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The well-known coupled-mode theory of waveguides is extended to in-
clude dielectric guides made of anisolropic materials. Exact coupled-wave
equations for anisotropic dielectric waveguides are derived, and explicil
expressions for the coupling coefficients are given. The coupling coefficients
for isotropic waveguides are obtained as a special case. A simple approxi-
mation for the coupling coefficients in the case of slight anisotropy and
slight departure from an ideal waveguide is presented.

I. INTRODUCTION

The theory of dielectric optical waveguides deals with electro-
magnetic wave propagation in optical fibers and in the waveguides
used for integrated optics. Wave propagation in these structures is
described in terms of normal modes.’~* However, normal modes pre-
serve their identity only in perfect waveguides without irregularities
of either the refractive index distributions or the waveguide geometry.
Electromagnetic wave propagation in waveguides with any kind of
irregularities must be described by means of coupled-mode theory.*#
The electromagnetic waves in imperfect waveguides are expressed as
superpositions of all the modes of a perfect waveguide. The mode
amplitudes are coupled together by coupling parameters that depend
on the nature of the waveguide imperfections. A description of wave
propagation by means of coupled-mode theory allows calculation of
radiation losses caused by intentional or unintentional fluctuations of
the refractive index along the axis of the waveguide or by core-cladding
boundary fluctuations.2® Coupling among guided modes is used to
design modulators or distributed feedback circuits for lasers or to
effect improvements in the multimode dispersion properties of over-
moded waveguides. The coupled-mode theory is well developed for
waveguides that consist of isotropic dielectric materials.** Some work
has been done to extend this theory to waveguides consisting of aniso-
tropic materials.5~7 These waveguides are assuming increasing im-



portance in integrated optics as methods are being perfected for
fabricating waveguides by diffusing different dopants (or outdiffusion
of certain component atoms) into anisotropic crystals.?—°

This paper describes the derivation of coupled-wave equations for
the modes of waveguides consisting of anisotropic materials. The
coupled-wave theory is based on the definition of guided and radiation
modes as solutions of Maxwell’s equations for idealized structures. An
orthogonality relation is derived that is needed to isolate individual
terms in the infinite series expansion of the electromagnetic field. The
principal result of this theory is the derivation of coupling coefficients
that are important for solving coupled-mode problems. Readers not
interested in the derivation should look at eqs. (46) and (48). Applica-
tions of this theory are not presented here, since they will be the sub-
ject of further publications.

Il. THE FIELD EQUATIONS FOR ANISOTROPIC MEDIA

The derivation of coupled-wave equations for anisotropic dielectric
waveguides follows closely the procedure used for deriving coupled-
wave equations for isotropic waveguides.? The objective of coupled-
wave theory is to construct solutions of Maxwell’s equations for wave-
guiding structures consisting of general refractive-index distributions.

Anisotropic media are characterized by a dielectric tensor,

€= Eyz  CEyy €Eyz |° (1)

We assume that the elements of this tensor are real quantities char-
acteristic of lossless materials. It can be shown that conservation of
energy requires that the dielectric tensor form a symmetric matrix
so that the following relations hold :*!

€1y = €yz, €zz = Ezpy €yz = €y (2)

The magnetic properties of the medium are assumed to be the same
as that of a vacuum so that we use the (isotropic) magnetic permea-
bility constant wp. Maxwell’s equations for anisotropic media assume

the form
V XH = iwe-E (3)

V X E = — fwuH. 4)

It was assumed that the electric field vector E and the magnetic field
vector H have the time dependence,

giot, (5)
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The tensor notation e-E may be expressed in component form as
(e:E)i = eiH;. (6)

Summation over double indices is understood, and the subscripts 7
and j assume the values 1, 2, and 3 that represent the z, y, and 2
components of the vector E or tensor e.

