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In using filter banks for processing speech signals, it 7s often important
that the sum of the individual frequency responses of the bandpass filters
(composite response) be flat with linear phase. This paper presents a
technique for achieving flat composite response using linear-phase FIR
digital filters. The design method is based on some special properties of
FIR filters designed by the windowing method. Excellent response char-
acteristics can be achieved with complete flexibility in choosing the cenler
frequencies and bandwidths of the individual filters.

I. INTRODUCTION

Filter banks are used to perform short-time spectrum analysis in a
variety of speech processing systems.'~* Typically, a set of bandpass
filters is designed so that a desired portion of the speech band is
entirely covered by the combined passbands of the filters composing
the filter bank. The outputs of the bandpass filters therefore are con-
sidered to be a time-varying spectrum representation of the speech
signal. If special care is taken in the design of the bandpass filters, it is
possible to reconstruet a very good approximation to the input speech
by simply adding together the outputs of the bandpass filters.® This
is the basic principle of a variety of vocoder systems.

Since the bandpass filters are linear systems, we can characterize the
behavior of such filter banks by considering the composite frequency
response when all the outputs are added together. Since, ideally, the
output should be equal to the input, then we desire that the composite
frequency response have constant magnitude and linear phase in the
desired band of frequencies. This criterion, together with specifications
on the desired bandwidths of the individual frequency channels, forms
a meaningful basis for the design of filter banks for speech analysis.

An earlier paper?® showed that careful attention to the relative phases
between channels is important in achieving a flat composite frequency
response. That paper, which was concerned primarily with filter banks
composed of infinite impulse response (1r) digital filters, described a
method of obtaining flat composite frequency response by a relatively
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simple adjustment of the relative phases of the channels. This method
was later applied to the design of a speech analysis/synthesis scheme
in which finite impulse response (rir) digital filters were used.? Using
this method, excellent overall response can be obtained for both 1r
and rir digital filters in filter banks in which the center frequencies are
uniformly spaced. However, the method is not easily extended to
nonuniformly spaced filter banks.

In the present paper, we describe a different approach that is not
limited to the design of uniformly spaced filter banks. The method
exploits some special properties of linear-phase rir filters and thus
cannot be applied very successfully to the design of 1r filter banks.
We first discuss the basic design principles, and then show some design
examples. We conclude with a discussion of some computational
considerations of rir digital filter banks.

Il. DESIGN METHOD

FIr digital filters are attractive for design of speech filter banks for
several reasons. First, such filters can be designed to have precisely
linear phase simply by imposing the constraint

h(n) = h(N — 1 — n) 0=n=N-1 (1)

(on each individual filter band*), where h(n) is the impulse re-
sponse of the filter and N is its length in samples. This means that the
criterion of linear phase for the composite filter bank response is
trivially met if the individual filters have identical linear-phase
characteristics. Therefore, it is possible to focus attention on achieving
arbitrary frequency selective properties for the individual filters and on
obtaining the desired flat response for the composite filter bank. The
second great advantage of Fir filters is that a variety of design methods
exist ranging from the straightforward windowing method®’ to itera-
tive approximation methods that allow great flexibility in realizing
complicated design specifications.?

2.1 FIR bandpass filters

The bandpass filters that we shall consider have impulse responses
of the form

hi(n) = hi(n) cos (wanT) 0=nsN-1
=0, otherwise, (2)

where h;(n) is the impulse response of the kth linear-phase low-pass

_ *It is assumed, for simplicity, that the impulse response of each bandpass filter
is of duration N samples, although it is trivial to remove this restriction by adding
appropriate delays for each channel.
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Fig. 1—Implementation of a typical bandpass channel.

filter. This particular form for the impulse response is motivated by the
fact that, in some vocoder applications** each bandpass channel is
implemented as shown in Fig. 1. The overall impulse response of the
system of Fig. 1 from input z(n) to output y(n) is easily shown to be
given by eq. (2).

The spacing of the individual channels of the filter bank is deter-
mined by the choice of the set of center frequencies, wc, which is in
turn determined by the desired frequency resolution of the filter
bank. The frequency selectivity of each channel is determined by the
frequency response characteristics of the prototype low-pass filters
hix(n). Since phase considerations can be simply avoided by designing
all the bandpass filters to have the same linear phase, we can focus
our attention entirely on designing a set of prototype low-pass filters
that have the desired individual frequency selective properties and
that give the flattest amplitude response for the composite set of
bandpass filters.

