Copyright © 1975 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 54, No. 3, March 1975
Printed in U.S.A.

Timing Recovery and Scramblers
in Data Transmission

By R. D. GITLIN and J. F. HAYES
(Manuscript received August 28, 1974)

This paper considers several problems associated with envelope-derived
timing recovery, equalization, and scrambling in synchronous data trans-
mission. Particular attention is focused on the time intervals in which
periodic data sequences are transmitted, such as during start-up or when
an idle code 1s being transmitted. It is shown that the standard envelope-
derived timing-recovery system may be significantly improved by zonal
filtering of the recetved passband signal prior to forming the envelope. For
phase-modulated systems, we discuss the limitations of the “precession’
technique employed for the purpose of providing a periodic timing wave
when there is an input of short period. The advantages of using a phase-
locked loop to filter the envelope instead of a narrow-band filler are also
described. A study of scrambler operation has provided an extension of
previous resulls concerning the relationship between the input and output
period. It s shown that the output period of several scramblers connected
in tandem does not necessarily double with the addition of a stage, and
that if a particular stage does not lock up then no succeeding stage can
lock up.

I. INTRODUCTION

Recovery and tracking of the symbol rate, or timing frequency, is
one of the most eritieal functions performed by a synchronous modem.
Most modems are ‘“‘self-timed’” in that they derive their timing fre-
quency and phase directly from the information-bearing signal, instead
of using a separate subchannel to send synchronization information. A
technique that is commonly used to acquire the symbol rate* (which
is the receiver’s basic sampling rate) is to filter the envelope of the
modulated data signal. Our investigation will consider several problems
related to this method of timing recovery which arise in high-speed
modems incorporating both an adaptive equalizer and a scrambler.

* This technique is also used to provide the sampling epoch, or phase, within a
symbol interval.
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The envelope-derived timing recovery system is a well-studied
topic.!2 However, as the degree of excess bandwidth decreases, the ease
with which timing can be recovered using this approach rapidly di-
minishes. We focus our attention on periodic input sequences. These
sequences are used to train (or adapt) the data receiver during start-up
and during the idle period between blocks of random data. To provide
a densely spaced line spectrum of uniform amplitude (which is neces-
sary if the equalizer coefficients are to remain properly adjusted for
random input data), high-speed modems use a serambler to ‘“‘random-
ize” the short periodic inputs commonly used during the idle period.
We investigate the effect of the scrambler on both the line spectrum
and the strength of the timing tone. It is observed that zonal filtering
of the received data signal prior to taking the envelope can signifi-
cantly improve the relative strength of the timing tone by suppressing
the jitter component.

Using transform theory, a discussion is presented on the relation-
ship between the scrambler input and output periods. We refine
Savage’s® well-known results for periodic inputs; these refinements
are applied to the study of the tandem and parallel scrambler
configurations.

Sections II to IV review the basic envelope-derived timing system
and give expressions for the power in the timing and interfering tones.
The role of the phase-locked loop in the timing recovery system is
described in Section V. Section VI considers the effect of precessing*
the data symbols on timing recovery. The necessary background
material on self-synchronizing scramblers is presented in Section VIL.
The transform approach is used in Section VIII to determine the
serambler output period. In Section IX the performance of a cascaded
scrambler configuration is contrasted with the conventional serial
arrangement. The parallel scrambler configuration is discussed in
Section X.

Il. BASIC TIMING RECOVERY SYSTEM

In this section we describe the commonly used technique of acquiring
the timing frequency and phase by processing the envelope of the re-
ceived signal. The object is to extract a tone, located at the symbol
rate, which is then used in the sampled-data receiver. Figure 1 shows
a simplified receiver structure of an in-phase and quadrature (e.g.,
qAM) data-transmission system, where we have focused attention on
the timing recovery and equalization functions of the receiver. For

*The advancing of the transmitted angle by a fixed phase (in a differential phase-
modulated modem), independently of the input, is known as precession.
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Fig. 1—Simplified qam receiver.

our purposes it will be convenient to ignore both the additive noise
and the quadrature component of channel distortion. Using the nota-
tion of Figs. 1 and 2, the received signal s(t) is given by

s(t) = Zw: ang(t — nT) cos wt — _i bag(t — nT) sin wet, (1)

where a, and b, are respectively the discrete-valued in-phase and
quadrature data sequences obtained from the binary sequences a,
and B4, g(t) is the spectral-shaping pulse, w, is the carrier frequency, and
1/T is the symbol rate or timing frequency. The envelope of a filtered
version of the received signal is tracked by a phase-locked loop tuned
to the receiver’s best a priori knowledge of the timing frequency. The
output of a properly designed phase-locked loop will be a tone with
frequency equal to the symbol rate and whose zero crossings may be
used to derive a sampling wave. Once the timing frequency is acquired,
the estimated and unscrambled data sequences {&.} and {B.} are
available to the user. The decoder maps the sequence of multilevel
two-tuples (d., b.) into a binary sequence which serves as the input to
the inverse scrambler.

The data sequences {a,} and {b.} may be thought of as random
(when user data are being sent) or as periodic (during start-up when
the equalizer and timing parameters are being acquired, and during an

COS wet
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INPUT TRANS—
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SEQUENCE SIGNAL

FILTER
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Fig. 2—Simplified QaM transmitter employing a scrambler.
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idle period between random data transmissions). As we shall shortly
see, the presence of a short periodic input can play havoc with the
equalizer tap settings; hence, a scrambler is generally used at the
transmitter to ‘“‘randomize’” these periodic sequences. As depicted in
Fig. 2, the coder maps the binary stream of scrambled 0s and 1s into
the channel pulse levels (e.g.,-0 and 1 may be mapped into —1 and 1
respectively).* The effects of choosing a particular scrambler structure
(e.g., serial vs parallel or serial vs cascade) on the timing recovery
system will be treated in Sections VII and VIII.

