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We study the numerical solution of a monlinear, partial-differential
equation that describes charge transport in a model of a charge-coupled
device (€CD). This model differs from previous models in that field-aiding
of the transfer is taken into account. Although a derivation of the transport
equalion is given, the main emphasis in the paper is on the numerical
techniques involved, and no actual numbers are presented. Actual numerical
results based on the techniques developed here can be found in several
recent design studies. The equation, which is parabolic, has one space
dimension and one time dimension. Galerkin’s method, with standard
chapeau functions, s used to discretize tn space. This results in a very
stiff system of nonlinear, ordinary, differential equations. To solve these
equalions, we use a first-order backward Euler scheme coupled with
extrapolation. A number of alternative schemes were tried and found to be
inadequate.

I. INTRODUCTION

In this paper, we study the numerical solution of a nonlinear, partial-
differential equation that describes charge transport in a model of a
charge-coupled device (ccp). The emphasis is on the numerical tech-
niques involved, although a derivation of the equation is given. The
reader is referred to other papers where the solutions are used in device
theory and design.!? We briefly summarize the physical background
of the equation first.
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A knowledge of the dynamics of charge transfer in a ccp is, of
course, central to a complete understanding of its operation. A calcu-
lation of the motion of charge in a ccp, starting from the coupled,
nonlinear Poisson and charge-conservation equations and taking into
account the full geometry of the device, has so far proved impossible.
However, Strain and Schryer? and, independently, Kim and Lenz-
linger* developed and studied an approximate, one-dimensional model
of charge transfer in a ccp. The original analysis considered motion
owing only to diffusion and the mutual repulsion of the charge carriers.
Field-aided transfer was ignored. Since these original studies, a number
of other authors have studied the effects of field-aiding.5—8 In Refs.
5, 6, and 8, as in the original papers,®* an infinite sink for the charge
at one end of a cell is assumed. The assumption of an infinite sink
rules out charge “bunching,” which in certain situations is an im-
portant effect (for an example of this, see Ref. 1, Fig. 8). In Ref. 7,
the assumption of an infinite sink is not made. In this paper, we
extend the original work®* to include field-aiding and more realistic
boundary eonditions. Qur model can describe both surface? ccps and
buried-channel®® ccps (Beeps). We do not include the effects of surface
traps, since the main application! was to Bccps. We feel the numerical
scheme described here has advantages over that used in Ref. 7, where
essentially the same model as ours was used to study surface ccps,
with the effect of traps included. Calculations using our methods
show that Bccps, which can be fabricated with present technology,
should be extraordinarily fast and efficient and have reasonable
charge-carrying capabilities. Transfer times of 1.8 ns are predicted for
a two-phase device having 10-um-wide electrodes.! Slower but similar
results are obtained for surface devices.

Strain and Schryer® solved, by the method of finite differences, a
transport equation quite similar to the one we study here. However,
their method of solution proved inadequate when applied to our
equation. It is possible to obtain solutions of the transport equation
as follows. We use Galerkin’s method!! with standard chapeau func-
tions in space. We treat the time behavior by polynomial extrapolation
to the limit of the results of a first-order, fully implicit (nonlinear),
finite difference scheme. Although the equation only roughly models
the true physical situation, an accurate knowledge of the solution as
it varies over many orders of magnitude is necessary if it is to be of
any use. This requirement makes the numerical solution of the equa-
tion difficult. Many other schemes were tried, and the above method
is the only one we found that could solve the problem.

The equation of charge transport is derived in Section 1I, although
some more complex details are given in Appendix A. The technique
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for numerically solving the equation of charge motion is given in
Section III, with some details in Appendix B. Questions of existence
and accuracy are discussed in Section IV, along with the use of poly-
nomial extrapolation. An outline of the theory of extrapolation is
given in Appendix C. The method by which initial solutions are
obtained is the subject of Section V. Finally, in Section VI we discuss
several other schemes by which we tried to solve the equation of
charge motion and which failed.

Il. DERIVATION OF THE TRANSPORT EQUATION

We refer the reader to the literature for a discussion of the principles
of operation of either surface ccps® or Bccps.!® Basically, however, both
are devices that move packets of charge from under one electrode to
under another electrode by suitably changing the voltage on the
electrodes.

