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We study the steady-state loss of a fiber with random, nearest-neighbor
coupling and compare it with the mode with the lowest loss of a cavity
formed from a section of the same type of fiber. We find that the loss of
the cavily 1is not identical with the loss of the steady-state distribution of
the fiber with random coupling. In fact, fiber and fiber resonator behave
very differently if the fiber mode of highest order is made very lossy. The
loss of the steady-state distribution of the fiber with random, nearest-
neighbor coupling approaches a weighted average of the losses of its in-
dividual modes plus a contribution from the coupling coefficient that couples
the highest-order mode to its neighbors. The cavity loss, on the other hand,
becomes independent of the coupling coefficients and of the loss of the
highest-order mode, provided this loss becomes much higher than the coupl-
ing strength. This behavior leads us to conclude that the loss of the cavity s
a weighled average of the losses of all those modes whose coupling strength
exceeds their (individual, uncoupled) loss coefficients. Two resonator modes
with propagation constants 3, and 3 remain uncoupled unless they satisfy
the condition 8, — B2 = 2wn/L, where n is an integer and L is twice the
length of the resonator.

I. INTRODUCTION

We consider a multimode optical fiber with random imperfections.
It is well-known that any type of imperfection built into a fiber causes
coupling among its guided modes.'® In a long fiber, the distribution
of average power versus mode label approaches a steady state that
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can be described by a steady-state loss coefficient and a unique distri-
bution function.?

Now assume that we take a section of this fiber, place reflectors
at either end, and observe the steady-state power distribution of this
cavity. Without giving the matter much thought, we might expect
the steady-state power distribution of the resonator to be identical
to the steady-state power distribution of the long fiber. However, this
is not the case. Mode coupling in a resonator has a very different
effect on the steady-state power distribution and its loss coefficient
than coupling in a long fiber. The reason for this difference in behavior
is the fact that the wave traveling back and forth in the resonator
experiences a periodic structure whose Fourier transform has a line
spectrum. In a resonator of length L/2, two modes with propagation
constants @; and B, are effectively coupled only if they satisfy the
condition 8; — B2 = 2wn/L, where n is an integer. The losses and
steady-state power distribution of the long fiber and the corresponding
fiber resonator are very different. It is the purpose of this paper to
clarify these differences.

We dramatize the difference of the fiber and the resonator by con-
sidering a fiber supporting only two guided modes. Furthermore, we
assume that one of the two modes is relatively very lossy (in the
absence of coupling), while the other mode has either no loss at all or
very much lower loss. In a long fiber, the loss of the steady-state
power distribution turns out to be the sum of the loss coefficient of
the (uncoupled) low-loss mode plus the power-coupling coefficient of
the two modes. This result is intuitively pleasing. It says that there
are two independent loss mechanisms that reinforce each other
additively—the loss of the first mode (in the absence of coupling to its
high-loss companion) and the eoupling of the low-loss mode to the
high-loss mode. Since the high-loss mode carries practically no power,
coupling of power to this mode appears directly as a loss coefficient.

Naively, it should be expected that the same behavior occurs in the
fiber cavity. However, this is not true. In the resonator, the loss of
the resonant field distribution is identical to the loss of the low-loss
mode alone. Coupling between the two modes has no influence on the
loss of the resonator, provided that the loss of the second mode is very
high compared to the coupling coefficient. It is hard to understand
this situation intuitively. In the periodic structure (the resonator),
the field apparently manages to shape itself in such a way that it
avoids carrying power in those regions that provide high loss. Since
the structure is periodic, the field passes over the same region again
and again, adjusting itself to the unfavorable loss situation. In the
long fiber with random coupling, no such adjustment is possible. The
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field does not have the chance to establish a normal mode and is
confronted with a new, random-coupling situation in each section of
the fiber. In this case, coupling to the high-loss mode simply subtracts
power from the low-loss mode that is irretrievably lost.

The results presented in this paper are needed for the discussion of
scattering losses in a fiber laser that is the subject of Ref. 4.