1Il. SPECTRUM OF THE RECEIVED SIGNAL

We confine our attention to periodic inputs, beginning with a cal-
culation of the Fourier transform of the received signal. Rewriting (1)
in complex notation, we have

w

> gt — nT)eiuet} | (2)

s(f) = Re

where ¢, = a, + jb, and Re denotes the real part of a complex number.
With a periodic data sequence, ¢,, the signal s(t) is periodic. This latter
periodicity is best exhibited via the discrete Fourier transform* (prr)
of the periodic sequence. With the period of ¢, denoted by N, the prr
of ¢, is defined by

N-1
C(kQ) = 2 cag/kn0T k=01 ,N—1 (3a)

n=0

and the inverse relation is

— l =S iknQT —
e =5 %, Ch)e n=01,--,N—1,  (3b)

where @ = (1/N)(2x/T) = (1/N)-(symbol frequency). Hence, the
prT has N components uniformly spaced 1/NT Hz apart and the spec-
trum repeats every 2x/7T Hz. Denoting the Fourier transform of s(t)
by S(w) and convolution by &} we have

S(w) = [T coe "7 (w) ]®d(w — we), w >0, 4)
and using (3b) in (4) gives’

_ 15 2mn ' 2rn \ |,

S = 5 5, 000 [£6 (b + 7)o (0 o — k=)
w>0. (5)

Letting the timing frequency be denoted by w, = 27/T = NQ, it is

* In practice, the data would also be differentially and Gray encoded.
t We use the identity 3., e 7T = (2x/T) Tnblw — (2mn/T)].
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Fig. 3—The spectrum of the line signal for a periodic input is
S(w)=Re [ L3 C(kQ)[G(kDb(w —we—kQ) +G(kQ —w,)d(w —w. —kR+w,) ]}
where the input period is N7 seconds.

clear that S(w) has discrete tones at w, + kQ + nw.. In practical data-
transmission systems with pulses of less than 100-percent excess band-
width, G(kQ + 27n/T) will be zero if n # 0 or —1, hence,

T

N_
8 = 57 kg: CUD[GhR)5(w — we — kL)
+ G2 — w)b(w — we — k2 — we)]; @ >0. (6)

This spectrum is illustrated in Fig. 3, where it is seen that the envelope
C (k) modulates the baseband pulse shape, G(w — w.), in the range
we — ws t0 we + W

Since the signal s(¢) is used by the equalizer to adjust the tap weights,
ideally the spectrum C (k) should approximate that of random data,
i.e., be constant. Of course, it is more critical that the equalizer be
presented with a closely spaced line spectrum; for example, if the
input period were two symbol intervals, it is clear that the equalizer
can only compensate for distortion at two frequencies in the Nyquist
band. Consequently, at the instant when the data return from the
periodic to the random mode, the equalizer tap settings will be far from
their optimum (for random data) values, and the distortion at the
equalizer output could be much larger than the channel distortion. This
situation generally causes the receiver to make so many errors that it
is necessary to retrain the equalizer. As we shall see, the role of the
scrambler is to lengthen the period of the transmitted sequence,
thereby keeping the equalizer trained. Hence, for the rest of our dis-
cussion, we will assume that the scrambler is such that the periodic
spectrum is (essentially) flat and densely spaced. Section VIII deals
specifically with the factors that determine the period of the serambler
output.

IV. SPECTRUM OF THE ENVELOPE

The timing frequency is to be acquired from the envelope of the
filtered line signal. Let the filtered line signal m(¢) be

m() = 3 anf(t — nT) cos wt — 3 baf(t — nT) sin w.d, (7
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where f(t) is the (equivalent baseband) pulse shape after filtering at the
receiver. The (squared) envelope of m(t) is defined as

() = [X anf(t — nT) P+ [ baf (t = nT) J. (8)

As before, we introduce complex-signal notation by letting

dt) = T caf(t — nT)

d*(t) = X eaf (1 — nT), (9)
so that we can write
r(t) = d(t)-d*(1), (10)

where * stands for the complex conjugate. Thus, the Fourier transform
of r(t) is given by

R() = D(w)®Dy(w) = [Z car ™" F () IOLL cme 7 F (@) ], (11)

where D, (w) is the Fourier transform of d*(t), and F(w) is the transform
of f(t). Using (3b), we have that

D(w)

N-1
Z I: kgo O(kg)e—j(i’r,l'N)kn:l e—j'mnTF(w)

n

N—1

Y CEQF(w) X 6(w — kQ — Nws). (12)
k=0 n

Substituting (12) into (11) and performing the convolution gives

R(w) = 1:);1 :3;: CHRC*ID T T FkQ + nw)F (mw, — 19)
X 8w — (k— D2 — (n+ mw]. (13)

Evidently there are tones at pQ-+qw, (where p=k—I and g=n-+m);
the desired tone is at w, (i.e., p = 0, ¢ = 1) and all other tones may
be regarded as interferers. Again, practical bandlimiting of F(w) and
filtering of R(w) will eliminate all terms where ¢ # 0 or 1. The power in
the desired tone is

N—1
R(w) = 3 |C(kD)|2F (kQ)F (w, — k), (14)
k=0
while the power in an interfering tone (or sidelobe) is

R(w: + p®) = I:g ChR)CHT(k — p)QIFQFL(E — 2)2 — we]
p=17213:"'- (15)
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Fig. 4b—Strength of sidelobe interference at w, + pQ is
% C()C*[(k — p)QIGR)CL(k — p)Q — w.].

