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Single-Integration, Adaptive Delta Modulation
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(Manuscript received March 11, 1975)

An estimale of oplimum performance is derived for a single-integration,
adaptive delta modulator. Several simulations of adaptive delta modulators
with single integrators have all produced signal-fo-noise ratios near or
below the estimate.

The derivations presented here indicate that the performance of a single-
inlegration delta modulator is dependent on the correlation befween adjacent
samples of the input signal and on the probability density function of its
derivative. The relationship between the probability density of the derivative
of the input signal and optimum performance, in turn, explains why
signal-to-noise ratios taken on sine waves are grealer than those recorded
while processing speech signals.

. INTRODUCTION

In this paper, an equation is derived for the optimum signal-to-noise
ratio (s/n) of a single-integration, adaptive delta modulator. Mean-
square quantizing noise is a mathematically tractable quantity which
appears to be a reasonably good measure of overall performance. It
was felt that an understanding of the relationships between this
quantity and the character of the input signal would be useful. The
derivations and data presented here all contribute to this end. Other
practical considerations, such as subjective evaluation,' transmission
errors,? and tandem encoding,® have been discussed elsewhere.

Several simulations® of single-integration, adaptive delta modulators
on a variety of speech signals have produced s/n’s near or below the
performance estimate suggested in this paper. It is further suggested
that this estimate is very close to the upper bound on the performance
of such coders. The s/n formula also provides an explanation of the
disparities between s/n’s taken on sine waves and those obtained
while coding speech signals.

A block diagram of a single-integration, adaptive delta modulator
is shown in Fig. 1. At the encoder, the difference between an input
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Fig. 1—Single-integration delta modulation.

sample, z;, and the previous output sample, £i_1, is quantized to one
of two levels and coded. The code symbols, sgn (§;) through sgn (8:—~)
(where N may be any positive integer) are then interrogated by the
companding logie, and the step size, Ai_i, is altered before the ith
sample is encoded. The quantized approximation to the difference,
§; = A;sgn (5, is added to the previous output to obtain the present
output sample.

The decoder operates in the same manner as the encoder except that
the circuit is driven from the transmission channel rather than from a
local comparator. The quantized signal at the decoder, #;, is low-pass
filtered to eliminate noise components outside the band of z: (ie.,
frequencies greater than frp), and a replica of the input signal is thus
regenerated at the desampling filter.

The signal-to-noise ratios referred to in this paper were taken in
the following manner. First the noise was obtained as shown in Fig. 2
and then the ratio of input signal power to noise power was taken. The
technique used by DeJager for sine wave s/n’s is described in Ref. 5.
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Fig. 2—Quantizing noise measurement.

Il. EXACT S/N FORMULAS

The following equations are derived from the diagram in Fig. 1.

LF

A

£y

=z — &y

&io1 + b5

If the quantizing error is defined as

e, = & — 2y

then, from (1) and (2), the following relationship holds:

e = & — ;.

From (3), it can be concluded that

Sf,'=

and likewise that

Fiy = Xioy + e

Therefore, (1) may be rewritten as

b = i — Ti1 — €i1.

T + e

The average power in the prediction error is therefore
E(&) = E(x}) + E(xin) + Ele-y)

- QE(J;[.I;‘_l) —_ ‘ZE(.L'ieiul) -+ 2E’(;v,-_lei_1),

N=TOTAL NUMBER OF SPEECH
SAMPLES OR 1500 TO
3000 SINE WAVE SAMPLES.

(1)
(2)

(3)

(7

(8)

where the £ functions are expected or average values. It is now noted

DELTA MODULATION

1465



that, for quasi-stationary signals,
E(x%) = E(2i-1)," (9)
and that
E(&_,) = E(e%).* (10)
Therefore, eq. (8) may be reduced to

E(ﬁzi) — 9 [1 _ E(xixi—l) _ E(ﬁiepl)
E@) ~ E(2%) E(z3)

_|_

E(xi_18i-1) E(e%)
R ]*E(x%)‘ (11)

The s/n at the quantizer is given as
E(&) _E@Y).

iU s o Rl o ) (12
The s/n before filtering is defined as
_ E@)
S/Il m (13)
Note that (11) is equal to (12) divided by (13) or that
2
E(53) _ s/ne, (14)

E (2% s/n

Hence, by substituting into (11) and transposing terms, an equation
for the unfiltered s/n is obtained.

