Copyright © 1975 American Telephone and Telegraph Company
Tne BeLl SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

Structured Programming and Program
Production Librarians

By B. C. NICHOLS
(Manuscript received January 3, 1975)

This paper discusses the phased tmplemeniation of structured pro-
gramming techniques over a period of two years. It was observed that, by
standardizing programming technigues, the resulting program becomes
more maintainable and programmer productivity increases. By confining
the clerical work of programming to the program librarian, productivity
again increases.

|. INTRODUCTION

Structured programming techniques have been widely publicized
throughout the data-processing industry. In March 1970, one pro-
gramming department was chosen as a pilot group to test the validity
of these techniques in the SAFEGUARD environment. This paper sum-
marizes the experience gained in the ensuing two years, as increasingly
advanced structuring techniques were used by the pilot group. Phased
introduction of each technique is discussed to indicate that the transi-
tion from a conventional to a structured environment can be accom-
plished smoothly. Effects of the phased transition on personnel are
discussed, and quantitative productivity data are provided for each
phase. Although the statistical validity of these data must be qualified,
a definite trend toward increased produectivity is indicated.

Il. DEFINITION OF TERMS

Within the pilot group, the term “structured programming” was
used to identify five distinct techniques. They are structured code,
top-down programming, code reading, pipGIN, and the Program Pro-
duction Library (ppL).

Structured code is based on a mathematical theorem that shows that
any program can be developed by the appropriate nesting of three

s211

basic logic patterns: sequence of operations, conditional branch to one
of two operations, and repetition of an operation while a condition is
true.! Elaboration of these patterns leads to the five basic logic struc-
tures used by the group to implement structured code: sequence,
IFTHENELSE, DOWHILE, DOUNTIL, and case. Since only this statement
grouping was permitted, standardization of code resulted. Also, ad-
herence to these logic patterns results in complete control of all branch-
ing logic and therefore programs are easily readable from top to bottom.

Top-down programming requires that both design and code be de-
veloped from the control logic level down to the detail logic level.
Program design has traditionally followed this approach, proceeding
from system specifications to design instructions. Top-down design
adds to this requirement that the control levels be coded prior to com-
pleting the detail design of lower-level paths.

Conventional program code, however, frequently does not follow the
top-down approach. Detail level logic is often coded concurrently or
before high-level control logic. Top-down code dictates that the next
level of program code cannot be developed until all paths upon which
this code depends have been coded and (preferably) tested.

Another structured technique, code reading, was made possible by
the use of top-down programming and structured code. This is the
practice of having all programmers exchange listings to ensure that
each program is read by someone other than the author. Desk debug-
ging is significantly increased and fewer, if any, preliminary clean-up
computer runs become necessary.

Large programs, however, still present a problem since the ability
to read them top to bottom is jeopardized by their total length. To
resolve this problem, the pilot group used a segmenting technique that
breaks down the program structure into functional segments. Each
segment is then constructed so that ideally it occupies no more than
one page of a program listing.

PIDGIN is a program design language that combines English, a pro-
gramming language, and the structured conventions. This language
was used to describe each functional segment. Through this design
medium, system functions are visually broken into dependent segments
showing the relation of each segment to the overall purpose of the
program.

The last technique used in this study was the Program Production
Library (prr). The pPL concept stems from the observation that much
of the task of computer programming is clerical. The ppL provided a
standardized means for recording, cataloging, and filing all code
generated, and it ensured a coherent library control system during
program development and maintenance. It also provided a means for

$212 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

standardizing the scL-type interface to the computer whereby process-
ing options (Compile, Linkedit, Modify, ete.) were invoked through
key words chosen by the programmers. A more detailed discussion of
the ppL appears in Seetion VII.

lIl. PROGRAMMING ENVIRONMENT

Structured programming techniques, ppL, and program librarians
were introduced into a programming project over a one-year period and
observed for an additional year. The project comprised the develop-
ment of independent functional tests for the cLc operating system.?
The complete set of tests was developed incrementally over several
years, and the end product was a set of test specifications and the
programs implementing them. Data for this study were gathered from
the development of the test monitor facility and the first 11 test sets.
The test monitor facility provided standard result recording for all
tests, such that each test set contained no reused design or code. The
SAFEGUARD assembler level language was used for all coding.

The nature of the development environment is also important for
interpreting the results of this study. Test sets were being developed
in parallel with the operating system. The cLc was the target computer,
but all software development occurred on the IBM 360, testing being
accomplished on the cLc or by simulation on the 360.

The activities of the pilot project group were confined solely to test
design, coding, and documentation. Testing and debugging were ac-
complished by a separate test team. However, correction of imple-
mentation and coding errors in response to error reports made by the
test group was a continuing background activity to all development
efforts. This maintenance activity reached a peak during the first two
months following delivery of each test set.

A programming team consisting of three to four people, each having
an average of two years of programming experience, was assigned to
each test set. The schedule time allowed for the development of a
test set was four to five months, or an average of 16 man-months. Each
development cycle had three stages: test specification (2 man-months),
test design (3 man-months), coding and documentation (11 man-
months).