Conventionally, the signal r(¢) is fed to a phase-locked loop (pLL),
which acts like a narrow-band filter in accepting tones in some region
about w, (e.g., from w, — BQ to w, + BQ, where 2BQ is the effective
bandwidth of the loop) and produces an output that is dominated by
a tone at w,. We first consider the above spectra in the absence of any
timing loop filtering [i.e., F(w) = G(w)] as shown in Fig. 4. It is clear
from (14) that the problem of timing-frequency recovery becomes more
difficult as the amount of excess bandwidth (as measured by the
parameter a) decreases—for zero excess bandwidth, this timing re-
covery technique clearly fails since the pulses G(kQ) and G(w, — k%)
are disjoint. Figures 4a and 4b show how to compute the power of the
tones at w, and at w, + pQ respectively. We note that, in general,
B(w: + p@?) # R(w, — pQ), and moreover, for the particular spectral
shaping shown in the figure, it is clear that R(w.: + p12) > R(w, + p2)
for —B < p, < p1 < B; thus, half of the sidelobe tones are greater in
magnitude than the desired tone. Thus, without any prefiltering in the
timing loop, the desired tone is rather weak in comparison to the
interfering tones. As we have already mentioned, this problem has a
direct solution*: choose the loop filter F(v — w.) to be a narrow zonal
filter around w. + (w./2) and w. = (w./2) as shown in Fig. 5. The
resulting signal m(f) has its energy concentrated at w. — (w./2) and
we + (w./2), and the relative strength of the timing tone is illustrated

* A filter in the timing loop has also been proposed by Franks and Bubrowski.s
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Fig. 5—Timing-loop filter shape which improves the tone-to-interference ratio.

in Figs. 6a, 6b, and 6c. The attenuation of the interferers is aided
further by the fact that the magnitude of 31" CxCi, is a maximum
for p = 0 (this follows from the Schwarz inequality). Clearly, by
making F(kQ) = 8(kQ — w.), we can make R(w. + p?) = 0 for all
p # 0; however, any narrow-zonal prefilter of the type shown in Fig. 5
should significantly improve the relative strength of the timing tone.
Since we merely require the filter to be narrow-band, any reasonable

Flk0l)

-
-

—= k(1

wg
2
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g

Fig. 6c—Spectrum of envelope.
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Fig. 7—First-order phase-locked loop.

choice wide enough to accommodate the uncertainty in w, would be
adequate over a wide range of channel characteristics.

V. THE ROLE OF THE PHASE-LOCKED LOOP

As we have discussed, the signal »(t) contains a desired tone as well
as interfering tones. In this section, we wish to demonstrate that a
phase-locked loop (PLL) can provide extremely narrow-band filtering
even to the extent of extracting a single tone from a spectrum of
adjacent interferers. Consider the standard first-order PLL® shown in
Fig. 7. Let us assume that the input is the desired tone plus two
interfering sidelobes, i.e.,

r(t) = A sinw, + Bsin [(w, + A)t + v]
+ Bsin [(w, — A)t —v], (16)

where A is the frequency displacement of the sidelobe from the desired
tone and v is the corresponding phase shift. Note that we have special-
ized the situation to the case where both interferers have the same
amplitude and opposite phase angles (i.e., the distortion in the timing
recovery system is symmetric about w, radians). We also assume that
a perfectly tuned loop (i.e., the free-running frequency of the voltage-
controlled oscillator (vco) is w,) is employed.* From Fig. 7 the loop
error signal is given by

e(t) =Asin(fe(t)dt+a)+Bsiu([e(t)dt+a—At—-y)
+Bsin(fe(t)dt+cx+At+ry)- (17)

If we define ¢ () as the phase difference between vco output phase and
the pLL input phase corresponding to the desired tone, i.e.,

o(1) & wit — (w.t +fe(t)dt + a), (18)

“ A perfectly tuned loop could arise by varying the free-running vco frequency.
As we show, via (22), when this condition is achieved the output will be a single tone.
This observation suggests a feedback or error-sensing procedure for varying the
nominal vco frequency.
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it is necessary that ¢(f) — 0, as ¢t —>, since this implies successful
tracking of the tone. Using (18) in (17) gives

e(t) = — [A + 2B cos (At + v)]sin ¢(2), (19)
and since from (18) ¢(f) = — e(t), the pPLL is governed by the first-
order differential equation

() _ L4 + 2B cos (a1 + )] sin 6(0. (20)

To solve (20), we first separate the variables and write

d¢
and, by direct integration, we obtain the solution
é(t) = 2tan~! {e-4texp (2B/A)[sin (At + v) —siny]}. (22)

We then have ¢(t) — 0 as t —», i.e., the loop locks on the desired
tone for any strength of the interference tone. Clearly, the same would
be true for a collection of interferers provided they met the assumed
symmetry conditions on their amplitude and phase. This example
illustrates the power of a PLL to capture a desired tone in the presence
of considerable interference.