Il. TWO-MODE CASE

For a fiber supporting only two modes, the problem can be solved
easily. We deseribe each mode by its amplitude coefficient a; and a..
The interaction of the two modes is desceribed by the familiar coupled-
wave equations® (self-coupling coefficients only modify the real parts
of the propagation constants and are therefore omitted),

dﬂl

= —iy18; + K209 (1)
d .
—&%E = —1uy2 + Kaa. (2)

The complex propagation constants v contain the loss coefficients
ai,2 of each mode in the absence of coupling,
Yn = Bn — lan n=1,2. (3)
The coupling coefficients obey the symmetry relation®
Ky = —K5. (4)

It is convenient to express the z-dependence of Ky explicitly (K is
real),

K, = ﬁKf(z) (5)

To first-order perturbation theory, it is only the Fourier com-
ponent of f(z) at the spatial frequency 6 = 3, — B2 that contributes
to coupling between the modes.® This allows us to write (1) and (2) as

% = —iya, + iKbase i@~ (6)
%12—2 = —iywas + iKbae!#rp2), (7)

We have assumed that
flz) = p; 2b, cos 6,2, 6, = gg v, (8)

with real values of b,, and have included in (6) and (7) only the terms
in (8) that contribute to mode coupling, dropping the index on b,.
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We introduce new variables A; and A4, by the definitions

ai(z) = A, (z)e¥idi—p: ©)

and
az(z) = Az(z)gh(ﬂl-ﬁl)f’ (10)

and obtain, by substitution into (6) and (7),

% = —16,4; + icAs (11)

and
%1; = —14dsd, + icd,, (12)

with
6, = 3(B1+ B2) —dan n=1,2 (13)

and
¢ = Kb. (14)

Equations (11) and (12) represent two modes coupled by a constant-
coupling coeflicient. These equations are not exact representations
of the starting equations (1) and (2), but they are good approxi-
mations. Comparison has been made of the results of this theory
with the result of an exact theory of a two-mode model using a straight
fiber with discrete offsets alternating periodically in opposite directions.
The exact theory agrees with the approximation presented here, pro-
vided that the differential loss of the modes is small,

4
|er — oz <i (15)

and that the following condition holds to an accuracy on the order of
Ial - Otsl H :
2
Br—Fr=TFm (16)
with n indicating an integer. If (16) cannot be satisfied for any integer
n, the two modes remain effectively uncoupled. Our derivation makes
it clear that the coupling process is periodic with a period

2w
L=mn B1 — B2 (a7
A periodic structure of this type can be used to represent a resonant
cavity. It is only necessary to envision the field traveling back and
forth in the resonator; when we unfold the resonator of length L/2,
the periodic structure results.
We now consider the normal modes of the coupled-equation system
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(11) and (12) by asking for solutions of the type

A” p— B“e—(i.'!!)(ﬁ1+82)zg—n‘z n = 1, 2, (18)
with constant coefficients B; and B.. Substitution of (18) into (11)
and (12) results in the equation system

(¢ — a1)B1 + 1By =0 (19)
and
icBy 4 (¢ — a2)B2 = 0. (20)

The requirement that the determinant of the equation system (19)
and (20) must vanish leads to the determination of the two eigenvalues,

o™ = Yoy + az) — V(a2 — a1)? — 4c? (21)

and

¢® = 3(ar + @) + 3V(o2 — @)® — 4% (22)

The amplitude coefficients can be expressed as
*) —
Bp = i"——c Npp  k=1,2 (23)

The actual field amplitudes may now be expressed as a superposition
of the two normal modes of the coupled system. Only the normal mode
with the lower loss survives for z —« so that the steady-state loss of
the resonator is given by the eigenvalue (21).

It is interesting to distinguish two cases. For strong coupling,
¢>> |as — a1|, we have, from (21),

Re (0'(”) = ‘}(cq + az). (24)

For weak coupling, ¢ < |az — o3|, we have, instead,

Oy —S (25)

oy — a)

Next we consider the long fiber with two randomly coupled modes.
It is possible to derive the solution for this case directly from the
coupled wave equations (1) and (2). However, the same result is
obtained from the corresponding coupled power equations®’:
(Pn = (la.|?),

Py = —2a,P + h(Ps = P) (26)
and
dP
d—z” = —2aP; + h(Py — Py). (27)

The power coupling coefficient is?

h = R2{|F(8)]%), (28)
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with the Fourier transform of f(z) defined as?
1[r
- iz = by L. 2
FO) = 3 [ vz = I (20)

The coefficient b is defined by (8) and (14) and L is the length of the
periodic structure or twice the length of the resonator. According to
(14), (28), and (29), the coupling coefficients ¢ and h are thus related as

h = ¢L. (30)

A steady-state solution for the long fiber with random coupling is
again obtained with the help of the trial solution,

Pn = Qne_zpz- (31)
We find, from (26) and (27),
p® = F(ar + ar + h) — 3V(a — @) + 12 (32)