2.2 Low-pass filter design

The window design method appears to have a number of advantages
for design of the prototype low-pass Fir filters. This method is de-
picted in Fig. 2. First, a desired ideal low-pass filter of the form

Hdk(ejmi") = g—iwnoT |w‘ =< Wk
= 0, otherwise, (3)
is defined by choosing the cutoff frequency w,:. Note that, for sim-
plicity, we have omitted in the figure the linear phase term

exp (— jwnoT) corresponding to a delay of n, samples. The value of
no required is no = (N — 1)/2. This means that, if N is even, the
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Fig. 2—Windowing technique for a low-pass design.

delay corresponds to a noninteger number of samples. The ideal im-
pulse response for the %th channel is, therefore,
hdk (n) _ % j-nulk e—iomoT gionTgy, — sin [w,,k(nT - 'nnT)]_

—wpk w(n — ng)

(4)

Of course, this impulse response is infinite in extent and must be
truncated to obtain an rir filter. This is done by defining

hu(n) = ‘H'J(n — no)hd;,(n), (5)

where w(n) is a window function and h;(n) is the impulse response of
the kth prototype low-pass filter. The length of the window, denoted
by N, can be either an even integer (N = 2M) or an odd integer
(N = 2M + 1). Figure 2 shows the case when N is odd.

The result of multiplying the ideal low-pass impulse response by the
window corresponds to a convolution in the frequency domain of the
ideal frequency response and the Fourier transform, W{(e#T), of the
window; i.e.,

|7
Hyeon) = g [ Ha(e" D)W (07, ®)
T J—x|T
The result of this convolution is depicted in Fig. 2. It can be seen that
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the main effects are the introduction of a smooth transition between
the passband and the stopband and the introduction of ripples in the
passband and stopband regions. The properties of this approximation
are depicted in Fig. 3. If w, is larger than the width of the “main lobe”
of W(e®T), then the following set of properties are generally true:

(z) The transition region, Aw, is inversely proportional to N.
(#) The function H(e*T) is very nearly antisymmetric about the
point (wp, 0.5).
(4i1) The peak approximation errors in the passband and stopband
are very nearly equal.
(i) The approximation error is greatest in the vicinity of w,, and
it decreases for values of w away from w,.

The above properties of the windowing design method are true of
all the commonly used windows. However, Kaiser has proposed a
family of window functions that are very flexible and nearly optimum
for filter design purposes.® Specifically, the Kaiser window is

w(n) = Io[a Vlfia)(n/ n9)*]
=0,

where no = (N — 1)/2 and I,[ -] is the modified zeroth-order Bessel
function of the first kind. By adjusting the parameter @, one can trade
off between transition width and peak approximation error. Further-
more, Kaiser” has formalized the window design procedure by giving

In| = no

otherwise, (7

H(el®WT)

05

1 N S -

s 7

Fig. 3—Resulting low-pass design from windowing.
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the empirical design formula

—20 logm 86— 7
14.36A7

where N is the filter order, § is the peak approximation error, and Ajf
is the normalized transition width

N = 91, (8a)

Af = 55— (8b)

To use this formula, we fix § and Af at values that provide the desired
frequency selectivity. Then eq. (8a) can be used to compute N, and
the parameter « can be computed from the equation’

a = 0.1102(—20 logi 5 — 8.7), —20log1o 6 > 50
= 0.5842(—20 logy § — 21)04
+ 0.07886(—20 logio 6 — 21), 21 < — 20logsy & < 50. (9)

In the present application of this design method, the choice of é and
Af depends upon the specifications of the bandpass filters that con-
stitute the filter bank.

2.3 Filter bank design

To design a filter bank using Fir filters, we must first determine the
range of frequencies to be covered by the composite response. Let us
assume that these are denoted wmin 8nd wWmax, Where wmax = 7/T.
Now, if there are a total of N/ filters, we must choose the bandwidths
and center frequencies so that the entire range of frequencies
Wmin = @ = wmax 18 covered. This is depicted in Fig. 4 for the case
N, = 3. This figure shows the ideal responses for each bandpass filter;

[Ha (e i@T)]
€ -2 Wp) >t ——-20Wp) —— —lE————— — — — 2wpz— —— — — — — = S
| ] | -
0 wey wea Weg w
Dy wWMAX

Fig. 4—A typical nonuniform filter bank.
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i.e., as would be obtained if windowing were not required. In general,
it is clear that