Vl. EFFECT OF PRECESSION ON THE RECOVERY OF A TIMING TONE

In modems not employing adaptive equalization, the question arises
as to whether or not a scrambler is needed to generate a timing tone
during the idle period. Since there is no equalizer in the system, we
are not concerned with having a densely spaced line spectrum but only
that there be at least two spectral lines, spaced w, apart, in the pass-
band signal. Using the framework we have developed in the preceding
sections, we investigate the effect of ‘‘precessing” the data symbols.
Let us consider the phase-modulated signal

s(t) = i g(t — nT) cos (wdt + 0a), (23)

whose idle code is 6, = 0 for all n. The spectrum of s(t) is, by using
(5) with C(kﬂ) = Ogo and N = 1,

Sw) = 3 G(w)b(e — we — nwy), (24)

and for an excess bandwidth of less than 100 percent,

S(w) = G(0)d(w — we); (25)
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Fig. 8a—Spectrum without precession.
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Fig. 8b—Spectrum with precession.

i.e., the spectrum consists of a single tone, which is obviously not
sufficient to provide a timing tone. This situation is illustrated in Fig.
8a for a pulse g(¢) with 100-percent excess bandwidth and with f.= 1800
Hz and 1/T = 1200. To avoid the above situation, let 8, = 2nr/M,
where M /2 is the number of points in the signal constellation and, thus,
0» has period M. The advancing of the data symbol by 27/M degrees,
independently of any change in the input data, is known as precession.*
Using the notation in Section I, we have

Co = ei% = gilenrlA)

M—1 ] M—1
C(kQ) = ¥ cpemink@xld) = ¥ g—iCrM)nG—1) = 8k—1, (26)
n=0

n=0

which from (5) gives
S(w)=>n:(;(m,+ﬂii)a(w—wc—§-;—m.)- 27)

Thus, the effect of precession is to offset the tones by w./M, producing
the spectrum shown in Fig. 8b. Clearly, when squared, this signal
provides a tone at w, = 1200.

The situation is different, however, for the spectrum shown in Fig. 9a
with 6, = 0. The spectrum with precession shifts the tone by 100 Hz,
and clearly no pair of in-band tones is present. Thus, for spectra that

* Differential phase modulation with precession would generate a data sequence
Oy = 0u_1 + ¢n + 2nw/M, where ¢, is one of M /2 equally spaced angles.
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Fig. 9b—Signal spectrum with precession.

use small amounts of excess bandwidth, the tones necessary to provide
timing would not be present with or without precession. Also, preces-
sion has little or no bearing on equalizer training since it simply shifts
the spectrum and does not enrich it. For high-speed transmission in
which the amount of excess bandwidth is small, spectral enrichment is
provided by the scrambler and insures the proper operation of the
equalizer and timing recovery system.

VIl. SCRAMBLERS: BACKGROUND MATERIAL

We have shown in the preceding sections how the transmission of
short repetitive patterns can play havoe with both the equalizer and
timing recovery systems. As the name suggests, scramblers serve to
“randomize” deterministic data sequences. The effect of this random-
ization on periodic sequences is to lengthen the period of the input
sequence to the scrambler. Strictly speaking, the periodic output of
the scrambler is not random. However, the scrambled data stream
results in a line signal that has many more spectral components than
the input data stream, and, thus, it looks more like the continuous
spectrum that results when purely random data are encoded.

We confine our attention to the so-called self-synchronizing scram-
bler.? The generic forms for the self-synchronizing scrambler and the
descrambler are shown in Figs. 10 and 11 and consist of, respectively,
feedback and feedforward shift registers. Data symbols are fed into
the scrambler every T seconds. These symbols are added (modulo p)*

* In practice, p = 2.
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Fig. 11—Inverse scrambler.

to past outputs to produce the current output. The inputs to the delay
elements shown in Fig. 10 are delayed by T seconds. The output of the
scrambler is then encoded for transmission over the channel. After
decoding at the receiver, the resulting sequence is put through a de-
scrambler, shown in Fig. 11, where the original sequence is recovered.
The inverse scrambler is self-synchronizing, and it will eventually
cleanse itself of a transmission error once the error has propagated
through the shift register. The number of errors in the descrambler
output sequence is the number of channel errors multiplied by the
number of nonzero tap weights in the shift register.

We shall study the input-output relationships of scramblers using
d-transforms. Using this tool we are able, quite simply, to extend and
clarify Savage’s theorem?® on scramblers with periodic inputs. Before
getting into details on secrambler input-output relationships, a sum-
mary of some necessary background material on polynomials over
Galois fields is in order.*

With p a prime number, we speak of a polynomial @(d) over GF(p),
where the coefficients of @(d) are modulo-p numbers. Multiplication,
addition, and division of such polynomials are carried out in the usual
fashion using modulo-p arithmetic on the coefficients. The degree of a
polynomial @(d) is the highest power of d appearing in @(d). A poly-
nomial of degree m is irreducible if it cannot be factored into poly-

* Much of the background material is taken from Ref. 7.
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nomials of lower order. Two polynomials are relatively prime if they
have no common factors. A crucial concept in our study of the scram-
bler is the exponent of a polynomial. The exponent of the polynomial
Q(d) is the minimum value of I such that Q(d) divides 1 — d’, i.e,,
(1 — d)/Q(d) is a polynomial of finite degree. For example, the
exponent of the polynomial 1 + d® 4+ d® in GF(2) is 7 since it divides
1 + d7, yielding 1 + @ + d® + d*, but it does not divide 1 +
i < 7. If the polynomials P(d) and Q(d) are relatively prime with
exponents I; and I, respectively, it can be shown that the exponent of
P(d)Q(d) is the least common multiple (Iem) of I; and l.. The ex-
ponent of [Q(d)]’, where Q(d) is over GF(p), is p’l, where [ is the ex-
ponent of Q(d) and r is such that p' < j < p". An irreducible
polynomial of degree m is primative or of maximum exponent if its
exponent is p™ — 1. Given a polynomial Q(d) of order m, its reciprocal
polynomial is d»Q(1/d), and it is known that reciprocal polynomials of
irreducible polynomials are themselves irreducible, and that reciprocal
polynomials of primative polynomials are themselves primative.