Asin Ref. 3, we assume that the charge can be described by a charge
density g(z,?). Here, x is the distance under the plates (see Fig. 1)
and { is the time. Then, as we show in Appendix A, the component of
the electric field along the direction of motion of the charge, which is
due to the mutual repulsion of the charge, is

The elastance S is assumed to be a constant independent of z and ¢.
In all that follows, we use subscripts to denote differentiation; thus,
g- = 9q(x, t)/dz, etec. Equation (1) holds for both surface and buried
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Fig. 1—Schematic of a ccp showing relation to device of z-coordinate in transport
equation.
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channel devices, although the values of S are different in each case.
Expressions for S are given in Appendix A in terms of the physical
parameters of the devices.

Let ¢(z, t) be the given driving potential due to the voltages applied
to the electrodes. For a surface ccp, ¢ is the electric potential at the
oxide semiconductor interface, while, for a Bccp, ¢ is the potential at
the potential minimum of the buried channel. In most applications,
we have approximated ¢ by the potential in the ccp in the absence of
any mobile charge.!?-1

The total field along the direction of motion is

E. = — 8¢, — ¢ (2)

The current density is®
J(x, 1) = quE; — Dg., (3)
where D is the diffusion constant and u is the mobility, which we also

assume to be constant. If we substitute (2) into (3) and make use of
the Einstein relation D = (kT/e)u = ap, then

J(z,t) = — p[(a + S9)¢: + qe:]. (4)
If we substitute (4) into the charge-conservation equation,
@+ J:=0, (5)
we get the desired transport equation,
¢ = nl (e + 89)¢= + gl (6)

The appropriate solution of (6) satisfies an arbitrarily given initial
distribution of charge q(z,0) and the boundary conditions J(0, )
= J(L, t) = 0. The boundary conditions state that there is no charge
flow into or out of the device at either end. L is the length of the device.

It is convenient to write (6) in terms of dimensionless quantities,
as in Ref. 3. Let

T = t/(Lz/“UD)) y = I/Lx w = SQ/UO) ® = W/UO, 'S = ﬂ!/vo, (7)
where v, is a reference voltage. Then (6) becomes
we = [(w + Bw, + wd, . (8)

As it turns out, there seems to be no natural voltage unit in the
problem (Ref. 3), so we typically pick v, = 1 volt.

Physically, the quantity of interest is the total charge present
between any two points 0 < y: < y» = 1. This suggests that, instead
of w(y, 7), we consider

Qw ) = ["w(E Nde. 9)
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If we integrate eq. (8) with respect to y from 0 to y and make use of
the boundary condition J(0,t) = 0, we get

Qr = (Qy + 3)Quy + qu’u- (10)
Since the right-hand side of (10) is just proportional to J(y, 7), we

see that @.(1, 7) = 0. From this last remark and (9), it follows that
the correct boundary conditions on @(y, ) are

Q(0, 7) =0, Q(1, 7) = @Qr = const. (11)
The appropriate initial condition is determined from w(y, 0) by
setting 7 = 0 in (9). The transport problem we wish to solve is,
thus, eq. (10), subject to boundary conditions (11) and given initial

conditions. This is a much simpler problem than attempting to solve
(8) for the charge density.

IIl. SOLUTION OF THE TRANSPORT EQUATION
We simplify the notation slightly by setting

‘[’(y: T) = tﬁ!n'(y.v T); (12)
and note that (10) can be written

—BQu — (Q)? —¥Qy + Q. = 0. (13)

2ay

If we multiply both sides of (13) by a continuous, piece-wise differ-
entiable function f(y) which satisfies f(0) = f(1) = 0, integrate the
result from 0 to 1, and integrate the terms containing second deriva-
tives by parts, we obtain (letting f' = df/dy)

[ (080 + 3@ @) + [—v@, + @)y = 0. (19)

Equation (14) is the starting point for the application of Galerkin’s
method, because any twice-differentiable function @y, r) that
satisfies (14) for all continuous, piece-wise differentiable f(y) satisfying
f(0) = f(1) = 0 must also be a solution of (13).