S e 9 N ¢

The smaller eigenvalue is the steady-state loss coefficient.” In the case
of strong coupling, h >> |@2 — ai1|, we have, from (32),

and

- 2
b0 R R (e + ) — (34

while we obtain, in the case of weak coupling, h < |az — ail,

h2
1) m~ P e —
p i~ al + zh 4(&2 _ al) (35)
The power coefficients are related in the following way:
h— 2 4+ 2
Q2 = ———E'h'-ﬂ_—m Q.. (36)

IIl. DISCUSSION OF THE TWO-MODE CASE
We are now ready to compare the steady-state losses of the long
fiber and the fiber resonator. In case of strong coupling, we have

approximately
c® = L(ay + a2) (37a)
for the resonator and

P = 3(ay + az) (37b)

for the long fiber. Strong coupling ties the two modes together so
effectively that the steady-state losses are equal to the average losses
of the uncoupled modes in either case. From (21) and (23), we find
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B; = B, and from (36) Q. = @, if the coupling coefficients are very
much larger than the loss coefficients. We thus see that both modes
carry equal amounts of power in the strong coupling case. There is no
difference in loss behavior between the resonator and long fiber if the
coupling is strong.

The situation changes for weak coupling. From (25), we have in the
limit ¢2/a; — O for the resonator

o = a, (38)
while (35) yields for the long fiber
p® = ay + }h. (39)

In the resonator, coupling to a relatively lossy mode has no effect on
the loss of the steady-state field distribution. The solution of the
exactly solvable model shows that this is true even if (15) and (16)
are not satisfied. The resonator loss becomes equal to the loss of the
low-loss mode as though coupling were absent. In the fiber with random
coupling, (39) shows that the steady-state loss is equal to the sum of
the inherent loss of the low-loss mode plus half the power coupling
coefficient. Coupling to the high-loss mode thus expresses itself directly
as a loss factor. The power ratios of the two modes are also of interest.
From (23), (25), and (30), we find for the weak coupling (or high-loss)
resonator case

By
B,
For the randomly coupled fiber we obtain, from (35) and (36),

:_ h 4
- 4(&2 - al) (0!2 - al)L (40)

Q: _ h )
Q1 4(az — a) 1)

IV. THE MULTIMODE CASE

We have seen in the section on the two-mode case that we may
consider coupled wave equations with constant coupling coefficients
if we suitably redefine the mode amplitudes. In addition, we shall
assume that only modes that are nearest neighbors are coupled in the
resonator or long fiber. This assumption is justified by the observation
that the Fourier components of the coupling funetion f(z) tend to
drop off very rapidly with increasing spatial frequencies so that
coupling of modes that are not nearest neighbors (such coupling is
caused by Fourier components with higher spatial frequencies) is
much weaker than nearest-neighbor coupling. In addition only modes
satisfying (16) are coupled to each other. Consider the coupled equa-
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tion system,

d(;i’ = _'l';'YvAv + KII.II—IAH—]. + Kv,H-lAlH-l v = 1! 2! T N' (42)

We have shown for the two-mode case that we may assume the real
parts of all v,s are identical,

Y. =8 — 1oy, (43)

A normal mode solution of (42) is obtained with the help of the trial

solution,
A, = Byeifge, (44)

Substitution of (44) into (42) results in a homogeneous algebraic
equation system whose determinant must vanish. For N = 6, the
determinantal equation assumes the form

ar—a —K; 0 0 0 0
K, as—a —Ks 0 0 0
0 Kz a3 — a '—Ka 0 0 _
0 0 Ki ai—a —K, 0o |~ (45)
0 0 0 K, a; —a —K;
0 0 0 0 K; ag — a
For strong coupling with K, > ay; v, s = 1,2, +++, 5 but as >> o, and

as > K,, the smallest real root of this equation may be approxi-
mated by

a1 KK} + a:K3K} + a:KiK3 + KIK3KE/ (s — o) (46)

KIKI + KiK} + KK} |
We have assumed that the guided mode of highest order, » = 6 in
this case, is coupled very strongly to the radiation modes so that its
loss coefficient is much larger than that of all the other guided modes
and also larger than the coupling coeficients among the guided modes.
This assumption is usually made in the analysis of fibers with many
coupled guided modes.? For the special case K= Ky = ---K;s
= const., (46) simplifies to

K2

a = %(d1+as+a5)+m' (47)
For weak coupling, K, < a,, we have the approximation
2
o= o + K (48)
as — a1

Here we assumed that a; < as < - -as, in this case, (48) represents
the smallest solution of (45).
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The corresponding coupled power equations may be expressed in
the form