This theory of polynomials over a Galois field is applicable to the
d-transforms’ of the input and output sequences of a serambler. Con-
gider a time series xo, %1, 2z, ---, such that the z;, ¢ =0, 1, -+ are
elements from a Galois field, e.g., 01101- - -. The d-transform of this
series is defined as

X(d) = é, zudi, (28)

and inversion is accomplished by “reading” the coefficients of X (d).
The d-transform of a periodic sequence is of the form R(d)/(1 — d*),
where \ is the period of the sequence and R(d) is a polynomial, of
degree less than A, in d over GF (P). To illustrate, suppose we have a
series of elements in GF (3), 1021, 1021, - - -. Using the relationship for
a geometric progression we find that the d-transform of this series
is (1 4+ 2d?+ d¥)/(1 — d¥. In general, it can be shown that the
d-transform of a periodic time series is of the form P(d)/Q(d), where
P(d) and Q(d) are polynomials over a Galois field. If P(d) and Q(d)
are relatively prime, the period of the time series represented by
P(d)/Q(d) is the exponent of Q(d).

Linear sequential machines over GF (p) are composed of modulo-p
adders, multipliers, and delay elements connected according to a few
elementary rules. As the name implies, such circuits are linear over
modulo-p arithmetic. The laws of commutativity, associativity, and
superposition apply. For example, the response of a circuit to the sum
of two inputs is the sum of the responses to each input separately. The
summations are carried out term-by-term modulo p on the input and
output sequences.
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The response of such circuits to inputs can be found using the
classical techniques of linear system theory. The output consists of the
sum of the free response and the forced response. The free response is
due solely to initial conditions within the circuit with no input. If the
circuit is in the quiescent state, i.e., it has zero initial conditions, there
is no output without an input. The forced response is the output when
an input is applied to a circuit in the quiescent state. As in the case of
conventional linear circuits, the forced response can be found by con-
volving the impulse* response with the input sequence. Thus, if A,

n = 0,1, --- is the impulse response of a circuit and u., is its input at
time nT, n = 0, 1, - - -, then the output at time nT is
Yn = E hkun—h (29)
k=0

where ¥ indicates summation modulo p. If we take the d-transform of
both sides of (29), we find

Y(d) = U(d)H(d), (30)

where U(d) and H(d) are the d-transforms of u. and h, respectively,
and wheren =0, 1, ---.

VIIl. SCRAMBLER INPUT-OUTPUT RELATIONSHIPS

Scramblers are linear sequential circuits and their input-output
relationships can be found using linear system theory. In this section,
we wish to demonstrate the utility of the d-transform approach in
characterizing the nature of the output sequence for a given input
sequence. Consider the m-stage scrambler shown in Fig. 10 with feed-

back coefficients ¢1, - - -, ¢m. The output at time nT, ya, is given by
Yn = C181n @ CaSan ('B Tt ('B CmSmn @ Un
S1n = Yn—1 (31)
Sin = Si—1,n—1 12 2,

where u,, is the input at time nT and s is the output of the kth delay
element at time [." Now we find the impulse response. Let

w. — 1 n=20
10 n>0
and
S{0=0,V’i.

* By an impulse we, of course, mean a time series which is unity at the time origin
and is zero elsewhere.
The output may be rewritten as yn = B CiYfni @ Un. At the descrambler we
form 2z, = yn ® B ciYn_i, Which recovers the input when there are no channel
€Irors.
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The output sequence can be written

1 n=0
- B ciyna n<=m
Yn = =1 (32)
B ciyni n > m.
=

If we take d-transforms of both sides of (32) we find after some manipu-
lation that the transform of the impulse response, i.e., the transfer
funection, is given by

H(d) & éﬂ ypd* = 1// (1 - é;l c.-d")- (33)

The d-transform of the forced response of the scrambler can be found
from eqgs. (30) and (33).

The free response of the scrambler can also be found from (31)
when u, = 0, for all n. We begin by assuming a particular initial
state vector. Assume that the output of all of the delay elements but
one are zero. Let the nonzero output be that of the 7th delay element
and denote this output by s;. It can be shown that y%, the output of
the serambler due solely to state s;, is

CiSio n=0>0
E ij;:—j + citnSio 0<n=m-—1
Yp = < =t (34)
® ciyn n>m—i.

=1

If we take the d-transform of both sides of eq. (34), we find that
the d-transform of the response to initial condition 84 is

Yi(d) = (s;u :E_o c,-+kd’=) / (1 -5 c,-df')- (35)
= 1=1
Now, to find the response to any initial condition s1, 820, * **, Sma,

we sum over 4. Thus, the d-transform of the free response is
Viwold) = 8@) /(1= B o) = S@H@, (36
i=1
where S(d) &2 B, 80 B0 cipsd®.
A fact that is crucial to our analysis in the sequel is that the poly-

nomial S(d) spans the space of polynomials of degree m — 1in GF (p).
By choosing the initial conditions s;o, 7 = 1, 2, - - -, m, S(d) can be any
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polynomial of degree m — 1. To show this, suppose we have the
polynomial T(d) =ty + tid + --- + tm_ad™'. Equating T(d) and
S(d) term by term, we have m equations in m unknowns, $iq, S20, - - -
8mo. The equations can be represented in the form

H

Cm 0 e 0 S10 t,,,._l
Cm—1 Cm e 0 Sap — tm—Z . (37)
€1 € Cm] | Smo to

The m X m lower triangular matrix in (37) is nonsingular (since
cm #= 0); therefore the m simultaneous equations have a unique
solution.

