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Many important properties of switching networks can be effectively
studied in the more general context of graph theory. In particular, the
various rearrangeability properties of a nelwork fall into this category.
If G is a graph with vertex set V = I U Q, we say G is rearrangeable
if, for all choices of distinct vertices, t1, 13, - - -, 2on I and ji, ja, -+ -, join
Q, there exist vertex disjoint paths between . and ji for all k. In this
paper, we determine the minimum number of edges any rearrangeable
graph may have for all choices of I and Q. We also discuss generalizations
in which V 1s strictly greater than I | Q and/or t 1s bounded by a pre-
determined value. The minimal rearrangeable graphs we construct can
be used to form efficient rearrangeable (and nearly rearrangeable) switching
networks of arbitrary size.

I. INTRODUCTION

Let G be a finite graph with vertex set V() and edge set E(G).*
Let I and Q be nonempty subsets of V() (not necessarily disjoint)
and let S denote the set

V)N IUQ = e V(@|veEI U Q).
We use the following terminology :

(i) A request is an ordered pair (z,y) with x € I, y € , and

z #y.

(77) A set of requests is called an assignment if each vertex in the
set occurs once at most.

(777) An assignment A is called realizable in ¢ (or we say G satisfies
A) if we can find a set of vertex-disjoint paths connecting x
and y for each pair (z, y) in A.

() A graph G is said to be rearrangeable if (7 satisfies any assign-
ment.

The problem we consider, first suggested by F. K. Hwang,? is to find

*I.e., E(G) consists of a preseribed set of unordered pairs of distinct elements of
some finite set V(G). Generally, we follow the terminology of Harary.!
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rearrangeable graphs with given I and with Q having the least possible
number of edges.

In this paper, we derive lower bounds on the minimum number of
edges that a rearrangeable graph can have (see Theorem 1 in Section
II). In addition, we also construct rearrangeable graphs which meet
these bounds so that these graphs are optimal by this measure. Finally,
we consider a generalization of rearrangeability, called k-rearrange-
ability, and we solve the corresponding problems in this case as well.

This study was motivated by questions of rearrangeability in
switching networks (see Ref. 3). The sets I and @ correspond to the
sets of inlets and outlets, respectively; an edge {z, ¥} of G corresponds
to a crosspoint between z and y. The optimal rearrangeable graphs we
construct can consequently be used to form efficient rearrangeable
(and nearly rearrangeable) switching networks of arbitrary size.

Il. BASIC PROPERTIES OF REARRANGEABLE GRAPHS

Let G be a rearrangeable graph with distinguished subsets I and @,
where we assume without loss of generality that |I| = n = m = |2].
For the bulk of the paper, we shall restrict ourselves to the special case
that S is empty, i.e., V(G) = I U Q.

If {z, y} is an edge of G, we say that x and y are adjacent and we write
z ~ y. Similarly, for T' C V (@), the notation x ~ T will denote that
z ~t for some ¢t € T. By the degree of v € V (@), written deg (v), we
mean the number of edges of G containing ». More generally, if
X CV(G), then degx (v) denotes

[ {{v, z} [{v, 2z} € E(G) and z € X}].

Suppose there is a vertex » & I with deg (v) = &k < m, and let
vy, - -, v denote the vertices that are adjacent to v.

Now consider an assignment A in which all the v;, 1 £ 7 =2k,
occur as well as the pair (v, v'), where »* € Q is not adjacent to ». But
this A is not realizable in G, which contradicts the hypothesis that G
is rearrangeable. Hence, for all v € I, we must have deg(v) = n. By
a similar argument, it can be shown that deg (') = n for all v € Q.
Thus, for any rearrangeable graph G we must have:

Fact 1: For all v € V((G), deg (v) = n.

Let us now state several more elementary facts about rearrangeable
graphs ( which can be proved in much the same way as Fact 1.

Fact 2: For all v € I, dega (v) = n.
Fact 3: For all v € V (@), max [deg; (v), dego ()] = n.
Fact 4: If v~Tand v ~Qand | 2| = 0, then deg (v) = n + 1.
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Lemma 1: In a rearrangeable graph G with vertex set V(@) = I @,
[I| =n<m=(Q|, and |I N Q| =0, there are at least n vertices
with degree greater than n.

