Copyright @ 1975 American Telephone and Telegraph Company
Tue BELL SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.8.A.

SAFEGUARD Data-Processing System:

Central Logic and Control Operating System

By J. P. HAGGERTY
(Manuscript received January 3, 1975)

The Central Logic and Control (CLC) s the digital computer that con-
lrols SAFEGUARD. This paper describes the novel features of the CLC
operating system, presents its design rationale, and points out its limita-
tions. Emphasis is on the characteristics that make the operaling system
suitable for applications other than SAFEGUARD. These include its ability
lo control as many as ten processors, its ability lo initiale the execution of
a program within milliseconds of an event, and ils ability lo delect and
isolate faulty hardware racks without manual intervention.

I. INTRODUCTION

The Data-Processing System (pps) at a SAFEGUARD installation is
controlled by a stored program computer, the Central Logic and Con-
trol (cLc). cLe software can be divided into a set of applications pro-
grams plus an operating system. From the point of view of the operating
system, all applications programs are simply the wuser or the user
process.

Although assemblers, compilers, and linkage editors are usually con-
sidered part of an operating system, the cLc operating system provides
none of these. All program preparation takes place on a separate
support computer, currently an IBM System 370.* The programs com-
piled and link-edited on this machine, including the operating system
itself, are brought to the cLc on magnetic tape as load modules.

Il. THE ARCHITECTURE OF THE CLC*
The crLc consists of one to ten identical processor units sharing a

common memory system, two Input/Output Controllers (1ocs), and
two Timing Generators (TGs). Processors are independent of one

* The reasons for this are discussed in Ref. 1.
A more complete hardware description appears in Ref. 2,

S89

another in the sense that each executes its own instruction stream
without knowledge of the instruction stream being executed by any
other processor. An inferrupt causes a processor to switch instruction
streams in response to an error condition it has detected, such as
arithmetic overflow. Memniory is of two types: program store, read-only
core from which processors may fetch instructions but not data; and
variable store, ordinary core which processors may read or write.
Memory racks are shared and not associated with a particular processor
so that any processor can reference any memory location. Processors
always reference program store by absolute address; they may refer-
ence variable store either by absolute address or through base registers.

Data transfer between the cLc and its peripheral devices is per-
formed by an 10c that operates independently of the processors. 10C
programs residing in variable store may be initiated either by a proces-
sor or by a peripheral device ; these programs may perform elementary
storage-to-storage operations, such as setting or clearing bits in variable
store, as well as 1/0.

The 10c controls a variety of peripherals. Some of these are con-
ventional data-processing devices such as the disc drive units, the
magnetic tape transports, the card reader, and the line printer of the
recording subsystem; the teletypes; and the cathode-ray tube dis-
plays of the display subsystem. Other equipment such as the radar
subsystem, the missile subsystem, the TG, and the Maintenance and
Diagnostic Subsystem (M&pss) are also considered peripheral devices
only because they communicate with the 1oc rather than with the
processors directly.

The TG, part of the cLe, contains a time-of-day clock inecremented
every 200 ns. The T can cause the initiation of an 10c program when
a specified time of day has been reached. By suitable 10c programming,
this notification may be made repetitive.

The m&pss is particularly important to the operating system. It can
inject logic signals into and sense logic signals within pes racks at
predefined Mapss test points. Under the proper conditions, the M&pss
can control pps equipment by means other than their normal inter-
faces. For example, an M&Dss instruction that places the proper pattern
on 10C test points could cause an 1/0 operation to be performed.
M&Dss instructions can originate from various sources, only one of
which will be mentioned here: the M&Dss read-only core memory.
M&DSS executes instructions from this source in response to one of three
stimuli: manual intervention, failure of the cLc operating system to
reset a sanity timer, or an explicit request from crLc software.

The Sarecuarp data-processing system includes standby equip-
ment. There is one extra processor, program store, variable store, 10¢,

$90 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

and Te. A given peripheral device is either duplicated and wired to a
particular 10c or switchable under program control to either 10c. Soft-
ware can establish a green partition and an amber partition such that
equipment in the green partition cannot communicate with equipment
in the amber partition, and vice versa. The amber partition has two
purposes. Spare equipment is partitioned amber, so it may be used as
a pool of inactive equipment from which replacements for green units
are drawn ; for example, the operating system can substitute the amber
1oc for the green 1oc. When it contains sufficient equipment, the amber
partition may function as an independent computer. The operating
system then executes independently in each partition.