We now discretize in space by introducing a net {yi, y2, - -, yn}
on [0,1] and a set of standard chapeau functions f;(y), 1 £7 = N,
as pictured in Fig. 2 and defined in Appendix B. In all that follows, the

BASA A

Tig. 2—Discretization of the space interval and the corresponding chapeau functions.
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net {y1, --, yv} is assumed to be given and fixed. In terms of the
basic chapeau functions, we define approximations to the solution and
external field:

Oy, v) = N;‘ Q") + Qafw(®), (15)
V) = >§ V(D). (16)

Note that ((y, ) has been constructed to satisfy the boundary
conditions, J(0, r) = 0, Q(1, 7) = Qr. The functions Q;(r) are yet
to be determined, but we require that they satisfy the initial conditions

Q;(0) = Q(y; 0). (17)

Because of (17), O(y, ) satisfies the correct initial conditions at the
mesh points: O(yj;, 0) = Q(y;, 0). We define ¢;(r) = ¥(y;, 7), so that
&(yij T) = 'p(yf) T)-

To determine the N — 2 functions @;(7), we require that Q(y, 7)
satisfy (14) for each of the N — 2 choices of f(y), f(y) = fi(v),
2 £j £ N — 1, with ¢(y, 7) replaced by ¢ (y, 7). This yields a system
of N — 2 first-order, nonlinear, ordinary differential equations for
the Q;(7). This technique has a robust history and has been applied,
not only to many problems of the same type as (13), but to other
types of problems as well. The idea is quite simple: Let the approxi-
mate solution be a linear combination of the functionsf;, 2 £ j = N — 1
and then make the left-hand side of (13) orthogonal to each of these
funetions. In geometrical terms, this means making the left-hand side
of (13) orthogonal to the span of fa, - - -, fv—1, denoted by {fy, - - -, fw—1),
in £2[0, 1] in the usual inner product: (f, g) = St f(¥)g9(¥)dy. Then,

crudely speaking, as more points y,; are chosen, {f;, - - -, fy—1) spans
more of £2[0,1] and the left-hand side of (13) must go to zero as
N —w, 80 long as it remains orthogonal to {fs, - - -, fv—1).

If we carry out the substitution of (15) and (16) into (14), with
fy) = fi(y), 2 =1 = N — 1, the N — 2 equations result:

s0s[6 [ sy - Ee [ sifddn+ or [ sisisiau |
+1 5,00 [ nfisay+ 5, ) [ oy
= = [© [sisray + @ (s [ risuay
- Z o [(hsmiar)|- a9
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In (18) Q,(r) = dQ,/dr. The values of the integrals appearing in
(18) are listed in Appendix B. If we define i; = y: — i1, 2 £ 7 = N,
and substitute into (18) the values of the integrals, we get

(hiQi1 + 2(hi + hiz1)Qi + hir1Qi1)/6
4+ Qia[—B8/hi + (Wir + 2¢:)/6] + Q:[B(1/hi + 1/hiyr)
+ (Yip1 — ¥ic1)/6 + 8 v—1Qr/ (hw)?] + Qiya[—B/hita
— (Pir1 + 29)/6] + $1(Qi — Qi—)*/hT — (Qir1 — Q)% hiv}
= 5 N-][Q /(2h ) + QT(-@/}EN + ‘I‘N—l/3 + KbN/ﬁ):l (19)

where 8,51 is the Kronecker delta function. These equations hold for
2=<i{=N—1if welet @:1(r) = Qn(7) = 0. The nonlinear ordinary
differential-equation initial-value problem given by (17) and (19)
represents the spatial discretization of (13) and must now be solved
for the Q;(7),2 =j= N — 1.
We use a fully implicit finite difference scheme in time (backward
Euler). Let
Q7 = Qi(nA7) (20)
for some choice of Ar > 0. We then let Q;(nAr) be approximated by
Qi — @) /Ar and set Q; = QIF!, ¢; = ¢} 'in (19). On rearranging,
we obtain the fully implicit, first-order, finite-difference scheme for
solving (19) in time:
TrHQr! + THEIQIT 4+ TEPQME! + A(QT — Q)
- Au‘+1(Q1"'+J-r11 - Q?+])2 = R?+1, (21)

where
Tott = — B/h: + (P75 + 2427 /6 + hi/(6A7), (22a)
T5 = B(1/hi + 1/hiy) + (WY — 14 /6 + (hi + hisa)/ (347)
+ div—1Qr/(hv)?,  (22b)
TH™ = — B/hopa — (WY + 20717/6 + hira/(6A7), (22¢)
A; = 1/(2h3), (224d)
RIFY = 5;, v a[Q%/ (2h3) + Qr(8/hy + ¥&/3 + ¢3/6)]
+ (th‘L—l + z(hl + h|+l)Q1 + h1+1Qi+l)/(6AT)- (226)
Equations (21) hold for 2 ¢ =N —1,n =0, 1, 2, -+, with the
assumption that @ = Q% =0, n = 0, 1, 2, --- and with the initial

conditions Q% = Q(y;,0),2 21 =N — L.