Proof: If all v € I satisfy dege (v) = n + 1, then we are done. Suppose
there is an element v & I satisfy dega (v) = n, say, v is adjacent to
vy, Vs, * -, Ua. If any v,, say, vy, is not adjacent to @, let us consider an
assignment in which all the v;, 2 =7 < n, occur as well as the
ordered pair (v,v’), where v’ is a vertex in @ different from any v,.
However, since |I| = n, it is impossible for G to satisfy this assign-
ment. Hence, all the v, are adjacent to both I and Q. By Fact 4, deg v,
=n+1forz=1, ---, n, which proves Lemma 1.

Lemma 2: If G is any rearrangeable graph with vertex set I \J Q, which
has (@] > [I| = nand |I N Q| = 0, then G has at least n(p + 1)/2
edges, where p = |V (G)]|.

Proof: The number of edges in G satisfies the following inequality :
|E(@)| = e(G) = } gG deg (v)

i —nn+ (n+ Dn]

n(p +1).

Lemma 3: In a rearrangeable graph G with vertex set V(G) = I |J Q,
which has |I| =n <m = |Q| < 2n and |I N 2| = 0, we have

e(@) =z nm — ¥ (m — n—1) (m — n).

[\%

Proof: Denote the vertices in I by 11, - - -, 7,. Suppose the vertex z; is
adjacent to d; vertices in , where we may assume d; £ d; £ --- < d,.
Let @, be the union of {7;} and the d; elements in @, which are adjacent
to 7;. By Fact 3, each element in © \_©; is then adjacent to at least
n— (m—d;) +1 elements in 2;, Hence, by counting the total
number of edges e¢(() and using the fact that d; = d; for all 7, it follows
that

B(G) _2_ nd1 + (m bl dl)(ﬂ —m + d1 + 1) + %(m —_ d]_)(im- —_ d1 - 1).

But the right-hand side is minimized by choosing d; as small as possible.
Thus, since m < 2n, then by Fact 3, we have

e(G) =2mn —L(m —n)(m —n — 1),

which proves the lemma.
The preceding inequalities are summarized in the following result.

Theorem 1 : In a rearrangeable graph with vertex set V(G) = I U @, and
[I| =n=m=|Q|, |2NI| =0, the number of edges e(G) satisfies
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if m = 2n,

[n{m +2n + 1)‘|

e(@) ;{
[mn — 3(m —n)(m —n—1)1 #f2n>m = n,

where [x7] denotes the smallest integer which is greater than or equal o z.
The proof follows at once from Lemma 2 and Lemma 3.

lil. OPTIMAL REARRANGEABLE GRAPHS—MANHATTAN GRAPHS

In this section, we give a construction for a class of optimal re-
arrangeable graphs. The number of edges in these graphs will meet
the lower bound in Theorem 1. These graphs will be called Manhattan
graphs because they resemble a number of bridges connecting a high-
density metropolitan area and low-density suburban areas.

A Manhattan graph with vertex set V(G) = I U @ will be denoted
by M(I,Q). If |I| =n, |2 =m, and |I N Q| =0, M(I, Q) is also
denoted by M (n, m).

In this section, we give the construction of M (n, m) for any n and
m by considering the following cases.

Case 1, n = m: The Manhattan graph M (n, n) is the complete bi-
partite graph K, ., i.e., there is an edge between every pair of vertices
(w,v),vEel,veEq

Case 2, n < m < 2n: We shall specify the edges of M (n, m) by giving
the subgraph spanned by various subsets of vertices of M (n, m). The
spanning subgraph of a set S C V(@) is the subgraph of G' with edge
set {{z,y}|{z,y} € E(G) and z, y € S}.
Let
I = {41, 1s -+, %},
Q= {21, * -+, Tuy Y1, Y2, ***, Yty
where
t=m — n.
M (n, m) will be constructed as follows:
(?) The spanning subgraph of the vertices I |J {z:|1 = ¢ = n}
" in M (n, m) is a complete bipartite graph K, .;
(#7) y,is adjacent to xj, Tiy1, - -+, Tipn—n, forj = 1,2, -« ;
(#77) The spanning subgraph of the vertices {yi, ys, -+, ¥} in
M (n, m) is a complete graph K,.

The graph M (n, m) is clearly rearrangeable. As an example of this
construction, we illustrate M (3, 5) in Fig. 1.

Case 3, 2n = m < 3n: The construction scheme for M (n, m) in this
case may be described as follows:

1650 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1975



Fig. 1—Graph M (3, 5).

Let
I= {ilr 7:2: "'r""'ﬂ}x
Q= {-'El, Tay * vy Ty Y1, Y2, "7 7y Yny By B2y "'xz!}r

where
t=m — 2n.