Ill. THE SUPPORT MODE AND THE PROCESS EXECUTE MODE

The SAFEGUARD data-processing system is used for three different
activities with distinet requirements:

(i) Tactical execution of a user process.
(i) Debugging of a user process.
(727) Utility operations such as saving the contents of disc packs
on magnetic tape.

The operating system reconciles conflicting requirements between
these three environments by functioning in the process execute mode
for item (¢) or the support mode for items (i) and (#4¢).

In the support mode, the crc operating system reads requests from
job control cards to invoke utility programs. Some of these programs
allocate space on pps disc volumes; others install load modules ereated
on the support computer onto pps dise. Still others temporarily or
permanently pateh load modules.

Debugging is easier in the support mode than in the process execute
mode. In the process execute mode, program testing is hampered be-
cause manual interactions such as a teletype input cannot be exactly
reproduced for each test run and because the cause of an error is diffi-
cult to determine when several processors have been executing simul-
taneously. In the support mode, on the other hand, the operating
system allows simulated manual inputs to be generated as specified by
a card deck, each card tagged with the time of day it is to be processed.
Also in the support mode, the operating system allows all processors
but one to be idled when a programmer-specified condition occurs.
Only one user job can run at a time, although that job may use more
than one processor. A more detailed discussion of the operating system
support mode debugging capabilities appears in this volume.?

The second mode of the cLc operating system, the process execute
mode, is discussed in depth in Sections V through IX.

CENTRAL LOGIGC AND CONTROL S91

IV. RECONFIGURATION, LOADING, AND DPS RECOVERY

Selection of either the support mode or the process execute mode is
under the control of the cLc data-processing system operator at the
time the system is initialized. The major events following a request for
the process execute mode will now be examined.

First, the operating system attempts to identify faulty hardware,
such as an 10c that appears unable to reference a particular variable
store. Next, it establishes a green partition sufficiently large for the
user process (by examining tables stored on disc along with the
process), and partitions amber all equipment not needed. Finally, it
loads the user process from dise, it enables the sanity timer, and
execution begins.

The same sequence of events can also be initiated manually or
automatically during execution when pps sanity is in question, in
which case it is called DPS recovery. The reason for this operation is
discussed in Section 1X.

Both manually initiated loading and pps recovery involve the M&Dss.
Each causes the M&Dss to execute a program that idles all processors,
causes the 1oc to load a portion of the operating system into memory,
and restarts all processors. The remainder of the load or the recovery
is performed by the operating system as described above.

V. THE PROCESS EXECUTE MODE

Two fundamental constraints are placed on the cuLc operating
system in the process execute mode:

(#) Timing. Certain user process computations are required as often
as every 6.5 ms.

(i#) Error Control. The incidence of a hardware or software failure
must not cause the operating system to lose control.

The following sections of this paper examine how the four operating
system functions of processor management, main storage management,
1/0 management, and error recovery are performed as a consequence
of these constraints.

Vl. PROCESSOR MANAGEMENT

The problem of processor management is simply stated: How shall
the cLc processors (as many as ten) be best utilized to perform the
SAFEGUARD process control calculations within the real-time constraints
imposed by system requirements? To provide the necessary through-
put, the multiple processors must be permitted to perform certain
caleulations in parallel, but how shall this capability be provided to
the programmer? Shall the programming language allow statements to

§92 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

be executed in parallel as in ancowL ¢8? The answer is no. Parallelism is
excluded from the language, and instead the operating system is
allowed to execute simultaneously as many “independent’ programs
as possible, as in conventional multiprogramming systems.

Recognizing that it may be necessary to prevent one program from
interfering with another through alteration of shared data, the operat-
ing system provides functions equivalent to Dijkstra’st P and V so
that “independent’” programs may cooperate, thus becoming no longer
truly independent. Programmers can write parallel algorithms in-
volving several programs. The operating system will assign programs
(now called tasks) to processors so that as many processors as possible
are busy. The assignment algorithm is sketched later.