We now find the solution of the nonlinear system of eqs. (21) for
fixed n by an iterative Newton method. We drop the superseript »
denoting the time step, and for fixed n denote by @;(m),2 £ i = N — 1,
the mth iterate of the solution of (21). To obtain @:(m + 1) from Q;(m),
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we set Q:(m + 1) = Q:(m) + ri(m), substitute this into (21), and
linearize the resulting equations for the r;(m):

{Ti — 24:[Qi(m) — Qi_a(m)]}rima(m)
+ (T — 24:41[Qira(m) — Qi(m) N} riv1(m)
+{T + 24.[Qi(m) — Qi_1(m)]
+ 24:1[Qisa1(m) — Qi(m) J}ri(m)
= Ri — {TaQi1(m) + TuQi(m) + TiQiy1(m)
+ AQi(m) — Qia(m) ] — Aia[Qira(m) — Qu(m) Y. (23)

These equations hold for 2 £ 1 = N — 1 with ry = #y = 0. This is a
tridiagonal system of linear equations. Reference 15 contains a concise
analysis and very efficient method of solution for such a system of
tridiagonal equations.

In practice, the initial estimate of the solution QF*! to (21) is taken
to be Q7 from the previous time step. So, if Az is chosen sufficiently
small, the Newton sequence generated by (23) should converge and
do so quickly.

What we have described so far is a method for discretizing (9) and
(10) in space and time, giving the nonlinear system of egs. (21), and
we have proposed an iterative scheme, given in (23), for solving (21)
at each time step. In the next section, we study the feasibility and
accuracy of the method.

IV. EXISTENCE AND ACCURACY

We shall show that iteration (23) can be carried out as long as the
following conditions are satisfied:

0=R== - =Q2=SQ-1=2Qr, n=0,1,2 -, (24

sup [y(y, 7)| <®  9zizN. (25)

[ye-w:] X[0, =] hi
These conditions are sufficient to ensure the existence of a solution of
eqs. (23) for each n. We have not proved it, but in practice they also
seem to be necessary. These conditions do not show that the iteration
(23) must converge, merely that it is well defined. In fact, if the initial
estimate of the solution of (21) is too far off, then in practice the
Newton sequence given by (23) may well not converge, and it is
necessary to choose Ar smaller so that QF provides a better estimate of
Qrt.

The monotonicity condition (24) on Q7 is merely a necessary conse-
quence of the definition (9) of @7, since w(¢, r) = 0 by definition. The
mesh restriction (25), however, is apparently new and fundamental.
In practice, if (25) is violated, even at only one point and by a “small”
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amount, the solution produced, if any, is highly erratic and non-
monotone, and may even be negative.

We now prove that conditions (24) and (25) imply that the matrix
of eqs. (23) is strictly diagonally dominant.’ From this, we can con-
clude that the matrix has an inverse,'¢ so the equations have a solution.
From (22a) to (22¢) and (25), we see that

Ta+ T+ T = (hi + hiz1)/(2A7) > 0, (26)
and
Tia = (hi + hiyr)/(3A71) > 0;
Ta = hi/(6A71), T < hiya/(6A7).

(27)

Because of the monotonicity property (24) and the fact that 72 > 0,
it is easy to show that

AT; = Ty —|Ta|—|Tu| >0 (28)
implies the diagonal dominance of (23):

[Ti + 24,[Qi(m) — Qima(m)] + 24 :41[Qiva(m) — Qu(m)]|
> |Ta—24,[Q:(m) — Qiml('m):”

+|Tia — 24541[Qia(m) — Qu(m)][.  (29)
To show that (28) is true, we consider the four possible sign combina-
tions of T and T';; and use (26) and (27):
(@ Tyu>0 Ty >0
AT,‘ = T,‘g —_— T,’l —_— T,‘a == (ht + hi+1)/(2AT)

— 2(Ta+ Ti) = (hi + his1)/(6A7) > 0.
(i) T >0, Ty < 0.