(7) The spanning subgraph of the vertices I U {z1, zs, - - -, Za}
in M (n, m) is a complete bipartite graph K, »;
(#7) =z;is adjacent toy;forj =1,2, ---, n;

(7i1) 2;is adjacent to yy, ys, -, ynforj=1,2, -+, t;
(iv) The spanning subgraph of vertices {y1, ¥a, -+ *, ¥a} in M (n, m)
is any graph with degree sequence
fn—t—1Ln—t—1,--,n—1t—1w}

v

n — 1 times,

where
n—t—1 if n(n — -4 1) is even,
n — t otherwise.

From a well-known theorem of Erdés and Gallai ! a graph with this
degree sequence can always be constructed. The graphs M (3, 7) and
M (3, 8) are shown in Fig. 2 as examples of this construction.

We want to show this graph is rearrangeable. Given an assignment
A involving vertices Za,, Tay ** *) Tany Your Your ** 1 Ybny Peny Beyy " 5 Zenyy
it is clear that n = ny + ns + na.

We may assume n; = ng + ng, where both 2., and %, 7 = 1,2, -,
ny, appear in A.

If t — ns = ng, it is easy to see this graph is rearrangeable.

Suppose ¢ — ng < ny. Let us consider that the set S; = {ys|1
< 1 £ ns, s, is adjacent to ys;, and both ys, and z,, do not occur in 4}.
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Fig. 2—(a) Graph M(B, 7). (b) Graph M (3, 8).

Since |S;j| 2n —t—n, — ny for all 1 £j < n, we know that at

least n — ¢t — ny — ny of the ny; requests involving s, ¥, ***, You,
can be connected.
If

”
ng=n—=t—ng — na,

then
ng—(m—t—n—mng) =t — (n—mn;g — ng — ny)
t—na.

A1l

After the remaining n; — (n — t — m; — my) requests are connected
by a path passing through some of the ¢ — n; 2;’s, which do not occur
in A, the requests involving the z;,’s or the z,,’s can be easily connected.
Thus, we have proved that the graph M (n, m) is rearrangeable.

For the case m = 3n — 1, there is another type of Manhattan
graph which is a special case of the following class of graphs.

Case 4, m = h(n — 1) + 2n, h = 1:
Let
I= {1‘.1! 1'.3: “‘!i"‘}t
Q= {-’CL, T2y 3 Ty Y1, Y2o * vy Yny 21y B2y 0 ',Z(n—l)h}-

The graph M (n, m) is constructed as follows:
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(7) The spanning subgraph of vertices I U {z:|1 = 7 = n} is the
complete bipartite graph K, »;

(i) xz;is adjacent toy;, j = 1,2, ---, n;

(77) There is a cycle with vertices 1, 21, 23, * * *, 2, Y2, Zhy1, * * 5 220,
Yay * s Yny Y,

(iv) There is a complete graph K._; with vertex set {ziyalj = 0,
1,---,n—2}fori=1,2 -+, h.

(v) y: is adjacent to y1, Ys, =, Yiz2, Yiga, *+*, Yn for 2 =2, -+,

n — 1.
y1 is adjacent to ys, ¥4, ***, Yn-1.
yn is adjacent to ys2, ys, « -+, Yn—2.

As an example of this construction, we illustrate M (4, 14) in Fig. 3.

To see that this graph is rearrangeable, let us consider an assignment
in which Za,, Tay, = *) Tany Yoo, Yoo, = *5 Ybay and 2, Zey *°*, Zeny OCCUL.
Because of the structure of this graph, any request involving the x,; or
y»; can easily be connected after the n; requests involving the z,,'s are
connected.

It is clear that n = ny + n, 4+ ns. First, let us consider the special
case ny = na = 0. Let Py, 7 < j, denote the path y:, 2a—1)a1, Zi-nas2
s, Zan, Yis1, -, Yy If each of Py, Pag, -+, Pa_1,. contains one of
the z.; except for one P; .1, then the assignment can be satisfied. If
more than one of Py s, Pas, ++-, Pa_1,» contains more than one z.'s,
say Pi,: contains z;, zc, and P; 4 contains 2., 2., we know that at least
one of the P;..’s does not contain any 2z, say P ... Instead of
considering the assignment A, it suffices to consider the assignment
involving {ze4c—1n} U (2|7 = 2, 3, - -+, na}. Continuing this argu-
ment, it is enough to consider an assignment satisfying the property
that all the z., involved appear in distinet P;is1's except for two of
them and, therefore, this assignment is realizable.