The real-time constraint can be approached in two ways. “Time”
often suggests “interval timer,” the expiration of which usually causes
a processor interrupt, followed by the initiation of the time-dependent
computation. This method becomes decidedly unattractive if the time-
dependent computation must be performed on more than one processor,
for the operating system would have to decide which processors to
interrupt, save the previous state of each, initiate new tasks on several
processors, and later restore the processors to their original tasks.
Therefore, this interrupt-driven approach is discarded in favor of a
simpler method that is suggested by the following observation. Assume
the time-dependent calculation must be completed within 6.5 ms from
the time of request and further that it can be structured as P tasks each
having an execution time 7 of less than 6.5 ms. Then if, among the
tasks that are already running at the instant the time-dependent
caleulation is requested, at least P of them finish within 6.5 — 7' ms,
sufficient processors will be available to complete the desired computa-
tion. By restricting task run times to the millisecond range, the desired
behavior can be produced without timer interrupts because processors
become free every few milliseconds.

If a computation ecannot be completed in milliseconds, it is divided
into pieces (tasks) that can be completed in the allotted time, and
each task is executed in turn. This requires the operating system to
recognize predecessor conditions, e.g., that Task B cannot run until
Task A completes. It is useful to allow more complex situations, such
as those represented by Fig. 1. Here, Task A 1s said to enable Tasks B,
C, and D, and Task E cannot execute until conditionally enabled by
both C and D. Enablement is a generalization of the “wake-up’’ opera-
tion of other operating systems.?

What conditionally enables Task A? It could be some other task not
shown, or it could be the operating system. One particularly important
feature of the operating system is that it can be requested to enable a

CENTRAL LOGIC AND CONTROL S93

Fig. 1—Predecessor conditions among tasks.

given task approximately every 6.5 N ms (N = 1, 2, 4, ---, 64). Sets
of tasks initiated this way are called timed arrays, structures that form
the basis for almost all time-dependent computations performed in the
process execute mode.

Assuming that each task is assigned a unique priority relative to all
other tasks, the following algorithm decides which task will run next
0N 4 given pProcessor:

(7) Of all the tasks whose predecessor conditions have been satisfied
but which are not executing yet, execute the task of highest
priority.

(73) Allow each processor to perform step (¢) independently of all
other processors.

If each processor performs this operation whenever the task it is
currently executing terminates, then no one processor is master over
another, and the operating system is not sensitive to the number
available. In fact, the number of processors can be increased or de-
creased during execution.

The way in which the operating system keeps track of the 6.5-ms
intervals can now be explained. In Section II it was stated that the
10C can alter bits in memory, that an 10c operation can be initiated by
a peripheral device, and that the timing generator may be programmed
to signal the 10c at intervals of 6.5 ms. Let the 1oc program “satisfy the
predecessor conditions” of a task (i.e., set bits in an operating system
table), and let this task be of high priority. The above algorithm then
ensures that this task will execute as soon after the timing generator
command as a task on any processor terminates. Although an exact
6.5-ms synchronism is not possible, the simplification of the operating

$94 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

system achieved by not using timer interrupts for this purpose out-
weighs the disadvantage of having to account for a slight timing jitter
when real-time deadlines are being planned.

The previous paragraph implies that, in the process execute mode,
the operating system is itself executed as a set of tasks. This is indeed
the case. In fact, the processor management algorithm makes no
distinction between operating system tasks and those of a user, nor
are system tasks necessarily of higher priority. In this way, execution
of the cLc operating system is distributed over all the processors and
the loss of a processor simply results in its load being equally distributed
among those that remain.

VIl. MAIN STORAGE MANAGEMENT

The hardware design of the cLc processor restricts the main storage
management that the operating system can easily perform. The design
does not allow the creation of a virtual memory since program store
and variable store are both referenced by absolute addresses embedded
within machine instructions. For the same reason, code is not easily
relocatable, and a main storage management technique that assigns
the same program to different locations in memory at different times
1s not feasible. A static allocation for all main storage is therefore im-
plied. With a minor exception for part of variable store, this is the
case.