P, |
Ot = —@ay t by + h)Py + haPri + BPrp (49)

The trial solution
P, = e2az(), (50)
leads to the algebraic equation system
(2av + hr—l + hv - 2“)Qr - hv—le—l - thH—l = 0. (51)

The eigenvalue « is obtained as the solution of a determinantal equa-
tion which, for six modes, assumes the form

(2a14-h1—2a) =h 0 0 0 0
—-h (2as+ha+h1—2a) —hsa (1] 0 0
0 —ha (2as+hs+hz—2a) —hs 0 0 =0. (52)
0 0 —ha (2ai+hithi—2a) —ha 0 :
0 0 0 —ha (2as+hs+hi—2a) —hs
0 U 0 0 —l'll (2ds+}l|— 20)

For strong coupling (in the sense used in the cavity case), we obtain
the following approximation from (52) in the special case h, = h
= const.,

h?

1 (51 + 4as + 3as + 204 + as5) + ;—0 ~ B0ag (63)

*T15
For weak coupling we find
a = a+ 3hi. (54)

V. DISCUSSION OF THE MULTIMODE CASE

If we consider that the losses e, are caused by random coupling
between guided modes and radiation modes, we may assume the
following dependence® ™ on the mode label »:

dy = alvz. (55)

If the Fourier amplitudes b, in (8) were independent of the spatial
frequency, we would have?

K, = Kp? and hy, = hyt. (56)

However, the assumption of nearest-neighbor coupling becomes
questionable in this case. It is natural to consider the case

K, = K, = const. and h, = h; = const., (57)

and in our discussion of numerical examples we also include the case
of decreasing coupling strength between neighboring modes of higher
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order,

Pl

tel_t-

K, = -I& and hy =

v v

(58)

Numerical solutions of the eigenvalue equations (45) and (52) were
obtained by computer. The relation between the coupling coefficients
K, and A, is given by (30):

h, = LK?, (59)

but for the purpose of comparing the long fiber with the fiber resonator
it seems more realistic to choose instead

Kl = %hh (60)

because this choice yields the same ratios of coupling coefficients to
attenuation coefficient for mode 1 and mode 2 according to (45)
and (52).

Table I lists numerical values of the lowest eigenvalues of (45)
and (52). It was found that, for strong coupling with K, = const.,
the lowest eigenvalue of (45) is of the form

a = ar =+ ta;. (61)

The imaginary part of this expression is simply a correction to the
propagation constant of the normal mode solution, while the real part
has the meaning of the loss of the normal mode of the cavity. However,
since the solutions of the cavity loss coefficients are not real, our
approximate solution (46) does not apply because the approximation
(46) yields the smallest real eigenvalue of (45).

Table I shows that (with two exceptions) the cavity losses are
generally lower than the losses of the corresponding fiber with random
coupling. This fact is in agreement with the two-mode case. Further-
more, the numbers in the table show that an increase of the loss of
mode 6 increases the steady-state loss of the fiber with random mode
coupling while it decreases the loss of the fiber cavity. This behavior
is in qualitative agreement with approximate formulas (47) and (53).
In addition to the exact solutions of eigenvalue equations (45) and
(52), Table I also contains entries for the approximate solutions
obtained from one of the appropriate formulas (46), (47), (48), (53),
or (54). In comparing the approximate and exact solutions for the
cavity, we must remember that approximations (46) and (47) do not
necessarily yield the eigenvalue with the lowest numerical value.
In fact, only for the case K, = Ky* and for small values of
K, = K, < a, do the approximations apply to the solution with the
lowest loss. However, comparison of the exact and approximate values
in Table I makes it apparent that the approximation provides a
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Table |—Loss values of the cavity mode with lowest loss and
steady-state loss of the corresponding fiber with random
coupling. Exact solutions of eigenvalue equations (45)
and (52) are compared with approximate solutions