Now, for arbitrary n, and n,, let S = {ay, @3, * * +, @y, by, by, -+, bag}.
Relabel S by 8 = {81 < 82 < -+ < su}, n’ = nq + na, and consider

Fig. 3—Graph M (4, 14).
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the set T = {Pi,[i <j,5,j&Sandi+1,i+2 ---,j —1E S}.
Then |T| =n— |8 — 1.
Let

R={zili=cye -, cn) U {yil7 € by by -+, bu} ey, -+, an} ).

If all paths in T contain one element of R except one path which
contains two elements of R, then the assignment is clearly realizable.
Otherwise, we may use an argument similar to the one above to
establish the rearrangeability of M (n, m).

Case 5, m = 3nandm = 2n + h(n — 1) +¢,0 <t < n — 1: In this
case, the graph is a combination of a graph of Case 3 and a graph of
Case 4 except for minor modifications. Let

I = {7'.11 1:21 Y in}:
Q= {2’21, Loy =5ty Ty Y1, Yo, 00y Yny BLy By "0y E(n—1)hy W1, Way * 0+, wl}'
(1) If t % n — 2, let us delete all the edges of the form {y,, y;},
1=<14j=<nin M(n,2n + {) in Case 3. We then construct a
cycle of vertices y1, 21, 23, -, Zn_1, Y2, * * *, Yn, ¥1- The spanning
subgraph of vertices {2, 2s, -+, Z(n—1)s} are the same as that
in M(n,2n + (n — 1)k) in Case 4. The spanning subgraph

/
[
\

(a)

(b)
Fig. 4—(a) Graph M (5, 16). (b) Graph M (5, 17).
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of vertices {y1, ¥2, -, Y] with the exception of the edge y1y.
is any graph with degree sequence

m—t—3,n—t—3, - ,n—1t—3w

—

n — 1 times,
where
w = n—t—3 ifnln —1¢— 3)iseven,
n —t— 2 otherwise,
and
y;"!‘-’y,’+1,i= 1,2, rr, N — 1.

(#) If t = n — 2, the construction scheme is as follows:

(a) The spanning subgraph of vertices I U {z1, 23, -+, za}

18 Kn,n;
(b) z;is adjacent toy;, 7 = 1,2, -+, n;
(c) There is a path yi, 21, - -+, 2ny Y2y Zkary * 07y B2 Y3y * 75 Y
(d) There is a complete graph k,_; with vertex set {z:1;]j = 0,
1, ---,n—2}forj=1,2,---, h.

(¢) When n = 3, w, is connected to any y;. If n 3, we have
the following :

wi,t=1,2, +++,n — 2,1is adjacent to all y; except yis1;
If nis even, then wy_y1 ~ws, ¢ =1, 2, --+, [n/2] = 1.
If n is odd, then wyy~ way, ¢ =1, 2, ---, [n/2] — 1,

Wn—3g ™~ Wn-2.

It is an easy exercise to show that the Manhattan graph M (n, m)
thus constructed is rearrangeable. As examples of this construction,
we illustrate M (5, 16), M (5, 17) in Fig. 4.

By a direct calculation, it is easy to verify that all the Manhattan
graphs we constructed in Cases 1 through 5 achieve the lower bounds
on all rearrangeable graphs for given I and @ with [ M 2| = 0. From
this, the following result is immediate.

Theorem 2: The Manhattan graphs M (n, m) are optimal rearrangeable
graphs.

We note that a complete bipartite graph K. . has nm edges. Thus,
by Theorem 1, a Manhattan graph has precisely [3(m —n — 1)
X min (n, m — n)] fewer edges than K, n.. When m is large compared
to n, this is approximately 3nm.

IV. MANHATTAN GRAPHS FOR THE CASE OF [IN9| <0

Let us now consider an optimal rearrangeable graph with vertex
set I U Qand |[I N Q| #0.
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If |[@\UI| = |I|, then the Manhattan graph M (I, Q) will be taken
to be the same as M (I, @\ 7). To prove that the Manhattan graph
M (I, Q) is an optimal rearrangeable graph for given I, @, and |\ /|
2 |I|, we need only show that M (I, Q) is rearrangeable. Any re-
quest (z, ) € A, x € I, y € @\J, can be connected in M (I, O\ 1)
as well as in M (I, Q). If the assignment contains some request (z, y),
where both x and y are in I, they ean be successfully joined by a path
of length 2 via some vertex in @\ J.

When |[Q@\J| = |I| — 1, the following construction suggested by
F. K. Hwang? suffices for M (I, Q).