Derivation of coupled-wave equations for isotropic media is facil-
itated by expressing the longitudinal components of E and H in terms
of the transverse components.® This practice is preserved for our deriva-
tion of coupled equations for anisotropic media. We single out the z
coordinate as the direction of the waveguide axis and express the field
vectors and the differential operator V as superpositions of transverse
and longitudinal parts. The symbol ¢ indicates the transverse direc-
tions x and y. Thus, we have

E=E,+E, (7)
H=H +H., (8)
and
0
VvV = v! + e a' (9)

We use the notations e.. e,, and e. to indicate unit vectors in z, ¥,
and z directions.

The transverse part of the vector ¢ E is indicated by the notation
¢-E or, in component notation,

ez'E = e (eE: + el + €:.E) (10)

e E = ey(e:E: + By + el (11)
The longitudinal part is

e E = e,(e:B: + enlly + e.E.). (12)

We may now separate Maxwell's equations into transverse and longi-
tudinal parts. The transverse parts of (3) and (4) are

V. X H. + e. X a(g‘ — iwe,-E (13)
v, X E. + e, X % = — iwuoH.. (14)

Their longitudinal parts may be written as

V., X H( = i'w(ez-Er + fzzEz) (15)
and
V; X E1 = — 'iLlJ}.l-OHz- (16)
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The longitudinal parts of E and H follow immediately from (15) and
(16),

Ez = < 1 v! X Hr - i éz'Et (17)
TWE:: €zz
and
Hz = == 1 V. X E,l. (18)
1w

On the right-hand side of (17) and (18) appear only transverse com-
ponents of E and H. It is important to distinguish between the single
and double subscript notation of e. A double subseript, like .., indi-
cates a single tensor element of ¢, while a single subseript, like e, is
defined by (10) through (12). In particular, we have

e:E, = e.(e..B: + e, F,). (19)

We now use (17) and (18) to eliminate the z components of E and H
from the transverse parts of Maxwell’s equations (13) and (14),

- .LVfX (VJXEl)'f‘e;Xa—I;I‘t
Twio &z
. 1w 1
= Tr(rJEg‘Et - €_ fr'fz'Et + E_ € (vt X Hl') (20)
and
V; x [ 1 v! X H; - i Eg'E::I + e x i% = - '?:W[J-on. (21)
TWeEsz €22 dz

These two vector equations represent four scalar equations. Once
eqs. (20) and (21) are solved, the z components of E and H can be
obtained by simple differentiation from (17) and (18). We have thus
achieved a simplification of the original problem by reducing the num-
ber of equations from six, in (3) and (4), to only four.

The components of the e tensor are assumed to be functions of z, y,
and z. The e tensor defines the wave-guiding structure. Because of the
z dependence of ¢, eqs. (20) and (21) do not have mode solutions. A
normal mode is defined as a solution of Maxwell’s equations whose 2z
dependence can be expressed by the simple function

ez, (22)

Such solutions exist only if the dielectric tensor does not depend on
the z coordinate. To construct solutions of the general eqgs. (20) and
(21), we consider solutions of simpler equations that are defined by
a tensor & that is similar to e but is independent of z. The choice of &
is obviously arbitrary and is determined by convenience. Using (22),
we find from (20) and (21) the following equations for the normal
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modes of the waveguide structure defined by

1
— A;Vr x (V; x SI(,?) —_ ui,‘,"’e X ﬁc“”

Twio .
= twé - 8P — i“i cE 8 + :1 g (V. X3P (23)
and
— BPe. X 8D = — jupde?, (24)

The subscript » indicates a mode label. Equations (23) and (24) admit
an infinite number of solutions with different eigenvalues (propagation
constants) g% and different field vectors &% and 3¢{”. Script letters
indicate mode fields, while roman letters E and H are reserved for gen-
eral field distributions. The modes are of two different types, guided
modes whose fields are confined to the vicinity of the waveguide and
radiation modes that extend to infinity in transverse direction to the
guide.?3 Guided modes have discrete eigenvalues 8", while the eigen-
values of radiation modes form a continuum. The superseript (p)
stands for either (+) or (—), depending on the direction of wave
propagation. A wave traveling in the positive z direction has positive
(real) values g8{Y), a wave traveling in the negative z direction has a
negative (real) value §{~. In isotropic media, we have the simple
relations,

= = B (25)
g =8, 8L =— &, (26)

and
s’y = —ael”, R = el (27)

General anisotropic media are more complicated, so that (26) to (27)
do not apply. Modes traveling in one direction may be different from
modes traveling in the opposite direction.