ak
hy K, AK, as Exact Approximate
Cavity Fiber Cavity Fiber
- _ 82 4.484 X 107¢ | B.626 X 1078
hot | Ko® | 1078 1 D0 | 10923 X 1076 | 1.022 X 1075 | 1.95 X 1075
hi/v | Ki/v | 1075 5108 3.223 X 1078 | 3.129 X 1075 | 1.77 X 1075
h K 1077 sl 1.003 X 10°% | 1.097 X 10~ | 1.00 X 1076 | 1.10 X 10-¢
hy K, 10— as10? 1.361 X 1076 | 1.758 X 10~ | 1.00 X 10~¢ | 2.00 X 10-*
. K 105 a1B? 6.383 X 10-¢ | 4.321 X 10t
asl08 6.415 X 107¢ | 4.322 X 10~® | 1.17 X 1075 | 7.67 X 107®
b | Ky 104 as10° 1.015 X 105 | 1.347 X 1075 | 1.17 X 10~5 | 1.37 X 1075
hy K 10— as108 1.017 X 105 | 8,681 X 1075 | 1.17 X 1075 | 7.37 X 107¢
A K 102 as108 1.050 X 105 | 8.159 X 10~% | 1.30 X 1075 | 6.73 X 104
! ! as10? 2,931 X 10+ | 7.112 X 10~

Note: av = a1p?, a1 = 1075/\, K1 = }h;, and » # 6.

reasonable order-of-magnitude estimate of the loss values of the cavity
modes and gives at least an upper bound to the exact values.

The approximate solutions for the fiber case with randomly coupled
modes do apply to the solution with the lowest loss. Comparison of
the exact and approximate values in Table I show that the approxi-
mations (53) and (54) are not very precise but again may be regarded
as order-of-magnitude estimates.

Table II shows the complete solution of the eigenvalue equation
(45) for the fiber eavity for a typical case: K, = K, = 100¥\, a1
= 107%/X\, a, = a1p? ag = a;103. As in all cases with K, = K> a,,

Table Il— Complete solution of eigenvalue equation of the fiber
cavity (45) for a particular case and comparison of the
exact solution to approximation (47)

7 ar a; Qappr
1 1.018 X 10-8 1.726 X 10~
2 1.018 X 105 —1.726 X 10~
3 1.162 X 10-5 1.001 X 10-*
4 1.162 X 107 —1.001 X 104
5 1.180 X 1078 0.0 1,180 X 105
6 2,500 X 10 0.0
Note: K, = Ky = 107%/A, a, = ap?, ay = 107%/, and as = as10° = 2.5 X 10~%,
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09

Ay, = 21078
Ky = 12K,
=4
0.8 hy =¥ Ky
ag = 1000 ag
K;=hy/2=1075n
07}
L
os}

Py

o

0.3
0.2

0.1

———
l ———
4 5 6

Fig. 1—Normalized power versus mode number distribution for the case of a
fiber with random coupling (solid line) and the lowest loss mode of the fiber cavity
(dotted line). K, = K1, b, = hot, K1 = 0.5k, = 1075/), @, = ap® with a; = 107%/A,

ag = 1000as.

g < 6, there are two sets of complex, conjugate solutions and two
single, real solutions. Approximation (47) yields the smallest of the
real solutions to a remarkable accuracy.

It is interesting to compare the distribution of power versus mode
number for the cavity and fiber cases. Figure 1 (and all subsequent
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figures) shows the normalized power P, as a function of the mode
label v. For Fig. 1 we used K, = K for the fiber cavity and h, = h;»*
for the fiber with random-mode coupling with K, = h,/2 = 10~%/\.
This and all the other figures were computed with a, = 10752/}, for
v=1,2, .-+, 5. In Fig. 1 we assumed as = «;10% Even though the
coupling strength is increasing for nearest neighbors with increasing
mode number, mode 1 carries by far the most power. Of course, we
have only plotted the power distribution for the mode with the lowest
loss. In the cavity case, there are solutions with the maximum power
in any one of the six modes. The coupled power problem of the fiber
with random coupling also has six different solutions. However, only
the solutions with the lowest loss value have physical significance® as
the steady-state power distribution. This solution is shown in Fig. 1
and the subsequent figures.

Figure 2 was drawn for almost the same condition as Fig. 1, except
that we used the law a, = a,»* for all six values of ». This has the
consequence that the loss of the mode of highest order, v = 6, is now
much lower than in Fig. 1 so that more power is carried by the higher-
order modes.

06
Ay, = 22106
Ky = 2K,
051
h, = u4h1
ag =62107°8
b9 =10-5
04k \\ Kq=h1/2=107/\
\\
\
o 0af \
_ —CAVITY
_
~
02k FIBER
0.1
\ -~
\ N
s
\ /, \\ -
| 1 |2 | N
1 2 3 4 5 6

Fig. 2—Same as Fig. 1 but with as = ;6%
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0.6
?\a,,=v210'6
e FIBER K, = Ky
0.5}
A _ 2
7\ _—caviTy hy = hyfv
, \ ag = 10005
04k < \ Ky =hy/2=1075
o 03
0.2
0.1}
| ]

1

Fig. 3—Same as Fig. 1 but with K, = K;/».