Another equally important aspect of the development environment
was the personnel skill mix. The SarecuarD software proved to be a
great equalizer in that personnel new to the project had to learn not
only the complex application area, but also a new spectrum of support
software. The result was that experience with SAFEGUARD software was
frequently equal in value to overall programming experience. The
rotation of SAFEGUARD-experienced personnel to related eritical project

STRUCTURED PROGRAMMING S213

areas was common. In the pilot group, personnel assignments were
rotated frequently throughout the two-year period studied, thus
keeping the average programmer experience constant through each
development cycle. Over a three-year period, a total of 21 programmers
were assigned to the pilot group. Its total size ranged from 7 to 10.

The difficulty of the programming job is another important con-
sideration. In retrospect, the tests performed in earlier sets are less
complex but, at the time of their development, user documentation for
the operating system was incomplete. The complexity of the later test
sets was significantly higher; however, by this time documentation had
improved, familiarization with the general modus operandi of the
operating system had oceurred, and personnel were accustomed to the
test monitor interface. Hence, the relative difficulty of the programming
job remained constant.

IV. IMPLEMENTATION PHASES

The test monitor and the first test set were developed using con-
ventional programming methods. Improved programming techniques
were then introduced in two distinet phases. The next three test sets
were developed using structured programming and represent phase I.
The next six were developed using structured programming, the pprL,
and program librarians, representing phase II.

V. QUANTITATIVE RESULTS

Table I quantifies the effect of each phase on programmer produc-
tivity over the two-year period. For this study, productivity is defined
as the number of delivered lines of code produced per day during the
coding phase. Activities during coding include design, documentation,
coding of the unit programs, and maintenance of previous test sets.
Debugging was not a part of this activity, as has been previously dis-
cussed. Source statement counts include all lines coded, including
comments and other deseriptive lines required to meet documentation
standards. The object size includes both instruction and data areas
and measures the delivered product, as do the source lines. The ratio
of source to object is provided to give the reader a rough indication of
the number of executable instructions per line coded. Programmer-
days reflects cumulative elapsed days for each programmer, and it
does not account for overtime, vacations of less then one week, or
illness. Also, it reflects only days spent by programmers, i.e., it does
not include management or program librarians. It is the intent of this
study to indicate the effect of new technologies on programmer pro-
ductivity as defined above, rather than on overall product cost.

$214 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Table | — Comparison of productivity

: ; Object Size Ratio of | Programmer- | Source Lines
Dellgﬁfl'ed Bfilrl:;e (32-bit Source to | Days (Coding | Per Pro-
; words) Object Size Phase) grammer-Day
Conventional
Test Monitor 4056 1914 2.1 301 13
Set 1 6072 6540 0.9 381 16
Phase T
Set 2 9654 7300 1.3 240 40
Set 3 4271 2150 2.0 150 28
Set 4 6601 3500 1.9 130 51
Phase 11
Set 5 9968 3700 2.7 165 60
Set 6 14689 7000 2.1 225 65
Set 7 16773 6500 2.6 150 111
Set 8 5588 3900 14 136 41
Set 9 11666 2830 20 160 73
Set 10 11596 6230 1.9 158 74

A comparison of raw productivity rates was made over the two-year
period reported. No difference between the three- or four-person team
was observed, and thus no distinetion is made in Table I. The data in
Table I should not be used out of the context of the background
already provided in previous sections, since this can lead to rather
startling conclusions. Table IT summarizes the data for each phase,
but must only be considered as indieating a trend rather than actual
percentage gains. The productivity figures reported are dependent on
many factors unique to the specific development environment of this
study.

VI. PHASE |

Phase I introduced structured programming, code reading, and unit-
level top-down approach into the development cycle. These techniques
can probably be introduced into any existing programming project if
the following prerequisites are satisfied. The programming language in

Table Il — Summary of results
Implementation Total Pro Trgrt:}'ner- Average
Phase Source Lines gramr Lines per Day
Days
Conventional 10128 682 14.7
Phase I 20526 520 39.8
Phase 11 70280 0994 70.8

STRUCTURED PROGRAMMING S215

use must inelude instructions that implement the structured program-
ming logic patterns. This may require the development of a special set
of macros to support the branching logic. In the case of the project
being studied, two man-months were required to develop a macro
package to provide structured statements in the language used. At the
outset of phased introduction, a programmer experienced in structured
programming must be available for consultation. This person need not
be a member of the group itself, but should conduct an orientation
seminar for those programmers asked to use the new techniques. The
program areas selected for structured programming must be func-
tionally separate from other areas. It is difficult to introduce these
techniques into an existing program unless the new code represents a
distinet functional unit that can be restricted to having only one entry
and one exit.