Let M(I,2) be the union of a complete graph K; and a three-
partite graph K, .; as shown in Fig. 5b, where n = [\ @],

= |O\J|, I=|2NI|]. To illustrate this construction more
clearly, we denote the graph I. to be the graph of n vertices without
any edge. If two graphs (¢ and H are joined by two thick lines, as
shown in Fig. 5a, there is an edge connecting any vertex in G to any
vertex in H.

We note that no edge in the above graph can be deleted without
destroying the rearrangeability of the graph for the given I, Q. Thus,
we can state the following result.

Theorem 3: The Manhattan graph M (I, Q) s an optimal rearrangeable
graph for any given I, Q.

V. k-REARRANGEABLE GRAPHS

A graph is said to be rearrangeable of capacity k or k-rearrangeable if
it satisfies any assignment A of size at most £, i.e.,

A= {(zy,y1), -, @y}, t =k

A rearrangeable graph is easily seen to be a special case of a k-re-

arrangeable graph with k = |I|.

Fig. 5—(a) Complete connectlon between two graphs. (b) Graph M (I,2) with
n=[I\@l,m = [ONI], L =
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Assuming |Q| = |I| = k, a k-rearrangeable graph G with vertex
set V(G) = I U Q has the following properties (which are similar to
those of a rearrangeable graph).

Fact 1': For all v € V(G), deg (v) = k.

Fact 2': If v € I, dega (v} = k.

Fact 8': For any v € V(G), max [degr (v), dega (v)] = k.
Fact 4': Ifv~1 v~ thendeg (v) = k£ + 1.

Lemma 1': The number of edges in a k-rearrangeable graph with vertex set
V@) =TUQ |I| >k |ON\I| >k p=|V(G)|, satisfies

e(@) = [k_(p;l-_Q)-l

&

Proof: If there is an € I which is not adjacent to I, then the spanning
subgraph G’ of the vertex set V(G)\ {¢} in G must be k-rearrangeable.
If |I| = k + 1, then G’ has at least 3kp edges. If |I| > k + 1, then
G’ has more than 3kp edges (by induction). In any case, G has at
least 3k(p + 2) edges. Similarly, ¢ must have =3k(p + 2) edges if
there is an y &€ Q which is not adjacent to £.

If all vertices in I are adjacent to I and all vertices in Q are adjacent
to @, consider the sets

If
ﬂf

frel|lz~Q z~1},
lvealy~1Ly~al

Any element in I’ or @' has degree = k + 1 and also |I'| = k,

|9 = k. Hence,
(@ 2 [He 2]

Similar to Theorem 1, we have Theorem 4.

1

Theorem 4: The number of edges in a k-rearrangeable graph with vertex
set VIG)=1UQ, |I| =n, |2 =m, k<nz=m, [INQ =0,
satisfies

Mkm+n+2)T if2k =n<m,
Mi{k(m +n+ 1) + ik —t 4+ 1)}
e(@) = fk<n<2k=m, n=k+t,
Mifk(m +n) +tlk —t+ 1)+t k-t + 1)}
fk<n=m<2%, n=k+t m=k+1.

If 7 and Q are disjoint, an optimal k-rearrangeable graph can be
constructed by combining two optimal rearrangeable graphs M (k, n),
M (k, m) by overlapping K, as shown in Fig. 6. These are called
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Fig. 6—Graph M,(14,16).

Manhattan k-graphs and are denoted by M(n, m), where n = |I|,
m = |Q].

Because M (k, n), M (k, m) are rearrangeable, the k-rearrangeability
of My(n, m) follows immediately.

If |[@NI| =1, then M(I, Q) is the same as M,(|I|, |@] — 1).
If |[@N1| =2 and |O\J| =k, then M.(I,Q) is M.(|I| — 1,
(@] — 1).

We notice that M,(n, m) = M(n, m).

Theorem &: Manhattan k-graphs are optimal rearrangeable graphs of
capacity k for given I, Quhere |@| = [I| >k, QN I| =2, |[ON\JI]| 2 k.

As we noted earlier, Manhattan graphs have considerably fewer
edges than the corresponding complete bipartite graphs with the
same vertex sets. This is also the case for Manhattan k-graphs as well.
In particular, the number of edges saved is

[man — ${k(m +n) + max [k, (n — k) (2k — n + 1)]
+ max [k, (m — k)(2k —m + 1) ]} ].