I1l. ORTHOGONALITY RELATIONS

The modes of anisotropic dielectric waveguides are mutually
orthogonal.? For the purpose of deriving orthogonality relations, it is
simpler to use Maxwell’s equations in the form (3) and (4) instead of
the form (23) and (24). Separating the z derivatives from the ¥
operator, we write (3) for a mode labeled v and (4) for a mode labeled g,

VvV, X3P — ip3Pe, X J0P = jwi- W (28)
and
V., X &2 — iB"e. X & = — twude?. (29)
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Next, we take the complex conjugate of (28), multiply the resulting
equation by &9, multiply (29) by —3¢{”", add the two equations, and
integrate over the infinite cross section (& is assumed real) :

f/{af.w've X GC,‘."’* — ﬁcim*'Vz X 8,“‘“
+ iBPE0 . X P + ipPI" 6. X 8 )dady

= — iwf[[ﬁ,ﬁ”’-é-ﬁ.‘,”)* — ,uﬁC,‘,”"-GC,‘,"’Z]d;Edg. (30)
The first two terms on the left-hand side of (30) can be expressed as
— [ [ve (a0 x seryazdy = —f(a;ﬂ’ X 3" -nds.  (31)

The two-dimensional divergence theorem was used to convert the
integral over the infinite cross section in the z-y plane to an integral
over the infinite circle with outward normal direction n and line ele-
ment ds. The integral on the right-hand side vanishes if at least one
of the two modes is a guided mode. If both modes » and u are radia-
tion modes, the integral vanishes in the sense of a delta function of
nonzero argument.? Using this fact and a well-known vector identity,
we can express (30) as

(8 — ) [ [eur (80 X se")dady
= —of [[e0 e 80" — uew s Jady.  (32)

Because of the symmetry of the & tensor, the following relation holds:
EP*.E- g0 = g0 &8 (33)

We take the complex conjugate of (32), interchange the superseripts p
and ¢ as well as the subscripts » and p and, using (33), subtract the
new expression from (32) with the result:

(B2 — B f f e.-[89 X 1@ + & X s Jdady = 0. (34)

Equation (34) is the desired orthogonality relation. It is obvious that
this expression holds also for isotropic media. However, in the iso-
tropic case it is possible to use (25) through (27) to prove that each
term in (34) must vanish separately.? For the general anisotropic case,
(34) cannot be simplified further. We infer from (34) that the integral
vanishes if 8% — 8®"* s 0. This means that the integral vanishes even
in the case v = u if p and ¢ indicate opposite signs, and a wave is
orthogonal to its backward traveling counterpart (if g/ is real) if
orthogonality means vanishing of the integral in (34).
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The integral in (34) expresses the total power flow if » = p and
p = g. We may therefore use the orthonormality relation,

f f e.-[89 X 3, + & X 3¢9 Jdvdy
@ 4 351:)*

= 2gl0 =2 39 Ps,,, (35)
to express mode orthogonality and normalization. The subscripts ¢
indicating the transverse parts of the modes were added since the z
components of the fields do not contribute to (35). P is a normalizing
factor common to all modes that is used to adjust the arbitrary ampli-
tudes of the normal modes. For real values of 8/, we have

s@ = 1. (36)

In this case, the sign of the integral is expressed correctly by the fact
that 8/? reverses its sign if ¢ goes from (+4) to (—). For opposite signs
of p and ¢, the right-hand side of (35) vanishes as required by (34)
if @ is real. For imaginary 8%, (35) vanishes for ¢ = p. The orthog-
onality relation also holds for imaginary values of g{. Imaginary
values of the propagation constants oceurs only for evanescent “radia-
tion”” modes.2:? In the case of imaginary 8%, the sign of the right-hand
side of (35) is not certain. For this reason, we have introduced the factor
s{@ that must be adjusted so that P is a positive real quantity. This
means that s may have to be negative, s = — 1. However, this
case can arise only in connection with evanescent ‘“‘radiation’” modes.
The §,, symbol in (35) indicates IKronecker’s delta if both modes are
guided. When one mode is guided while the other is a radiation mode,
we have §,, = 0. If both modes are radiation modes, 8, must be
interpreted as the Dirac delta function.