AT; =Ty — Ta+ T = (hi + hiy1)/(247)

hi hiv1
—QT{12E+2AT>OI
(157) Tiu <0, Tiz > 0.
AT.‘ B Ti2 + Til —_ Ti.’; = (h1 + hi+1)/(2AT)
h" hi+1
— =
2T 2 2A7 + 6AT >0

(iu) Ta < 0, T < 0.
AT; = Ty + T+ Tia = (hi + hiy1)/(2A7) > 0.

This completes the proof of the diagonal dominance of (23).

We now discuss the accuracy of the spatial and time diseretizations.
It is well known (see Ref. 11) that the Galerkin procedure, using
chapeau functions, is accurate to 0(k?), where h = max;h; and 0(h?%)/R?
represents roughly an upper bound on Q,,(y, ) over [0, 1] X [0, «).
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We shall not go into the proof of such results here. Rather, a heuristic
but useful analysis of the error is presented. The 0(h?) accuracy, ba-
sically, comes from the fact that replacing Q(y, ) by its interpolant,

T Qs D1.) + Qaf(y),

results in such a 0(h?) error by using Taylor’s theorem on each of the
intervals [y, ¥iv1], =1, ---, N — 1. A similar statement can be
made about ¢(y, 7) and its interpolant. For the sake of clarity, assume
that the mesh is uniform with h; = h, © = 2, ---, N. Then standard
finite difference arguments show that (18) is a spatial finite difference
approximation to a function Q*(y, r) obeying

Qr = (8 + Q) — ¥Qy + 0(h), (30)

where 0 involves terms of the form @}, and its higher-order derivatives,
am+tr/dymadr™. Then, intuitively speaking, since Q(y, 7) solves (30) to
within 0(h?) and @*(y,0) — @(y, 0) = 0(h?), we must have Q*(y, 1)
= Qy, 7) = 0(h?).

Even though (30) is based on the assumption that the spatial mesh
is uniform, it shows clearly that the h; must be small in any region
where any of the derivatives (8™t"/dy™dr™)Q,, are large. Physically,
such regions are precisely those regions where the field ¢ (y, 7) is large.
This makes restriction (25) quite reasonable, since (25) requires a
smaller spatial mesh where the field ¢ is large. In fact, we can estimate
the number of points N,, required by (25), using a variable mesh, in a
potential rise of v volts: (25) requires that y change by no more than
28 =2 1/20 (at room temperature) over any mesh interval. Then, for
example, a potential rise of 5 volts will have =2100 points y; modeling
it. So (25) itself forces a fairly accurate representation of ¥ and hence,
indirectly, of @Q.

However, the time mesh is another matter altogether. The time
difference scheme is only first-order accurate and the local time
behavior of @ near large values of ¥ is rather bad. Thus, application
of (21) to (23) alone to solve the problem gives rather poor results.
For this reason, we have used polynomial extrapolation to the limit of
the results of the first-order scheme (23). A brief discussion of the
extrapolation process is given in Appendix C. Ironically, polynomial
extrapolation was used because rational extrapolation converged so
quickly to the solution that it led to very large Ar choices (see Ref. 17
for the Ar monitoring mechanism) which, in turn, led to iteration (23)
not converging or taking a very long time doing it. So, even though
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polynomial extrapolation is ‘“slower’ than rational, it is “better” for
our purpose here.

V. CALCULATION OF Q(y, =)

In most cases of interest, the initial condition for (10) is chosen
as an equilibrium solution Q(y, ») corresponding to a time-inde-
pendent potential ®(y). It is convenient in these cases to solve for the
corresponding w(y, ) = w(y) and then integrate to get Q(y, «).

Setting w, = 0 in (8) yields 0 = [(w + B)w, + w®,],, which, when
integrated twice from 0 to y with the aid of the boundary condition
J(0, =) = 0, yields

Flw) = w4+ 51n%,"—0 + @) =0 (31)
for some constant C,. Let 3, be any point in [0, 1] such that w(y,) > 0.
Then

Co = w(yo) exp (w@ ) (32)

Thus, given ®(y) and a single value of w(ye) > 0, the entire equi-
librium distribution w(y) is determined. Note that w(y) > 0 whenever
®(y) is finite.