Figure 3 applies to the case K, = K1/», h, = hi/v?, with K; = hy/2
= 10-5/x. Contrary to the cases in Figs. 1 and 2, the coupling strength
is now decreasing with increasing mode number. It is interesting to
observe that the cavity as well as the fiber with random coupling
now carries more power in modes 2 and 3. The cavity solution with
the least loss now has higher loss than in the case in Fig. 1 (see Table
I). The loss of the steady-state power distribution of the fiber is,
however, reduced compared to the case in Fig. 1 (again see Table I).

The remaining Figs. 4 through 7 describe the case of constant
coupling, K, = K, with different values of K, and as. We see that
for very weak coupling most power resides in the modes with the
lowest loss, » = 1. As the coupling strength is increased, more power
is carried in higher-order modes. If we did not insist on making the
last mode (» = 6) very lossy, there would be equal power in all the
modes of the fiber with random coupling. It is interesting to observe
that there is a saturation effect ; comparison of Figs. 6 and 7 shows that
the power distribution remains unchanged for a further increase of
the coupling strength. Another interesting phenomenon is the different
shape of the power distribution for the cavity mode with the lowest
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loss and the steady-state power distribution in the fiber with random
coupling. Naively, one may have expected that the steady-state power
distribution of the fiber would also apply to the cavity case. Figures 5
through 7 show that this is not the case. In spite of the fact that the
cavity carries more power in the higher-order modes, Table I shows
that the cavity losses are generally lower than the fiber losses. The

cavity loss becomes high only when the highest-order mode has
relatively low loss.

09
1
\ Ay, = w2107
\
S ag = 10005
0sl- 7 CAVITY
\‘ Ky=hy/2=10"%n
|
|
07f \
\
|
\
06} \
05
£
a
0.4
0.3
0.2
0.1
]
5

Fig. 4—Same as Fig. 1 but with K, = Ky, h, = h, K1 = 0.5k, = 1078/X.
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0.6
Aa, = 21078

ag = 36a; OR 1000ag

_ —FIBER Ky =h,/2=10"5

04 /~
\
N\
N\
/ _—CAVITY
& 0.3 /
/
/
/
/

0.2 /

1 |
1 2 3 4 5

Fig. 5—Same as Fig. 4 but with K, = 0.5k, = 10~8/x. These curves are practically
independent of the loss value of a5; the curves for as = 36a; and as = 1000a;s are
indistinguishable on the scale of this figure.

V1. CONCLUSIONS

We have compared the losses and power distribution of a fiber
with random coupling and of a cavity made of a section of the same
fiber. We have shown that these two systems behave quite differently.
While the losses of the fiber increase with an increase of the loss of the
highest-order mode, the cavity losses decrease as the loss of the highest-
order mode approaches infinity. This behavior has been studied with
the help of exact numerical solutions of the eigenvalue equations of
these systems for six modes and is also apparent from approximate
solutions.

We may generalize our results for the fiber cavity as follows. We
have seen that the losses of the solution with the lowest eigenvalue
are higher than the loss of the lowest-order (uncoupled) mode. The
approximate formula (46) or (47) shows that the cavity loss is an
average of the losses of the individual, uncoupled modes. However,
the last mode, » = 6 in our examples, did not participate in this
average since its loss far exceeded the coupling strength. This behavior
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0.5

Aay, = #2108
ag = ag10°

04 Ky=hp/2=10_4fi

03 —~CAVITY
ra

Py

0.21-

Fig. 6—Same as Fig. 4 but with K; = 0.5h; = 107%/\ and as = a510°.

0.5
Aoy, = v210°6
a5=a5106
0.4 K, =hy,/2=10"2
I\
FIBER 7N
03l Prs y \ _—CAVITY
yd N
v ~
ot ; \
\
/ \
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leads us to conclude that the cavity losses are the average of the mode
losses of all those modes whose (uncoupled) loss values are less than
the coupling strength of neighboring modes. Modes whose losses
exceed the coupling strength do not contribute appreciably to the

cavity loss.

We have also indicated that two modes are coupled only if their
propagation constants satisfy relation (16). The likelihood that this
happens increases with increasing resonator length. In very short
resonators, most modes remain effectively uncoupled just because
they fail to satisfy condition (16). In long resonators, more modes
have a chance to satisfy the additional coupling condition (16), but
even here effective coupling ceases for modes whose losses exceed the
coupling strength.
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