From the foregoing, we see that the total response of a secrambler to
an input, with transform U(d), is

Y(d) = [U(d) + S(d)1/2(d), (38)

where ®(d) 2 1 — >, c,d™ is the transform of the feedback co-
efficients. The above equation completely describes the behavior of
the serambler to any input for any given initial state.

Now we consider the input-output relationships for the serambler
based on eq. (38). Throughout our discussion we shall assume that
®(d) is a primitive polynomial implying that it has exponent ¢=p™—1,
and thus can be written as (1 — d¢)/®'(d), where ®'(d) is a finite
degree (remainder) polynomial of degree ¢ — m. Note that ®'(d) is
one ‘‘cycle” of the periodic polynomial 1/®(d). Suppose that the input
is zero, the transform of the output is simply S(d)/®(d). Since the
degree of S(d) is one less than that of ®(d), S(d) and ®(d) are relatively
prime,* and the output transform is S(d)®'(d)/(1 — d?); hence, the
output is periodiec with period = p™ — 1. If the input is a sequence of
finite duration 7, then U(d) is a polynomial of degreej — 1. If j = m,
then the above output transform is U(d)®'(d)/(1 — d?%), and since
the degree of the numerator is less than ¢, it is clear that the output
is purely periodic with period ¢. Note that there is no output transient.
If j = m, and if U(d) + S(d) and ®(d) are relatively prime, then it is
easy to show that the output consists of a transient component
(7 + 1 — m) long" and a periodic component with period ¢. For any
input U/ (d) of finite duration, there are a unique set of initial conditions

* Sinee #(d) is a primative polynomial, S(d) cannot be a factor of ®(d); and since
the degree of S(d) is less than a ®(d), ®(d) cannot be a factor of S(d). Thus, S(d)
and ®(d) are relatively prime.

This should be intuitively clear, since once j — (m — 1) bits are accepted in the
?crambler, the situation is one where the (remaining) input sequence is of a length
ess than m.
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S(d) such that
U(d) + S(d) = T(d)2(d),

where T'(d) is some polynomial. In this situation the output has
finite duration given by T'(d), i.e., the periodic component of the solu-
tion has been annihilated. To show this, we cite the following theorem.?
Let U(d) and @ (d) be polynomials in GF(p). Then there are unique
polynomials 7(d) and S(d) in GF (p) such that U(d) 4+ 8(d) = T(d)®(d),
where S(d) = 0 or S(d) is of lower degree then U(d). Recall that by
suitably choosing initial conditions, S(d) can be any polynomial of
degree m — 1 over GF(P).

We turn to the important case of periodic inputs. The input se-
quence {/(d) can always be written in the form U(d) = P(d)/Q(d),
where P(d) and Q(d) are relatively prime. Let the exponent of @(d)
be £, i.e., the period of the input is {. The d-transform of the output
becomes

Y(d) = [S()Q(d) + P(d)1/2(d)Q(d). (39)

We consider first the case where ®(d) and Q(d) are relatively prime.
Ii the numerator and denominator of eq. (39) are relatively prime,
then, using the background material presented in Section VII, it is clear
that the output is periodic with period N, where N = lem (I, p™ — 1).
However, we will show that given P(d) and @(d), there is a set of
initial conditions for which

S8(d)Q(d) + P(d) = T(d)2(d), (40a)

where T'(d) has degree I — 1. When (40) holds, the output period is I.
Thus, assuming that all initial states are equiprobable, with probability
p~™ the initial state will be such that the scrambler “locks up” and the
output period equals the input period. (As we have previously men-
tioned, this is a very undesirable situation.) To support (40) we cite
the following theorem.® There exist (unique) polynomials T7(d) and
S§'(d) such that

S (d)Q(d) + T'(d)@(d) =1 (40b)

only if Q(d) and ®(d) are nonzero relatively prime polynomials over
GF (p). Now multiply both sides of the above equation by —P(d) and
let S(d) = — P(d)S’(d) and T'(d) = P(d)T’(d). Again we make use of
the fact that S(d) spans the space of polynomials of degree m — 1 to
guarantee that for every S’(d) there corresponds a S(d). We now
summarize the above.

Let the scrambler be defined by the primative polynomial
1 — X", e.d?, and also suppose that the transform of the input to the
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scrambler is P(d)/Q(d), where P(d) and Q(d) are relatively prime. It
is also assumed that ®(d) and Q(d) are relatively prime. For a particular
set of initial conditions, the output period of the serambler is the input
period, [, where [ is the exponent of Q(d). For all other initial conditions
the output period is the least common multiple of I and p™ — 1.

Our description is the same as Savage’s Theorem 1 with two dif-
ferences—one superficial, the other crucial. Savage requires the poly-
nomial h(d) = d™ — X" ,cid™* to be primative. However,
1 — ¥, cidf and h(d) are reciprocal polynomials and, as we have seen,
the reciprocals of primative polynomials are themselves primative with
the same exponent. The second requirement is that ®(d) and Q(d)
be relatively prime. This requirement, which is not part of Savage's
theorem, is essential for a complete desecription of scrambler behavior.*

We will now show that the requirement that ®(d) and Q(d) be rela-
tively prime is satisfied whenever the exponent of Q(d) is not a multiple
of p™ — 1. The proof is by contradiction. Suppose ®(d) and @(d) are
not relatively prime, then it is possible to write'

Q(d) = B(ddi(d) =12 - (41)

where R(d) is a polynomial, with exponent r, which is relatively prime
to ®(d). The exponent of Q(d) is lem [r, p*(p™")], where k is such that
pk1 < j < pk. Clearly, the exponent of Q(d) is a multiple of p™ — 1,
thus proving the desired result. Thus, when the input period is less
than pm! (the practical case), then ®(d) and Q(d) are relatively prime.
It is interesting to note that even if the input to the scrambler has an
exponent which is a multiple of p™ — 1, it may be that Q(d) and ®(d)
are still relatively prime. For example, @(d) ecan be the reciprocal
polynomial to ®(d).