IV. DERIVATION OF COUPLED-WAVE EQUATIONS

Any arbitrary field distribution compatible with Maxwell’s equations
can be expressed as the superposition of all the modes of the idealized
structure defined by the dielectric tensor & Because the complete set
of modes consists of a finite number of guided modes plus a continuum
of radiation modes, we express the transverse parts of a general field
by the expansion

E =Y aPe® + Y [ a» ()& (p)dp (37)
wp P 0
and
H = Y a?%? + 3 [ a®(p)3ef (p)dp. (38)
v, » 0
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The longitudinal parts follow from (17) and (18). The superseripts
assume the values (+) and (—) indicating waves traveling in positive
and negative z direction. The first terms in (37) and (38) represent the
contribution of the finite number of guided modes labeled ». The
second terms indicated combinations of sums and integrals. The
integration ranges over the entire region of continuous-mode labels p
and includes radiation modes with real as well as imaginary values of
B (p). The summation symbol in front of the integral sign indicates
that, in addition to modes traveling in positive and negative z direc-
tion, various types of radiation modes exist and must be added to
obtain the complete set of modes. For the purpose of deriving coupled-
wave equations, the notation of (37) and (38) is too cumbersome. We
use an abbreviated notation by omitting the integration sign, leaving
it understood that the summation symbol includes summation over
guided modes and summation as well as integration over radiation
modes. We thus write

E, = L aPep (39)
Ly
and
H, = > a3} (40)
vap

&% and 3¢ are independent of z, but a{” is a function of 2. Substitu-
tion of (39) and (40) into (20) and (21) and use of the mode egs.
(23) and (24) leads to

% (L2 + igpap ) (e, X 5e?)

by dz

. . 1 1
= Z G,E,m {Ew(ﬁg — Eg) Sf,{" — w (—“ €' € — —— €€z 8‘(.5,}
»,p

zz €zz
1 1 .
+ P (V. X 3P (41)

and

(»
Z (dayp + iﬁ,&p)a:(:m)(e’ X 3%”)

by dz
=—z¢ﬂmx[i(l—#)mxuw

wp 1w \ € €z

(ln—ia)&ﬂf (42)
€zz €22

We take the scalar product of (41) with — &8%* and of (42) with 3¢%",
then we add the two equations, integrate over the infinite cross section,
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and use the orthogonality relation (35). The result of this procedure is

(@) (n* da®
250 By I,(_;‘_”ﬁ]i P ( G 4 Tﬁf)am)
u

. * .
-z [ | i—zws:.zl o= a)- &
vp

s . €€ €i- € €; €
gt (8 - ) g — gt (L - B ) (v x
€22 €zz

€:: E::

'—'JCH)"V:X [l(i__l)v X ;m(ﬂ)

- (E - _i‘)-ssf:’]]dmdy. (43)
€zz €z

On the left-hand side of (43), we have used a superseript (r). This
notation is necessary to distinguish between the case of real and im-
aginary propagation constants 8. If g is real, we have r = ¢. If
B is imaginary, as it is for evanescent radiation modes, we must choose
for r the sign opposite to ¢. We now write (43) in the abbreviated form

@)
da,” _

dz

. iﬁﬁr)a‘gra + Z Ki::’.zl)alt'p)_ (44)
»p

The coupling coefficient is defined by (43). We may eliminate the

transverse magnetic-mode field vector from the coupling coefficient

by using (17) (applied to the mode field) and the identity (which is
obtained by partial integration),

f f 59" (¥, X F)dedy = f f (Ve X 39" .Fdedy.  (45)

The coupling coefficient can be expressed as
: iw|8" * € €: & - (»
K#Srvm = 45;”83}1*13 fj- glﬂ') e - g.. - (et - Ei) - &7
— e (2 - ( & + &2)
€zz €z
_ ‘.

