man-machine interface)
panel function 200
Initialization sequencing 75
Initial program load from bulk storage 125
Interrupt handling function 60

*K =21024.
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VIll. ADVANTAGES OF THE MICROPROGRAM CONTROL DESIGN

The use of microprogram control in this processor provides the
following advantages:

({) A uniform processor architecture. This uniformity is very
amenable to the self-checking design incorporated into the
processor complex.

(43) An easily maintainable processor. The microprogram control
design allows external access via a maintenance channel with
a minimal amount of circuitry. Access at the most elementary
level of control of the processor provides diagnostic access to -
the entire machine.

(#45) A very flexible design. This flexibility is present in many aspects
of the processor design. Some of this flexibility is the capability
to easily change control features ; some of it is the ease in which
complex control sequences are incorporated into the micro-
control itself. For example, there are

(1) An easily changed macro-level instruction set.

(2) Speed-independent interfaces to main memory and to
peripheral units.

(3) An extensive and complete interrupt structure that can
be adapted to each application.

(4) A complex and yet versatile initialization procedure.

(56) A powerful and easily maintainable console panel.

(i) Easy integration into an Ess environment to provide a system
that can immediately detect faults, recover quickly from them,
and then provide the necessary diagnostic access and repair.
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APPENDIX A
1/0 and Its Microcontrol Interface

The interface between the processor and its periphery is primarily
performed by serial 1/0 channels. The interface between the micro-

226 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1976



control and the autonomous circuitry that controls the 1/0 sequencing
is described in the subsequent paragraphs.

The 1/0 control for the processor consists of expandable, semi-
autonomous, functional units called 1/0 main channels. The archi-
tecture of the processor provides the ability to add as many as 20 1/0
main channels. Figure 17 shows a single 1/0 main channel and the major
data paths that connect it to the processor. A favorable attribute of
the interconnections between the processor and the 1/0 main channels
is the relatively loose coupling between them. Within the processor,
three general registers, R9, R10, and R11, provide interface with 1/0
channels. R9 and R10 send control and data, respectively, to the
channels. R11 receives data from the channels. The direct outputs of
registers R9 and R10 are presented directly to the 1/0 channels.

The channel select (cs) field of R9 selects which one of the 20 main
channels is to be enabled. The decoding of this 3-out-of-6 channel
select results in gate cs becoming enabled. Once a main channel is
enabled, microinstruction enables the low-order 12 bits of R9 to be
gated into the selected 1/0 status (108) register. Similarly, another
microinstruction enables R10 to be gated into the 1/0 data (10D)
register. The advantage of such a gating scheme is that the timing
problem in the interface is greatly simplified. That is, R9 and R10 can
be loaded with a normal register-to-register gating instruction and on
subsequent microcycles, microinstructions can be used to gate the
contents of these registers in the selected 1/0 main channel. In this
way, as soon as R9 and R10 are loaded, the data ripples out to the
designated 1/0 channel. Then, when the microinstruction that gates
these registers into the channel becomes active, the data are stable at
the input to the designation point. In an analogous way, the output of
the 10D of the selected channel is gated into R11 with a miscellaneous
decoder crosspoint. Elimination of the timing problem also means that
the variability of the fanout, seen when 1/0 main channels are added,
does not pose a problem. The flexibility afforded by this gating scheme
and the use of microprogram control also facilitate the design of com-
pletely different 1/0 interfaces, such as a parallel-to-parallel interface
rather than the standard parallel-to-serial.

The actual operation of the channel consists of loading the 10s and
the 10D and then issuing a microinstruction crosspoint that starts the
autonomous sequencing. It should first be noted that each main channel
consists of 20 subchannels which provide fanout to the peripheral
units and time-share the control and sequencing logic of the main
channel. The sequencing consists of shifting the data loaded into the
10D, together with a start code that is prefixed onto the front of the
message, and into a serial data link. The serial message is transmitted
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on the serial data link using a phase-encoded bit stream (6.67 MHz per
bit) so that a separate cloek signal is not required at the receiving end.
Once the message has been shifted out of the 21-bit 1op, the 1/0 con-
trol continues to send a pulse stream out on the serial link. This pulse
stream is used to provide the timing information for the peripheral
unit and is required to send a response message back to the sending 1/0
channel. Therefore, as soon as the outgoing data are shifted out, the
1/0 control begins to monitor the incoming port. When a leading one is
detected on the incoming message, the 1/0 control stops and sets a flag
which the processor can interrogate. The processor can either return
to executing other instructions or it can go into a loop, testing the
completion flag just described. The microcontrol actually tests the
state of the 1/0 channel by again using a microinstruction to gate the
output of three states of the channel directly to the Mcs register.