To find w(y) from (31) we use Newton’s method. An initial guess at
the solution w©® (y) > 0 is made. The solution is then iterated, the
(n + 1)th iterate being related to the nth by

(m
w‘"*”(y)ll + Ff?(‘y_) } =&y +8 [1 —In (w—cT(y—) )} (33)
Since F'(w) = 1 + B/w > 0 and F"(w) = — 8/w? < 0, we see that
F(w) is a coneave, monotone-increasing function for w > 0. Thus, the
Newton sequence generated by (33) will converge to the solution (31)
no matter what initial w® (y) > 0 is chosen.

Once the w(y.), y: in the Galerkin net {yi, - - -, y»} are found using
(33), Q(y:) may be found by the trapezoidal rule for integration. This
is consistent with the representation of @ by the chapeau functions, (,
since the trapezoidal rule is exact for chapeau functions.

VI. ATTEMPTS THAT FAILED

The first attempt at solving (10) was via the finite difference scheme
of Ref. 3. It was impractical because the spatial mesh restriction (25)
appeared there, also, forcing the spatial mesh to be very small in some
regions, although it could be quite large in others. Since any non-
uniformity of mesh size in a central finite difference scheme leads to
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only first-order accuracy, we were then left with a very fine mesh over
the entire interval [0, 17]. This required tens of thousands of points in
the spatial mesh, far too many to be practical.

After going to Galerkin’s method in space, which has second-order
accuracy even with a nonuniform mesh, the solution of (19) posed
another problem: It is an extremely “stiff”’ system of ordinary differ-
ential equations, with the coefficients A: ranging typically from 10*
to 10, This is a reflection of the locally quick time and spatial changes
in Q(y, v) when ¢ is large, this fact being transmitted to the h; by (25).
For this reason, any attempt to linearize (19) between time steps for a
finite difference scheme in time led to failure—the solution is nowhere
near linear over reasonable time intervals when ¢ is large. The symptom
of this problem, in practice, was that the A required in the polynomial
or rational extrapolation process for these linearized schemes was
extraordinarily small, requiring in one case more than 10* time steps
to cope with a single 5-volt potential swing.

Once a nonlinear approach to the solution of (19) was recognized
as probably the only route left, the most obvious ‘“accurate’” scheme
to use is a fully nonlinear Crank-Nicholson solution of (19). A small
digression on this scheme in a simple case is useful here. For the linear
system of ordinary differential equations,

u’ = Au, (34)

where u is a vector and A a matrix, the Crank-Nicholson approximation
to the true solution, u = eAmu,, is

u(nAr) = (I + 3AA7)(I — 1AAT)—u,.
This is based on the approximation®
et = (I 4+ ZAAT)(I — 3AAT)L (35)

Letting u(nar) = (uf, ---, ux)7, this corresponds to the standard
finite difference formulation of the Crank-Nicholson scheme:

(@t = up)/Ar = J(Au + Aw), 1S5S N.

A nonlinear generalization of the above scheme for (19) would have
an error of the form C(A7)?; however, C is very large. This is most
easily seen by considering (35) for real AA+ very large (positive or
negative). That relation then states that e44™= — 1, which is an
exceedingly bad approximation. For a “stiff” system, (34) [or (19)],
one that has a wide spread in its eigenvalues for 4, the above reasoning
indicates that the Crank-Nicholson scheme would give very poor
results unless A7 is very small, In practice, as before, the symptom of
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this problem was very small A7 choices by the extrapolation routines—
the same problem that would have required 10 time steps in a linear
scheme would have required “only” 10® with Crank-Nicholson. (In
this matter, see also Ref. 19.)

In all, more than 12 different schemes were programmed and tested
on this problem, (9) and (10), with the result that only the one de-
scribed in Sections II to V is effective for the wide range of ¢ distri-
butions required to model both surface and buried-channel ccps.
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APPENDIX A

In this appendix, we derive eq. (1), the fundamental equation of
the Strain-Schryer model, for the case of a Bccp. We choose coordinates
as shown in Fig. 3; the xv-axis is parallel to the oxide-semiconductor
interface and the z-axis is directed into the semiconductor. The
potential in the oxide is ¢o(z, z) and the potential in the semiconductor
is ¢i(z, 2). The permittivity of the oxide is €., that of the semi-
conductor ¢, and the thickness of the oxide is é.