Consider now the situation when @(d) and ®(d) are not relatively
prime. As above, we can then factor Q(d) in the form Q(d) =®/(d)E(d),
= 1, where R(d) is either 1 or a polynomial relatively prime to
®(d). From (39) and (41) the d-transform of the output is

Y(d) = [8(d)@/(d)R(d) + P(d)]/®™ (d)R(d). (42)

Since by assumption P(d) is relatively prime with Q(d) = ®/(d)R(d),
the numerator and denominator of (42) are relatively prime. Since
®#1(d) and R(d) are relatively prime, the output period is then the
least common multiple of p*(p™ — 1) and r, with k given by p**! <

* In other words, Savage states that, apart from the special case when the output
period equals the input period, the output period is the lem (I, p™!). This is not strictly
true since, as we shall show, if ®(d) and Q(d) are not relatively prime, the output
period is not necessarily the lem(l, p™™).

t Since ®(d) is irreducible, we could not write @(d) as a factor of ®(d).
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Fig. 12—Cascade of N M-bit scramblers.

4+ 1 < p*. Note that this result holds independently of initial
conditions.*

The above discussion provides a refinement of Savage’s basic result’
by indicating that the output period is contingent on whether or not
&(d) and Q(d) are relatively prime. It was shown that if the exponent
of Q(d) is not a multiple of p™ — 1, then ®(d) and Q(d) are relatively
prime. However, when Q(d) and ®(d) are not relatively prime the
output period must be determined from (42).

IX. CASCADED SCRAMBLERS

The cascade of identical seramblers provides an interesting example
of when Q(d) and ®(d) are not relatively prime. Suppose, as in Fig. 12,
we have n identical m-stage scramblers in tandem so that the output
of the first is the input to the second and so on. Thus, assuming no
lockup, the input to the second stage will have the same period as the
free-running period of the second stage. With S(d) = 0 for all the
scramblers, the output transform of the nth scrambler is

Y(d) = U(d)/2™(d), (43)

where U(d) is the transform of the input. Consider an example where
Ud) =1/(1 +d) = 1/Q(d) with p = 2. Note that the exponent of
Q(d) is unity. The transform of the second output is 1/Q(d)®*(d),
and we apply the results of the previous section to show that the output
period 1s 2(2™ — 1), i.e., k£ = 1. Applying the above result to succes-
sive stages produces the data in Table I, which shows the period of
the output as a function of »n for a binary scrambler (p = 2). Table 1
points out that adding a stage in cascade does not always double the
output period.

By considering each serambler successively, we can comment on the
output period of the cascade scrambler for arbitrary initial conditions
and input, assuming Q(d) and ®(d) are relatively prime. Let the input
to the first scrambler have exponent [ < p™ — 1. IFrom Section VIII

* If cancellation between the numerator and denominator in (42) were to occur,
(40) would imply that P = &(1 + SR®'1). Now since (41) states that Q@ = R®’, it
is clear that P and @ have the common factor ®. This contradicts the assumption
that P and @ are relatively prime. Thus, under the above conditions (i.e., @ and @
are not relatively prime), the initial condition cannot force the output period to equal
the input period.

t Results similar to ours were stated without proof in Ref. 9.
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Table |

n Output Period
1 (2= — 1)
2 2 (2 — 1)
3 42 —1)
4 4@2m —1)
5 8 (2m —1)
6 8 (2m —1)
7 82" —1)
8 8 (@™ —1)
9 16 (2= — 1)

we know that the probability of the output having period I is p~™.
Otherwise, the output has period lem(l, p™ — 1). If the input to the
second scrambler has period ! we have the same situation as the first
scrambler. However, if the output of the first scrambler has period
lem ({, p™ — 1), the input polynomial to the second scrambler has de-
nominator Q(d)®(d). By an argument analogous to that surrounding
(42), it is clear,that (40) cannot be satisfied, since @(d)®(d) and ®(d)
are not relatively prime; thus, the scrambler cannot “lock up,” and
applying the results in Table I indicates that the output of the second
scrambler has period lem[, p(p™ — 1)]. Thus, if a particular scrambler
does not lock up, then no succeeding scrambler can lock up. The situa-
tion is summarized in Table II for four binary scramblers in tandem.
We assume in Table II that all initial states are equiprobable.

We compare Table II to the serial scrambler in which all delay
elements are combined into a scrambler that has 4m elements.
With input period [, the output period is [ with probability 2-*™ and
lem(l, 24 — 1) with probability 1 — 2—*m, Both the cascade and serial
scramblers lock up and have period I with the same probability
(2—4m) ; however, since

(i) the longest period of the cascade scrambler, lem[1, 4(2™ — 1)],
is less than the largest period of the serial scrambler,
[lem(l, 2¢™ — 1)7], and

Table I
Output Period Probability
l 2—~4m
lem(l, 27 — 1) 2-im(] — 2-m)
lem[], 2(2" — 1)] 27m(1 — 27m)
lem[{, 4(2™ — 1)] 1 —22m
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(1) the probability of the cascade scrambler attaining its largest
period (1 — 27?m) is less than the probability of the serial
scrambler attaining its largest period (1 — 2-4m),

the superiority of the serial over the cascaded scrambler in terms of
spectral density is clear.