. (7 _ & )-aﬁf’]}d:cdy. (46)
€z €zz

In its complete form, (46), the coupling coefficient is very compli-
cated. For isotropic media, where the e tensor degenerates to a multiple

V. IMPORTANT SPECIAL CASES
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of the unit tensor, (46) simplifies to the exact form,

Ko» = w8 — %, g® | &zt g | g 47
' 413(”,8")*1) (E E) 8 8 8 Idyr ( )

in complete agreement with the well-known result.!2

In many practical applications, the anisotropy of the dielectric
medium is only slight, and the difference between the actual dielectric
tensor e and the ideal tensor & is small. In that case, (46) can be sub-
stantially simplified. A reasonable approximation of (46) for slight
anisotropy and small values of e — &1is

Kg» = 2187 f 8% (e — &) &"dxd (48)

wuy Lisng*p ) ¥ Y-
Note that the whole vectors of the electric mode fields enter (48) and
not just the transverse or longitudinal parts. The approximation (48)
is obtained by considering off-diagonal elements and differences be-
tween diagonal elements of e and & as quantities that are small of first
order. Produects of two first-order quantities have been neglected. For
readers who did not follow the detailed derivation, we repeat here
briefly the definitions of symbols appearing in (46) through (48). The
symbol w is the angular frequency of the electromagnetic field. The
seript symbols & indicate the electric-field vectors of normal modes
of an idealized waveguide that is defined by the dielectric tensor
¢ = &(z, y), the subscript v is a mode label, and the superseript (p)
stands for either (+) or (—), indicating the direction of wave propaga-
tion. The propagation constants 8 of the modes are labeled in the
same way as the field vectors. The superscript r is usually identical
with the superscript ¢. Only in the case of imaginary 8 (this case
happens for coupling to a nonpropagating radiation mode and is of
little practical interest) does r indicate the sign opposite to ¢. Likewise,
s{” = 1 for most cases of interest. Only for imaginary values of B may
it become necessary to choose s’ = —1 to keep the power normaliza-
tion coefficient P positive in (35). The asterisk indicates complex con-
jugation. Subscripts ¢ and z occurring in (46) and (47) refer to the
transverse and longitudinal parts of the vectors to which they are
attached. Similar subscripts attached to e are defined by (10) through
(12) and (19). The dielectric tensor ¢ = e(x, y, z) defines the actual
waveguide (in contrast to the ideal guide that is only a mathematical
fiction). The integrals are extended over the infinite transverse cross
section of the guide. Equation (48) assumes the same limit as (47) if
the dielectric tensor degenerates into a multiple of the unit tensor
since, in the spirit of the approximation (48), we must use &./e;. = 1.
Equation (48), even though it is only an approximation, is likely to be
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of most importance in practical applications because of its simple form.
For many practical problems, the approximation is justified and leads
to sufficiently accurate results.

VI. CONCLUSIONS

We have derived coupled-wave equations representing exact solu-
tions of the electromagnetic field problem for dielectric waveguides
that consist of anisotropic materials whose dielectric tensor is a function
of the z coordinate. The field of the general waveguide is expressed in
terms of ideal modes of a hypothetical dielectric waveguide defined by
a dielectric tensor whose elements are independent of the z coordinate.
The main result of this paper is the expression (46) for the coupling
coefficients. For many practical applications, the exact coupling coeffi-
cient- can be approximated in the simple form (48).

The coupled-mode theory for anisotropic dielectric waveguides is
essential for the solution of problems of mode propagation in integrated-
opties guides with random or systematic irregularities. A particularly
important area of applications are guides that are made anisotropic
by an externally applied dc voltage or whose anisotropy is changed by
such a voltage. Instead of an applied voltage, an acoustical wave may
cause an anisotropic change of the refractive index of a dielectric wave-
guide. These cases cannot be handled by the simpler isotropic coupled-
mode theory, but require the extension to anisotropic media presented
here.
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