In the special case where all the properties of the Bccp are inde-
pendent of 2, the potential in the presence of the inserted charge ¢
has been calculated by Kent® and Schryer.? They showed that the
value of the potential at its minimum in the buried channel is approxi-
mately a linear function of the charge q, ¢1 = Sog + V,, for all values

%0 €ox

ne 1. &

J

z

Fig. 3—Coordinate system involved in calculating the potential of a line charge.
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of g in the operating range of the device. The elastance S; and V, are
independent of ¢ but depend on the oxide thickness § and the semi-
conductor doping, and V, also depends strongly on the electrode
potential.

In the general case, the Strain-Schryer model assumes that the
field in the a-direction in the channel can be approximated by the sum
of two terms. The first term is obtained from the above expression for
¢1 by assuming ¢ a function of x and differentiating,

Ea:l = - SO %' (36)
The second term takes into account the field at @ resulting from the
charge at other points 2’ in the channel. Because of the metallic elec-
trodes, the charge at 2’ will induce image charges that will tend to
shield the field at x. For this purpose, we first calculate the potential
of a unit line charge located at * = 0, z = n > § in the semiconduector.
The plane z = 0 is assumed to be a perfect conductor at zero potential,
and the oxide and semiconductor are assumed uniform. We can write
down a solution of Laplace’s equation in the form

eo(2, 25 m) = f r(a) E%lru eda, 0=zZ5, (37)
ei(z, z;m) = — 4% Tz, 2;n) + f s(e)e1el s—b)glazgy

86 =z2< o, (38)
where
V(x,z;m) =Inf{a?+ (z — )2} —In {2+ (z+2)%}.  (39)

The function ¥(z, z;n) has the correct singular behavior at z = 0,
z = n and is harmonic everywhere elsein — o < 2 < ®,§ £ 2 < «,
The boundary condition ¢g(x, 0;4) = 0 is satisfied, and the unknown
functions r(a) and s(«) must be chosen so that the boundary conditions

a d
oo, 8;m) = e1(z,85), eox o (2,8;m) = & 57 (2, 8;0) (40)

are satisfied. It is straightforward to show that

Ve, b = —2 [ e‘"'“'%l—q

—o0

e (41)

% (x,857) = — 2 f ¢7mlel cosh || de'=rda. (42)
If we substitute (37), (38), (41), and (42) into (40), and Fourier-
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transform with respect to x, we obtain two linear equations for 7(a)
and s(a). The solution of these two equations yields

r(a) = = e rdlel{ (e,; + €)el*l? + (€z — €)e1*18)—1 (43)

s(a) = ﬂ% r(a) — 2% gl | (44)
On substituting (43) and (44) into (37) and (38), we obtain the
desired result. If we expand 7(a) and s(a) in powers of e~l=l%, the
Fourier integrals can be evaluated, and we can express the potential
as the potential resulting from an infinite array of image charges. Since
this result is not needed, we do not give it here.

In the buried-channel case, we need the potential resulting from a
two-dimensional charge distribution. Let the density of this distribu-
tion be p(¢, 7). Then g(x) = Sp(x, n)dy is the charge appearing in
eq. (36). Since the potential resulting from the image charges induced
by a line charge at (£ ) in the semiconductor is ¢(z — ¢ z;7), we
can now write down the second term of the field in the channel as

Ba=— [ [ 52 @ = 625wt ndsdn (45)
From (38) and (39),

chl (x — )

_ L [ x— & _ (z — §) J
2me, L (. — 84+ (z— ) (x— £+ (z 4+ »)?
i [ as(eerieiginc—oda. (46)

Since (d¢1/dz)(x — & z;7) is singular at & =z, n = 2, the main
contribution to the integral in (45) ocecurs at this point. We expand
p(%, 7) in a Taylor series about x, keep only the linear terms in the
expansion, and extend the limits of the £ integral from — « to .
Since (d¢1/dz)(x — & 2;7) is an odd function of z — £ the term
involving p(x, 5) vanishes. A straightforward calculation shows that
the remaining term is

2leaaalf(z+n—lz—ﬂ (ln)dn—ﬁ(lx l)g—g' (47)

The first integral can be transformed by the mean value theorem:
S (z+n—|z—a])o(x,ndn = (z4+ 7 — |z — 7|)g(x), where 7 is a
point in the interval of integration. In many cases, it is reasonable to
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replace the factor z + 7 — |z — 7| by a constant 2[, independent of z.
For such cases, we have

E,2=_|z/eg+a(l_—1)}9ﬂ- (48)

€0z € az
If we combine (36) and (48) we obtain (1), where
S=8+(0—08)/e&+ /€. (49)

Here S; must be obtained from a one-dimensional charge-insertion
calculation,?-?! and ! must be estimated from the above formulas.