When |@ N I| is large, alternate constructions of k-rearrangeable
graphs for given I and Q can be given by adding & additional vertices,

\\ Mk, 1@\

s
\\‘_‘__-//

Fig. 7—k-rearrangeable graph with Steiner vertices.
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called Steiner vertices. For example, we may consider the following
graph with vertex set 7 |J 2 S and |S| = k as shown in Fig. 7.

() The spanning subgraph of I and S is a complete bipartite
graph K, .

(#7) The spanning subgraph of 8 and @\ is precisely the Man-
hattan graph M, (k, |Q\[]).

This graph is clearly k-rearrangeable.

VI. GRAPH REPRESENTATIONS OF A SWITCHING NETWORK

Consider a graph (7 with vertex set V(). Let I and @ be nonempty
subsets of V() and let S = V(G)\ (I U @), which we shall call the
Steiner set of G.

The graph ¢/ corresponds to a switching network in the following
way:

(7) I < inlet lines.

(77) @ < outlet lines.
(777) Edge {z, y} <> a crosspoint between x and y.
(v) S < additional lines.

For example, the rectangle network in Fig. 8 corresponds to the
complete bipartite graph Kj ..

The Manhattan graph M (3,5) of Fig. 1 corresponds to the re-
arrangeable network shown in Fig. 9.

An example of a network derived from the graph in Fig. 10a with
a nontrivial Steiner set is shown in Fig. 10b.

In this way, a switching network can be represented by a graph.
A rearrangeable graph then corresponds to a rearrangeable network.
A k-rearrangeable graph corresponds to a rearrangeable network of
capacity k.

Many problems in switching networks can in this way be viewed as
graph-theoretic problems. Instead of minimizing the number of

_ ——=—" "= THE DIAGONAL LINE SEGMENT
A Vi 4 4% - AT THE INTERSECTIONS OF
e TWO “LINES" (= VERTICES)
7 REPRESENTS A CONNECTION
A¥ (OR CROSSPOINT) BETWEEN
THESE LINES.

Fig. 8—Rectangle network of size 3 X 4.
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-2

Fig. 9—Rearrangeable network corresponding to graph M (3, 5).

crosspoints to reduce the cost of building a network, we consider the
problem of finding a graph with the least possible number of edges.
The size of § in the graph representation of a switching network
determines how many lines we have to use in addition to the inlet
and outlet lines. The Manhattan graph we have constructed then
provides a model of a rearrangeable network with a minimum number
of crosspoints for the case that the size of Sis 0.

VIl. CONCLUDING REMARKS

Almost all previous results on rearrangeable networks dealt with
rearrangeable graphs having |7| = |2 and |7 N 2| = 0. Bene$

I Q S
i . N 4 L ~ s 1 ~
1 2 3 4 5 6 7 8 9 10
4 L
8 Wi 2 L]
| )
Va
5
8 y . J/
‘ )
3 10 )
7
(@) J (b)

Fig. 10—(a) Graph with I = {1, 2, 3}, and @ = {4, 5,6, 7}, and S = {8, 9, 10}.
(b) Network corresponding to (a).
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has shown that a rearrangeable network for |I| = [©2| = n can be
constructed with slightly more than 0(n log n) crosspoints, which is
just the information-theoretic lower bound. However, |S| is required
to be arbitrarily large to approach the 0(n log n) bound. This result
was later refined by Waksman® and Joel.®

When just one middle stage is allowed, Preparata’ gave a lower
bound on the number of crosspoints in a k-rearrangeable network and
showed several optimal designs for arbitrary sizes of I and €.

With regard to nonblocking networks, we can define nonblocking
graphs as those which satisfy the following property : The vertex set of a
nonblocking graph G is V(G) = I U @ U S, where S is disjoint from
I and Q. For any assignment 4 = {(z;, y:)|71 = 1,2, ---, t}, we can
find a path connecting x; and y; without disturbing the existing paths
already connecting r; and y,, 1 =j < 7. In other words, there is
always a path connecting x. and y; whose vertices and edges are
disjoint from those of the previous paths.

If the vertex set of a nonblocking network is the union of / and 2,
one class of nonblocking graphs we can construct is formed from the
union of a three-partite graph K. ..: and a complete graph K,, where
INQ| =1 [I| = n,and |2 = m, as shown in Fig. 5.

Bassalygo and Pinsker® have shown by a nonconstruetive argument
that there exist nonblocking networks with O(n log n) crosspoints,
where |I| = |©| = n and the size of § approaches infinity. The
best known construction, due to Cantor,® requires 0[n(logn)*]
crosspoints.
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