B s/neg — 1 )
= T [Bea ) VEG — (Bae) VB
+ [E(zi1ei1) J/E()]

lll. ASSUMPTIONS AND APPROXIMATE FORMULAS

The variance of the prediction error is unknown because &; contains
quantizing noise [see (7). Therefore, 8; cannot be optimally quantized.

No meaningful information can be obtained directly from egs. (1)
through (15) without making some approximations or assumptions
about the unknown terms [s/ng, E(z.i—1) and E(z:_.ei—1)]. Several
measurements and simulations taken by the author and others before
him support the following assumptions.

(#) The optimum step size will yield the same signal-to-noise ratio
at the quantizer that can be achieved by quantizing the noise-
free part of &; (i.e., the derivative of the input signal, z; — zi—1).

*To the extent that (9) and (10) are equations, (15) may be called an equation.
Some awkward anomalies exist with regard to eq. (15); however, none of these is
relevant to the problem.
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(#7) The quantizing noise is the same as that generated by optimum
quantization of (x; — x;_1), and therefore

E[(xi _ ?c,-_l)e,-_lj = 0. (16)
Hence,
E(xiei-1) — E(x;_1ei_1) = 0. (17)

Given the above assumptions, (15) reduces to

(s/nq.,,, —1)
2[1 — [E(infvl)]/E(Izi)} '

where s/n,,, is the s/n achieved when x; — x;_; is optimally
quantized.

(i77) Finally, in an optimum modulator the quantizing noise spee-
trum is flat. Then the ratio of overall noise to the inband noise
is equal to the ratio of half the sampling frequency to the band-
width of the input signal.

/n = (18)

!

S

Hence, the s/n taken on the filtered signal, #,p5, is equal to the
unfiltered s/n multiplied by the ratio of half the sampling frequency
to the cutoff frequency of the filter.

[8/n00p — 17| 52
s/Nip = 2[1 - Egggg{)b]’] , (19)

where f, is the sampling rate and f.p is the cutoff frequency of the
desampling filter or the bandwidth of the input signal.

Equation (19) is identical to Nitadori’s signal-to-noise equation®
for differential rcy. Nitadori cautions against its use in cases where the
quantization is coarse, however. In this paper, eq. (19) is derived using
somewhat different assumptions which, in fact, do appear to hold for
delta modulation.

The validity of the three assumptions given above is the main point
of this paper. When these assumptions hold, an important relationship
between the amplitude distribution of the derivative of the input signal
and s/n performance can be drawn.

IV. RELATIONSHIP BETWEEN S/N,., AND PROBABILITY DENSITY
FUNCTION OF x; — x(

Paez and Glisson,” among others, have shown that the amplitude
probability distribution of speech and its derivatives is closely ap-
proximated by the gamma distribution. Figure 3 shows that this dis-
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Fig. 3—The amplitude probability density function of (z; — ;1) as compared
with the Laplacian and gamma distributions.

tribution closely approximates the probability distribution of
(z; — 2:1) for telephone signals used in my simulations. The dis-
tribution of (z; — zi_1), taken on the speech used in Jayant’s simula-
tions, lies closer to a Laplacian distribution, however.
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Table | — Signal-to-noise ratios of two-level quantizer output

Probability Density Function 8/Ngop
3texp (— V3|y|/20)
Gamma P(y) = 1.50
VBraly]
. 1
Laplacian P(y) = 4 exp ( - @ ) 2.00
. exp (—y*/24¢?%) -
Gaussian Ply) = —/—=Z1—~ 2.75
V2rs
1 A A
Rectangular P(y) = i3 <y< 3 4,00
A A
P(y)—0—§->y>§—
Sinusoidal 1
y = cosd Pl) = ——— —1=2y=1 5.28
or W g 1SS
y = sinf

Given a distribution that is symmetrical about the origin, the
quantization step is optimum when

[ w-arwa=o (20)

where y relates to (z; — x,_;). With the step set at the optimum size,
Paez and Glisson, Max,® and others have calculated the noise power at
the output of a two-level quantizer,

ELG -y =2[" - arP@)ay, (21)
and achieved the s/n’s shown in Table I.