X. PARALLEL SCRAMBLERS

Serial scramblers have the property that if a single bit error is made
in demodulation, then M errors will appear in the unserambled output
sequence, where M is the number of nonzero coeflicients in the scram-
bler primative polynomial. A parallel scrambler configuration has been
proposed to ameliorate this error multiplication. In this section, we shall
illustrate a spectral cancellation effect that can take place with parallel
scrambling. For simplicity, we shall consider two parallel data streams.
Suppose that the binary data, as in Fig. 13, are split into two data
streams a, and b,, where a, is the scrambled* version of a,, while
bo = @n_mn @b,. The a, and the b, streams are then encoded for
transmission over the channel. At the receiver, inverse operations re-
cover the a, and the b, streams. A channel error in the a, stream will
cause M errors in the a, stream and one error' in the b, stream. A
channel error in the b, stream will cause a single error in the b, stream.
Now suppose that a, and b, are Gray encoded so that a, is the least
significant bit. The result is that the probability of error in the a.
stream is much less than the probability of error in the b, stream;
thus, the average number of errors in the a, and the b, streams will be
decreased compared with serial scrambling.

Now we wish to examine the effect of ‘‘slaving” the b, stream to the
@, stream. For our purposes it will be sufficient to code the serambled
output sequences into 1 and —1, i.e., the transmitted data sequence
is given by?* (recall the notation of Section III)

¢n = (2an — 1) +j(2bs — 1)
2an — 1+ j[2(@n-m @D ba) — 1] (44)

As we have shown in Sections II1I and IV, both the line and envelope
spectra critically depend on the discrete Fourier transform (prT) of
the ¢, sequence, C(kQ). Unfortunately, it is not possible to express

* At the inverse scrambler, a, is recovered as in the standard configuration, while
bn is estimated as b + @n_m.

Since the estimated bn is formed as the “mod 2" sum of bx and an_m, 2 single
channel error will only affect the b, output once; however, the a. output will see
the propagation of this error through the shift reglster

¥ The function (2a, — 1) maps “0”” into “—1"" and “1” into_“1"’ and thus serves
as a mapping from the scrambler output sequence to the transmitted (line) sequence.
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Fig. 13—Parallel scrambler configuration.

C(kQ) directly in terms of the scrambler primative polynomial, which
is a most difficult problem since, in the space of real-valued sequences,
the pFT is a linear operation and the scrambler output is a nonlinear
function of the input [of course, the scrambler input and output are
linearly related in GF(p)]. However, in the present situation we are
able to proceed since we are only interested in illustrating the possi-
bility of spectral cancelling due to the parallel structure. We first
indicate two simple relations between mod 2 operations and the cor-
responding real variable operations: with a, b € GF(2),

a@b= (a—0b)2 (45a)
a* = a. (45b)
Using (45) we write (44) as
en = (2an — 1) + j[2(@n-m — 2b,@n_m + ba) — 1]
= 2(an +jafs—m) + 2.7br: - 4jb;an—m - (1 +J) (468')

Let us consider the effect of the first term on the speetrum of ¢,. Now
with L and C (k) denoting respectively the period of @, (and b,) and
the orr of a, + jan—m, we have*

C(kQ) = [1 + je-ieriLmi]A (kQ)
= 1 + elltrm—ariLimkI A (kQ). (46b)

Suppose that the scrambler produces a flat output speetrum (i.e., it
would be a satisfactory scrambler if used solely in the serial mode),
it is clear that C'(kQ) will have periodically spaced nulls. Since the
energy in the timing tone is given by

R(w,) = zf_: |C (k) |°F (kQ)F (0, — kQ), (14)

_ "For the purposes of our discussion, we, in effect, assume that b, = 0,
Le, Cn = @i + JAn-m.
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any amplitude tapering provided by |C(%kQ) |? could impair the timing
recovery system. From (46) we have

|C(kQ) |2 = [1 + sin(2x/L)mk]* + [cos (2x/L)mk]?
= 2[1 + sin (2x/L)mk], (47)

wherek = 1,2, ---,L,andm = 1,2, - -+, M with M being the number
of stages in the scrambler. The strength of the tone, described by (14),
will be particularly attenuated when |C(kQ)| has a null at k = L/2,
which corresponds to a frequency of w./2. It is easy to see that for
some values of “m,” the attenuation of the tone can be quite severe
near w,/2 (i.e., k = L/2).

In practice, the remedy is to change the value of m so that the null
occurs as far away from w,/2 as is possible. Of course, this cannot be
done prior to transmission since the exact value of w, is unknown.

In this section, we have described a possible pitfall associated with
the use of a parallel scrambler configuration. In practice, whether or
not there is severe attenuation of the timing tone depends on the
details of the pulse shaping and the operation of the phase-locked loop.

Xl. CONCLUSIONS

We have examined several problems occurring in data-transmission
systems that employ envelope-derived timing recovery, adaptive
equalization, and self-synchronizing scramblers. Several conclusions
have been reached regarding both the individual and joint action of
these subsystems.

(i) The performance of the envelope-derived timing recovery
system can be significantly improved by narrow-zonal pre-
filtering of the received signal prior to extracting the envelope.

(73) The technique of “precessing’”’ the data symbols in a phase-
modulated modem is sufficient to provide a timing tone in a
large excess-bandwidth system, but does not provide a tone in
a small excess-bandwidth system.

(747) A complete description was given of the output period of a
cascaded scrambler as a function of the number of stages. Of
interest are the facts that the output period does not neces-
sarily double with the addition of a stage, and that if a partic-
ular scrambler stage does not lock up, then no succeeding stage
can lock up.

(iv) It was demonstrated that the parallel scrambler configuration
can, via spectral cancellation, cause the strength of the timing
tone to be attenuated.
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