Ny
Wmax — @Wmin = Z 2wpk (10)
k=1
and

k=1
Wek = Wmin + E 2(“,1”" + Wpk k ; 2

m=1
= Wmin T @p1 k=1. (11)

If all the filters have the same bandwidth, i.e., wsr = wo, then it is
easily seen that
Wmax — wmin_

2N;

wo = (12)
Alternatively, if the bandwidths are to increase exponentially; e.g.,
Wpk = 2"‘_lwo, then

Wmax — Wmin (13)

@7 M —1)

The center frequencies can be found in either case by using eq. (11).
The choice of peak approximation error depends upon how much
stopband attenuation is deemed necessary in a given application.
Typical values of —20 logi 6 would most likely be between 40 and
60 dB. Using eq. (9), the appropriate value of « can be computed.
Finally, the normalized transition width Af must be fixed to compute
N from eq. (8a). Again, the choice of Aw (or Af) is governed by con-
sideration of the desired frequency selectivity for the individual filters.
Clearly, the transition width Aw, should not be more than 2w,;.

In the filter bank context, we shall require that Aw be the same for
all filters so that we can take advantage of property (iz) of Section 2.2.
That is, if all the filters have identical transition regions and, further-
more, if these transitions are antisymmetric about the crossover
points, then we can expect that the sum of the frequency responses
will be very close to unity. This is illustrated in Section III.

lll. DESIGN EXAMPLES

In this section, we illustrate the use of the principles established in
Section II with examples of both uniform and nonuniform filter
banks. For all the examples, the sampling rate is assumed to be 9.6 kHz.

Ezxample 1

Suppose that we wish to design a bank of 15 equally spaced filters
that covers the range 200 to 3200 Hz. Then, using eq. (12), we find
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that the cutoff frequency for all the low-pass filters* is

fo = ‘;—;’r = 100 Hz.

Using eq. (11), the center frequencies are

for = ;’: =1002t +1)Hz k=1,2, -, 15.

If we assume that 60-dB attenuation is required outside the transi-
tion regions of each channel, we find from eq. (9) that o = 5.65326.
Since the cutoff frequency is 100 Hz for all the prototype low-pass
filters, the widest transition band that is reasonable is 200 Hz. Using
this value and —20 logy, 8 = 60 in eq. (8a), we obtain N = 175 as
the lowest reasonable value for N. Note that, if lower attenuation is
acceptable, then N can be smaller for the same Ajf.

The filter bank designed with the above parameters is shown in
Fig. 5. Figure 5a shows the individual bandpass filters. Note how the
fall-off in the upper transition band of a given filter complements the
ascent of the next filter. Also note that adjacent channels cross at an
amplitude value of 0.5. Figure 5b shows the composite response of the
filter bank. It is clear that the filters merge together very well at the
edges of the frequency bands. Indeed, the deviation from unity is less
than or equal to the peak approximation error, & = 0.001, that was
used in designing the prototype low-pass filters.

Ezample 2

A nonuniform spacing of the filters is often used to exploit the ear’s
decreasing frequency resolution with increasing frequency. Suppose
that we wish to cover the same range 200 to 3200 Hz as in Example 1,
but we wish to use only four octave band filters. That is, each succes-
sive filter will have a bandwidth twice the bandwidth of the previous
filter. Using eq. (13), we find that the lowest frequency channel has
cutoff frequency

wo _ 3200 — 200

f0=ﬂ———2(24_1) = 100 Hz.

In general, the cutoff frequencies of the prototype low-pass filters are

foo=E =2, k=1,234,

* For the actual low-pass filter, the response will be approximately 0.5 at w = w,,
the cutoff frequency of the ideal low-pass filter.
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(a) INDIVIDUAL FILTER RESPONSES (N =175)
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Fig. 5—Individual and composite frequency responses of a bank of 15 uniform
bandpass filters for N = 175.

or the bandwidths of the bandpass filters are 200, 400, 800, and 1600
Hz, respectively. The center frequencies are found, from eq. (11), to
be 300, 600, 1200, and 2400 Hz, respectively. Again requiring 60-dB
attenuation, we note that the narrowest bandwidth is 100 Hz, so that
the smallest reasonable transition width is 200 Hz. This leads again to
a minimum value of N = 175. The filter bank corresponding to these
design parameters is shown in Fig. 6. In Fig. 6a, again note the rela-
tionship between the ascending and descending transitions between
adjacent filters. Particularly note that, since N and « are the same for
each of the prototype low-pass designs, the shape of the curves in the
transition region is independent of the bandwidth. Figure 6b shows
the composite response where the deviation from unity is again less
than 0.001.
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(a) INDIVIDUAL FILTER RESPONSES (N =175)
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Fig. 6—Individual and composite frequency responses of a bank of 4 nonuniform
bandpass filters for N = 175