V. COMPARISONS WITH SIMULATIONS

The correlations between adjacent samples was taken on speech
obtained using a carbon-button, telephone transducer. Similar data
were obtained by N. S. Jayant on speech recorded from a high-fidelity
transducer. Both signals were processed by Jayant’s adaptive delta
modulator with a one-bit memory, where the step size is multiplied
by 1.5 if the present and previous code words, sgn (3;) and sgn (8;_1),
are alike, or by 0.66 if they differ. In all the simulations, the sampling
and desampling filter cutoff frequencies are set at 3.3 kHz, except for
the telephone speech recorded at 24 kHz. In this case, the cutoff was
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reduced to 3 kHz. The telephone signals sampled at 48 kHz were also
encoded by a single-integration delta modulator designed by D. E.
Blahut.! Blahut's encoder also performs close to the estimate [eq.
(19)], when processing telephone speech. Among the numerous coders
tested, no single-integration delta modulator was found that performs
significantly better than Blahut’s or Jayant’s.

In Table II, performance estimates based on eq. (19) are compared
with the s/n’s obtained using Blahut’s and Jayant’s delta modulators.
To account for difference in probability density functions (see Fig. 3),
the estimates were made with s/n,., equal to 1.5 for telephone signals,
and 2.0 for high-fidelity signals.

The performance estimate given by eq. (19) is within 3.3 dB of the
s/n's obtained in simulations with Jayant’s delta modulator. The
s/n’s taken on Jayant’s and Blahut’s coders, while processing telephone
speech at 48 kHz and 24 kHz, are essentially equal to the estimate. In
these cases, the signal level was carefully adjusted until optimum per-
formance was obtained, then further data were taken to verify eq. (19).
(See Table III.)

The results shown in Table III lend great support to the approxima-
tions made in deriving eq. (19). The noise terms do effectively cancel,
leaving a residue that is at least an order of magnitude smaller than
the noise-free terms in the denominator of (15) (see lines 5 and 6 in
Table I1I). The estimates for noise rejection at the desampling filter
and for quantizer performance (s/ng) are within 0.8 dB of the figures
obtained in the simulations.

Both coders were simulated with a 60-dB range of step sizes, and
both were started with the step size equal to the minimum and the

Table Il — Performance estimates

Delta Modulator
Performance (dB)

8/ngo Sampling E(zix;_1) | Estimate 10 logio
2r | Rate (kHz) E@) (s/nip) (dB)
Jayant’s | Blahut's

2.0 20 0.989 21.3 18.0 =
1.5 24 0.957 13.7" 14.5 —
2.0 40 0.997 30.0 28.0 —
*1.5 48 0.9897 22.6 229 227
2.0 60 0.999 36.5 34.0 —

* Telephone speech: The acoustic-to-electronic response of the new 500-type,
stations sets"® indicates that signal components in the 100-Hz to 3.3-kHz band are
differentiated, and that components below 100 Hz are severely attenuated. Hence,
correlation between adjacent samples is lower for telephone speech than for high-
fidelity speech.