It should be noted that, if we let p(£, 4) = p(§)D(n — 8) in the
previous derivation, where D(z) is the Dirac delta function, and set
y = 8, we should get the result of Ref. 3 for a surface device. However,
in this case, (47) yields §/e.. for the correction term, while in Ref. 3
the correction term is 25/ (e, + e.z) [eq. (4)]. This is because, in Ref. 3,
in the expansion of the field in terms of image charges, only the first
image was taken into account.

APPENDIX B

In this appendix, we list several results concerning the chapeau
functions f;(y) :

fitw =0, 0=y =y,
= (y — yi-1)/hj, YiaSyYsy
= W1 — W/ hin, Y=Y = Yiny,
=0, Y=y =1, (50)

where h; = y; — Y1
We list here a number of elementary integrals that are needed in
obtaining eqs. (19) from egs. (18).

[ @y = 175+ /b (5
[ ity = = 1/hiss, (52
[ 6y = (s + /3, (5)
[ 1tssady = v/, (54
[y = (it = (s, (55)
[ ity = s, (56)
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[ @ty = = @, (57)

[ @iy = o, (58)
[ sy = -4, (59)
[ ity = =3, (60)
[ 0rtinay = 4 (61)
[ sty = 4 (62)

In all these expressions, f; = df;/dy.

APPENDIX C

In this appendix, we give a brief description of the extrapolation
method for solving eqs. (19) in time. We used a linearized, backward
Euler method for solving (19) in time. It is first-order accurate. That
is, by using a time step of At to go from ¢ to t; = to + mA¢, the result-
ing error at ¢, is 0(At). See either Ref. 22 or Ref. 23 for the proof of
such results.

However, much much more is known about these methods. In fact,
Stetter* has shown, in a very general setting, that processes such as
the above backward Euler technique give rise to expansions of the
form

T(Al) = T(0) + i =5(A1)’, (63)

where, for our problem, T (At) is the value of the veetor (@7, - - -, Q%)7,
which is the value of our approximate solution at t; = ¢, + mAt¢, and
the =; are vectors that depend only upon ¢, and ¢,. Thus, as
At = (f; — to)/m goes to zero or, equivalently, as m goes to infinity,
T (At) not only converges, with error 0(At), to the true solution at t,,
namely, T(0), but each component of T (Atf) looks more and more like a
polynomial in Af. The process of extrapolation consists of simply
computing several values, T(At), T(At/2), -+, T(At/p), and then
passing a polynomial of degree p — 1 through these data points
corresponding to each component. The value of these interpolating
polynomials at the origin is the solution T(0), plus terms of order
(At)r. Here p is called the level of extrapolation.
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By using polynomial extrapolation to the limit of the result of the
first-order scheme (21), we generate a process that has an error of
O[(At)*] when p levels of extrapolation are used. This extrapolation
process is very well described in Ref. 25, and its application to the
numerical solution of ordinary differential equations is also very well
described in Ref. 17. It must be stressed that the underlying process,
Gragg’'s modified midpoint rule, which Bulirsch and Stoer extrapolate
in Ref. 17, is not the one we are proposing to extrapolate here. That
rule is second-order accurate and is actually unstable if the equations
being solved are stiff. The first-order, linearized, backward Euler
method we use here is highly stable under extrapolation, even for very
stiff systems like (19). So Ref. 17 should be read with an eye to using
extrapolation in solving ordinary differential equations and not to
those peculiarities that Bulirsch and Stoer introduce to take special
advantage of the nice properties of Gragg’s modified midpoint rule.
The same technique we have used here to solve (13) was used in Ref. 26
to solve a similar system. It is of interest that, for both these problems,
polynomial extrapolation was found to be 15 to 20 percent faster than
rational extrapolation. This is in contrast to the finding in Ref. 17
that rational extrapolating is usually the faster of the two, at least
when extrapolating Gragg’s modified midpoint rule.
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