It is interesting to note that the composite frequency response of the
filter bank is independent of the number and distribution of the in-
dividual filters, so long as the same window is used to design all the
individual filters in the bank. This result can be verified by writing the
overall frequency response of the filter bank, H (eT), as

H(eT) = ng(ei“"‘"), (14)

which, from eq. (6), can be written as

N;

H(eiT) = f Hau(e#T)W (e5-9T)d. (15)

121r

Interchanging the order of summation and integration, eq. (15)
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can be written as:

) T x|T Ny i .
H(e™T) = — [ Hdk(ef”')] W(eite—DT)do (16)
27 —x/T L k=1
= W(e®TY®H(eiT), (17)
where
Ny

Hr(eT) = 3, Ha(e™7). (18)

k=1 .

Equations (17) and (18) show that the overall frequency response of
the filter bank is the circular convolution of the frequency response of
the window with the frequency response of the combined ideal band-
pass filters. As seen in Fig. 4, the combined ideal frequency response
of the bandpass filters is an ideal bandpass filter from w = wnia to
@ = wmax, independent of the number and distribution of the in-
dividual filters. Thus, the composite filter bank frequency responses
for the examples in Figs. 5 and 6 are identical because the same
window was used in both cases and the filters spanned the identical
frequency ranges.

Example 3

Suppose that all the parameters remain the same as in Example 2
except that we require narrower transition regions. This means that
a larger value of N is required. In fact, Eq. (8a) shows that N and Af
are roughly inversely proportional. Figure 7 shows the filter bands cor-
responding to the parameters of Example 2 except that N = 301 and
Af = 0.012082 (transition width is 116 Hz). The sharper transitions
are apparent in Fig. 7a, and Fig. 7b shows that the composite response
remains very flat.

Example 4

We have assumed throughout that the transition width was less than
twice the smallest low-pass cutoff frequency. In our examples, this
constraint required that N be at least 175. The result of reducing N
below this value is illustrated in Fig. 8. In this case, all the parameters
were the same as in Examples 2 and 3, except in the case of N = 101
and Af = 0.0362465. The transition width is 348 Hz, which is much
greater than twice the cutoff frequency of the first low-pass filter.
This is clearly in evidence in Fig. 8a. It is clear that reasonable filters
are obtained for the wider bandwidth filters; however, the lowest
filter does not attain unity response anywhere in its passband.

The preceding examples make it abundantly clear that, for suffici-
ently long impulse responses, the composite filter-bank response can
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(a) INDIVIDUAL FILTER RESPONSES (N =301)
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Fig. 7—Individual and composite frequency responses of a bank of 4 nonuniform
bandpass filters for N = 301.

be very flat. In Ref. 5, where design techniques for 11r filter banks were
discussed, the best results achieved for the composite response were
approximately 1-dB peak-to-peak ripple for uniform bandwidths and
about 2.5-dB peak-to-peak ripple for nonuniform bandwidths. This is
in contrast to the results of the examples of this section, where the
peak-to-peak ripple in the composite response was about 0.0274 dB
for all the filter banks independent of how the bandwidths were chosen.
This, together with the precise linear phase that is easily achieved,
makes the FIr filter banks superior to what can be achieved for 1R
filter banks. The price that is paid for this is that rather large values of
N are required to achieve sharp transitions. However, the values of N
used in the previous examples are certainly not unreasonable if the
filters are implemented by rrT convolution methods or in special-
purpose hardware.
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Tig. 8—Individual and composite frequency responses of a bank of 4 nonuniform
bandpass filters for N = 101.

IV. SUMMARY

We have discussed a design method for filter banks composed of
FIr digital filters. The method exploits the linear-phase properties
obtainable for such filters, as well as the symmetry of the transition
region that results from the windowing method of design. We sum-
marized this method of design for the Kaiser window and illustrated
the filter-bank design method with several examples. These examples
show that the proposed design method has a great deal of flexibility
and that excellent response characteristics can be achieved.
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