T At 24-kHz sampling, frp = 3 kHz.
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Table Il — Verification of eq. (19)

IS)?iT[_;, Coder Performance
Fre- Estimates
quency
(kHz) Jayant’s Blahut's
s/npp 24 13.7dB 14.5 dB —
48 22.6dB 229dB 22.7dB
s/n 24 5.92 5.95 —_
(i.e.,, 7.72dB)| (i.e, 7.75dB)
48 24.3 24.3 26.1
(ie., 13.9dB) | (i.e. 13.9dB) (i.e., 14.2dB)
Noise rejection at the 24 6.0dB 6.8dB —
desampling filter 48 8.7dB 9.0dB 8.5dB
=~ 10 logio(f./2fLr)
s/ng 24 1.5 1.531 —
48 1.5 1.555 1.569
I:l _ E(zmia) 24 — 0.0422 —
E{z) 48 — 0.0103 0.0103
E( :r.e,_ 24 0 —0.00238 —
“E@) 48 0 —0.00112 —0.00060
_ Exiaei)
E(z})

predictor voltage equal to zero. As the average input signal level was
varied over a 40-dB range, it was found that the s/n varied by 3 dB.
In either coder, it was found that when performance fell significantly
below the estimate (19), the following phenomena were observed :

(i) Quantizer performance and unfiltered s/n changed slightly
(in some cases, these parameters increased in value).

(i7) The noise terms no longer effectively canceled.

(#77) There was a dramatic reduction in noise rejection at the de-
sampling filter. It appears that when the correlation between
the difference signal, (x; — x;_1), and the noise (16) becomes
significant, more noise must shift into the passband of the
desampling filter.

Hence, the approximations used in deriving eq. (19) do appear to
describe the optimum condition.

These results have been obtained using both an HP2100A mini-
computer and an IBM 370, and therefore are repeatable. Moreover,
further validation by others using other encoders is desirable.
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VI. SINE WAVE PERFORMANCE

Another interesting check on the theory is the fact that it explains
why researchers everywhere achieve much higher s/n with sine wave
inputs than with speech signals. DeJager's formula [see eq. (22)]
indicates that the s/n taken on a sine wave at any frequency below
3 kHz is greater than the s/n that we predict or obtain for telephone
speech.

_ I3 99
S/MDerager (0.04) 72 fop’ (22)
where [ is the frequency of the input sine wave.

The amplitude probability distribution and s/ng, for a sine wave
were given in Table I. Substitution of the value in Table I into eq. (19)
yields an estimate for sine wave s/n’s.

a8 (I
8/ Nyine wave = 2[1 - %{;’2})1) ] (23)
Ty

Equation (23), in turn, is approximately equivalent to DeJager’s
formula. This relationship can be shown as follows. Let z = sin (27 ft);
then

Bz _ fol” [sin (27 ft)]-sin 2w ft + 2= f/f.)dt

: _ i , (24)
E@) f " sin? (2xft)dt
or

If the delay angle, (2xf/f,), is sufficiently small, then

2[1 —cos(z;.lf)]ml —0057(2;{)%4”;;- (26)

When (26) is substituted into (23), we obtain something very close
to DeJager’s formula:

3

sine wave — 0.054) == 2

s/n ( ) Pfer (27)
For f = 800 Hz, frp = 3.3 kHz, and f, = 48 kHz, estimates of 33.5
and 34.7 dB are obtained using (22) and (27). Under these same con-

ditions, signal-to-noise readings of 26 to 27 dB were obtained in simula-
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tions of Jayant’s delta modulator. Under similar conditions, DeJager®
obtained a maximum s/n of about 30 dB on a linear delta modulator.

VII. CONCLUSIONS

The optimum performance of Blahut’s and Jayant’s delta modulators
is very close to the estimate, (19), when processing speech signals.
Further experimentation with step-size compandors, without a change
in the prediction technique, will not produce significantly higher
signal-to-noise ratios. Equation (19) applies to a delta modulator with
a single, ideal integrator; therefore, it does not preclude improvements
through the use of fixed, higher-order networks.

In addition, it has been shown that delta modulator performance is
dependent on the amplitude probability distribution of the derivative
of the input signal. This dependence should be tested on a variety of
signals and probability density functions. The theory also implies that
a relationship exists between the amplitude distributions of differ-
ential waves at the input and optimum s/n, when higher-order net-
works are used.

Finally, I wish to call attention to the fact that the s/n performance
of a delta modulator is significantly less for telephone signals than
for low-pass filtered, high-fidelity signals, or for sine waves.
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