In the processor design, self-checking was achieved by partition-
ing the logic to obtain certain failure modes so that the check circuits
could ensure fault detection. In instances where this partitioning be-
came an unworkable solution, duplication was used, such as for the
pML. For the implementation of the 1/0 channels, it is impractical to
partition the logic to force single bit errors; however, it is also not
economical to duplicate the channels. Three solutions were used to solve
the detection problem. First, m-out-of-n codes were used in the control
fields. Second, a loop-around test is performed on the data paths. Third,
the parity check code carried with data within the processor is trans-
mitted to and from the periphery as well. The m-out-of-n codes are
checked using the same method as for the To and FroM codes in the
processor. The data check is performed by gating R10 to 1op and then
returning the rop to R11. Then a match is performed between R10
and R11 using the pmL match hardware as previously outlined. This
matching technique results in trading speed for hardware. Since the
overhead for performing the match does not represent a significant
real-time penalty, the choice is well justified. Parity is checked when
data are received at the peripheral units and also when data are re-
turned to the processor, as previously described.

APPENDIX B
MAR-RAR Maiching

When the microprogram control was designed, an analysis was done
to determine the type of faults that were most probable. Check schemes
were then designed to detect these faults. A complete report of this
work is given in Ref. 10. One of the areas of the microcontrol where it
was difficult to use coding techniques to detect multiple faults was in
the sequencing logic. That is, it would be disadvantageous to use any-
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thing other than a normal binary code to implement microstore address-
ing. As outlined in the reference, a check of the binary decoding of the
address in the microstore address register (MAR), the access of the
correct word in the microprogram store, and the proper readout are
performed by using a simple parity check scheme and by interleaving
binary-encoded words with m-out-of-n encoded words in the micro-
program store.

However, to ensure that the proper address is loaded into the MaR,
duplication is required for detection. The amount of hardware required
to implement the duplication is minimized by time-sharing some
circuitry. As a result, only the addition of an 11-bit matcher was re-
quired to perform the duplication-and-match function.

The hardware involved and the data flow are indicated in Fig. 18.
As described in the section on microcontrol sequencing, when a new
op code is loaded from the sIr, it is gated into 1B, MAR, and into RAR.
The op code is loaded into the 18 because the operand fields X and ¥ are
normally used directly by means of the translators attached to the
outputs of the 18. The op code is loaded into the MAR to access the first
word of the microsequence for that op code. The or code is loaded into
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Fig. 18—mAR-RAR matching.
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RAR to check that the op code is correctly loaded into the mar. This is
achieved by the matcher being placed between the outputs of the MAR
and rAR. The reason for duplication and matching is that it is not pos-
sible to predict the type of multiple fault that might exist when loading
the MaR if it is not bit-sliced. The sir and the 18 are bit-sliced. There-
fore, any multiple fault within a single bit-sliced circuit pack will be
guaranteed to cause a parity failure if the data are indeed in error. For
the MAR and MIR, it is not economical or, for that matter, practical to
bit-slice them. Thus, the bit-slicing of the sir and its parity check code
together with the duplication and matching of the MAR provide a
complete check on the loading of the new or code into the MAR.

As each word is accessed and read out of the microstore, it is gated
into the MIr. The Na field of the MIR is then gated into MaR. To check
that this gating is correct, the Na field when gated out of the micro-
store is also gated into the RAR. As a result, a match can again be
performed between the MaRr and RAR to check for error-free operation.
This same technique of loading the rar with the same contents as the
MAR is performed for indexing and loading the interrupt constant, the
MRF constant, and the sToP constant.

Note that the match is performed only over bits 1 through 11 of the
MAR and RAR. This simplifies implementation because of the number
of operations that can change the state of bit 0. For example, condi-
tional transfers alone have nine different ways of jamming bit 0 to a 1.
The result is that the rar is loaded exactly the same way for condi-
tional transfers as for the normal sequencing case, and again the match
is performed. If bit 0 is in error, the parity check on the sequencing will
detect it.

The data and auxiliary control sequencing cases are slightly different.
As described in Section 5.3, the next address for these commands is
obtained by saving the previous contents of the MAR and jamming
a 1 into bit 0. The fact that the address presently residing in the
MAR was checked when first loaded into the Mar simplifies the design.
The ca bit, which, when equal to 1, indicates either a data or auxiliary
control is to be performed, is also used to inhibit the MAR-RAR matching
for that cycle since the RAR has data in it for these two cases. Since data
are loaded into the rAR as well as into the Mmir (na) field for a data
command, a subroutine return can be easily implemented as described
in Section 5.2. During the subroutine, the MAR-RAR matching is dis-
abled. As a result, if a sequencing error occurred during a subroutine,
it may go undetected for a few microcylces. However, as soon as the
microcontrol exits the subroutine and returns to the update mode
(rU = 1), the matching will again be enabled and a ‘“stuck at fault”
will quickly be detected.
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GLOSSARY

AR General-purpose buffer
register in the oML logic

BA - Branch allowed

BIN  Block interrupts

BR General-purpose buffer
register in the oML logic

oA Control bits

CB

cc Central control

DB Display buffer

pML  Data-manipulation logie

DR Data ready

FN Function register

GB Gating bus

1B Instruction buffer

I.D Instruction or data

M Interrupt mask

1/0 Input/output

10D I/0 data register

108 1/0 status register

18 Interrupt set

MAR  Microstore address regis-
ter

mcH  Maintenance channel
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