Since programs are placed in fixed loeations in memory, it is desirable
to make this assignment only once, prior to task execution. The
Execution Preparation Facility,! executing on the support computer,
performs this function, and the load module brought to the cLc is not
relocatable. This implies that the cLc memory rack configuration
assumed at link-edit time must be available when the load module is
read into core, and it is the responsibility of the reconfiguration and
loading function of the operating system, deseribed in Seetion IV, to
ensure this,

The operating system provides a limited overlay mechanism. Two
or more programs in the load module may be bound to the same address,
and one or the other read into core as desired. The operating system
performs the disc transfer, but it is the responsibility of the user to
request the operation explicitly and to keep track of the current con-
tents of overlay areas. Data base overlays may also be performed.

The operating system provides up to ten pushdown stacks in variable
store, one for each processor. The stacks are used in the ordinary way
for passing subroutine parameters, saving return addresses, and pro-
viding local storage for subroutines. A processor’s stack is initialized to
empty whenever a new task begins.

CENTRAL LOGIC AND CONTROL S95

The cLc operating system provides no other forms of dynamic
memory allocation. All other variable store usage, like all program store
usage, must be declared at compile time. The decision not to allocate
variable store dynamically meant that the maximum amount of data
to be passed between two tasks would have to be decided at design
time. This decreased operating system overhead and ensured the
existence of a data structure large enmough to handle the specified
traffic level.

Vill. 1/0 MANAGEMENT

The traditional 1/0 management functions of an operating system
are 1/0 scheduling, buffering, 1/0 completion processing, reservation
and allocation of devices, and protection of one user from another. But
an operating system can also provide other services such as concealing
differences between devices so that one device ean be substituted for
another or altering the appearance of the device so that it is easier to
program. In any case, an operating system should ensure the reliable
performance and efficient use of the peripheral devices.

The cLc operating system deals with two general categories of
devices. The first set consists of the conventional devices and includes
the magnetic tape transports, the disc drive units, the cathode ray tube
displays, the teletypes, the card reader, and the printer, and the
second consists of the special-purpose devices such as the radar sub-
system and the missile subsystem. These latter units are considered
first.

For the special-purpose peripherals, the cLc operating system is only
concerned with 1/0 completion and reliable performance. In particular,
device characteristics are not camouflaged, and no attempt is made by
the operating system to ensure the efficient use of the unit. Buffering is
generally limited to providing an input area for devices that send
data to the 10c of their own accord, under hardware rather than soft-
ware control. The operating system funections of 1/0 scheduling, reser-
vation, allocation, and user protection for this class of peripherals are
simple. There is only one on-line unit of each type, and the user must
do everything himself. Finally, an attempt is made to ensure the re-
liable performance of each device by monitoring some error indications
it can produce and informing the user if trouble is being reported.
These reports deal generally with the roc-peripheral interface; the
user is responsible for sensing and responding to device-dependent error
conditions. The operating system was designed this way because the
users were not sure at the time of how they wanted to program the
special-purpose devices.

S96 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

While the operating system management philosophy for special-
purpose peripheral devices is generally one of minimal intervention, its
approach for conventional devices is almost the opposite. Emphasis is
placed on 1/0 scheduling and reliability and, in some cases, on altering
the appearance of the device to the user. For example, to increase disc
drive efficiency, read and write requests received by the operating
system are reordered to minimize access delays. To increase reliability,
each disc write is performed to two units so that if a subsequent read
on one unit fails, a duplicate copy is available. The magnetic tape
transports are another example. In this case, the appearance of the
device is altered so that the user sees a tape capable of recording at up
to four times the hardware rate of an individual transport. This is ac-
complished by directing suitably buffered output not to a particular
transport but to a pool of four, capitalizing on the ability of the 1o0c
to overlap writes on as many as four transports. The designers of the
operating system knew how the conventional peripherals would be used,
so they were able to plan more sophisticated support for them.

Neither the conventional nor the special-purpose peripheral devices
generate processor interrupts when they complete a request. Instead,
every 6.5 ms the operating system tests whether any 1/0 has completed.
It then notifies the user via the conditional enablement of a user task.
Since processor management uses no interrupts, neither does 1/0
management.

In the process execute mode, the cLc operating system makes no
attempt to conceal the differences between devices, and programs are
usually device-dependent. For tactical execution, this is permissible,
but in other circumstances, it is a handicap. This is discussed further
in Section X.

IX. ERROR DETECTION AND RESPONSE

The operating system detects errors in many ways and provides both
local and system responses to these errors, depending on the cireum-
stances. Loeal error responses consider the frequency with which an
error is reported. If the frequency exceeds a given threshold, then
extensive corrective action is assumed to be required. For error con-
ditions that are treated in this manner, the operating system may make
a particular response before the threshold is reached, but a different
response after it is exceeded. For example, before the threshold is
reached, a device reporting errors may be reset; after it is exceeded,
further use of the device may be prevented.

This latter action suggests a general technique called “severing.”
If a peripheral device or a software function is declared severed, the

CENTRAL LOGIC AND CONTROL S97

operating system rejects all future requests for that device or function.
This procedure is applicable to a variety of error conditions; its intent
is to minimize snowballing by preventing a second failure from occur-
ring as a result of the first. In the face of many errors, severing pro-
duces a relatively gradual loss of operating system capabilities and is
appropriate in situations in which the consequences of pps recovery
cannot be tolerated.

Some operating system functions, especially processor management
and 1/0 management for the special-purpose devices, are never severed.
These funetions execute moderately elaborate error recovery code that
attempts to prevent unrelated calls of the same type from failing.

System level responses are provided in but not initiated by the op-
erating system. A more complete discussion of SAFEGUARD error control
can be found in Ref. 6.

X. DEFICIENCIES OF THE OPERATING SYSTEM

A single mechanism for peripheral device substitution, a feature
commonly found in general-pupose operating systems, is not in the
cLc operating system. Initially, this was felt to be an unnecessary
complication because the important peripherals, the special-purpose
devices, cannot be mimicked by any other peripherals. Later, several
operating-system designers needed particular instances of this capa-
bility, and each built his own version. Allowing commands to be read
from the card reader rather than from a teletype (in the support mode)
and permitting the use of one teletype in place of another (in the
process execute mode) are both instances of peripheral device substitu-
tion, vet two different mechanisms were coded.

The operating system does not provide for communication between
tasks, and it should. An extension of conditional enablement would
be to allow a parameter list to be passed by each predecessor task.
Communication between tasks does take place, but each programmer
devises his own mechanism.

Whenever a particular subroutine was needed by one class of users,
it was made part of the operating system and accessible to all users,
thus penalizing those who did not require the subroutine by costing
them core. A subroutine library established on the support computer
would have avoided this.

Xl. CONCLUSION

The cLc operating system is not intended to be general purpose and
cannot easily be made so. Criteria that might be used to judge the
adequacy of a general-purpose operating system do not apply to it,
such as the ease of learning its job control language or the number of

S98 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

jobs it can process per hour. Since the real-time performance of the
SarEeuarp Data-Processing System depends not only on the crc
operating system but also on the user process, the operating system
would have to be considered a failure no matter how elegant it was if
the overall real-time performance of the pps were not achieved. But
sinee the required performance has been achieved, the cLc operating
system can be termed a suceess.

The operating system’s most innovative and greatest success is its
approach to processor management. The approach taken provides a
rapid response time without the conventional use of processor inter-
rupts. It also sets a logical framework in which it is possible to design,
eode, and test real-time programs taking advantage of up to ten inde-
pendent processors.

REFERENCES

1. R. R. Conners, “Sareguarp Data-Processing System: Support Software and
Support Computers: An Overview,”” B.3.T.J., this issue, pp. 8149-5160.
2. J. W. Olson, “‘Sarecuarp Data-Processing System: Architecture of the Central
Logic and Control,” B.S.T.J., this issue, pp. S41-561.
3. A.K. Phillips, “Sarecuarp Data-Processing System: Debugging a Real-Time
Multiprocessor System,’” B.S.T.J., this issue, pp. S133-5145.
5. W. Dijkstra, “Cooperating Sequential Processes,” Programming Languages,
New York: Academic Press, 1968, p. G8.
. I. Organick, The Multics System: An Examination of Its Structure, Cambridge,
Mass.: M.LLT. Press, 1972, pp. 275-281.
. J. Gawron, “SarEcuarp Data-Processing System: System Error Control,”
B.8.T.J., this issue, pp. S123-3131.

4.

= o

5.

n

|

CENTRAL LOGIC AND CONTROL S99