The effects of phase I implementation were significant. Resistance
from programmers occurred at the orientation seminar and during the
early stages of implementation. However, once they began to use
structuring techniques for program control, acceptance was quick.
Resistance to the new techniques seemed to be directly proportional
to programming experience. That is, firmly established coding habits
were difficult to discard when they were to be replaced by a stand-
ardized method. There was also the matter of bruised pride, a definite
psychological side effect. However, experienced programmers soon be-
came convinced of the validity of standardization, based on their past
experience and the obvious benefits. For example, because of the
standardized method of coding, code reading proved to be a valuable
desk debugging tool.

Toward the end of phase I, it became evident that maintenance of
programs was easier. As is mentioned in Section III, the maintenance
activity for each test set peaked during the first two months following
delivery. Maintenance requirements generated by debugging activities
generally required one programmer full time for that period. Structur-
ing techniques made the programs easily readable and enabled them to
become community property. In fact, this standardization was so
effective that, immediately following delivery, maintenance of all
programs in a test set could be assigned to one member of the original
developing team. Maintenance responsibility included an average of
100 programs per test set. Transferability of program maintenance thus
had the effect of freeing key personnel for scheduled ecritical design
activities for the next test set, as well as lessening the impact of loss of
personnel through rotation. Orientation of new personnel was also
simplified, since this could be partially accomplished through code
reading.

§216 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

VIl. PROGRAM PRODUCTION LIBRARY AND THE LIBRARIAN

The Program Production Library (ppL) facilitates the work of pro-
grammers engaged in code development; it also aids project and line
management wishing to review the project’s progress. The ppL depends
on a computerized library system in which all types of data have a
defined source and destination. It is maintained by clerical personnel,
but no operations are carried out in it unless they are directly requested
by the programmers.

Program librarians staff the ppL. Just as structured programming
must be introduced slowly, the program librarian must be given
adequate time to learn. The librarian’s first job is to provide an inter-
face with the computer center, submitting and picking up jobs. The
librarian can later be taught to change source code, working from
marked-up program listings. The skills required for this are the ability
to interpret the sequence of source changes, to make up the appropriate
change deck, to incorporate this change deck in the necessary computer
input deck so the program source change will be made, and to include
the proper tests so that the programmer will have a new set of outputs
to analyze. This represents a high level of proficiency for a program
librarian, yet it requires no programming skills.

The librarian is also responsible for maintaining current listings for
all programs being developed. During the development of interde-
pendent programs, library listings must be updated daily, since several
programmers may be working on the same program or require interface
to a common data area. However, on the project studied, each test
in the set was designed so that all required predecessor conditions were
established during the test. Each team member was assigned a specific
test, and, since only the programs within a test were interdependent,
it was not necessary to file final listings until they were ready for
debugging.

VIIl. PHASE 1l

Phase II involved the introduction of the programming production
library and the program librarian. The overall effects observed during
phase II were not immediately visible. This was due mainly to the
learning curve of the program librarians. The acceptance of the li-
brarian service and the ppPL concept was not universal, and it occurred
much more slowly than the acceptance of structured programming
techniques. Initially, it had the effect of placing one more barrier be-
tween the programmer and successful computer output. During the
project studied, the training of new librarians was a continuing activity,
because of frequent turnover. One month overlaps for training were
worked into the schedule, increasing the overall manpower required to

STRUCTURED PROGRAMMING S217

support the ppL. During that training period, library performance
usually suffered. This also hampered the expansion of prL functions,
since overall accuracy of PPL output varied. It took four to six months
before programmers began to rely entirely on the librarian service.

The sporadic accuracy and reluctant acceptance of the ppL and li-
brarians can be attributed almost entirely to frequent turnover of
librarian personnel.

The librarian’s job is not trivial and requires about two months of
close supervision by trained personnel to achieve the basie skill of job
setup using change decks provided by programmers. Six months after
phase II began (Test Set 7, Table I), the impact of the training period
had been mitigated by increased experience and improved PPL pro-
cedures that defined additional fail-safe measures for new personnel.
For the remainder of the study, PpL throughput and accuracy increased
despite continuing turnover.

Another effect of this turnover was the operation of the ppL on a
“pool” basis. Since experienced librarians were scarce, all PPL activities
were centralized into a pool of three to four librarians shared by four
programming departments. This arrangement was quite effective in
handling the peak activity periods that precede each delivery.

The number of librarians required for such a pool varies according
to the amount of new development being done, the number of pro-
grammers involved, and their skill level. The ratio used in the environ-
ment deseribed here was 6:1; that is, one librarian for every six pro-
grammers. These personnel were not added to the programming group.
Instead, given the 6:1 ratio, in a group of seven programmers with an
average experience level of two years, one programmer was replaced
with one librarian. The remaining six programmers then produced the
same amount of code with the aid of the librarian as the original seven
programmers would have produced without the librarian.

Another observation is that personnel new to programming can gain
programming experience quickly since they are not concerned with the
detailed procedures required for job submission and job handling.
They need only concentrate on the technical aspects of programming.

IX. CONCLUSION

Standardization of programming techniques through structured pro-
gramming and its related practices leads to increased maintainability.
Background maintenance activities are more easily rotated since
structured programs become community property. The ppL concept
extends standardization to the programmer/computer interface and
as such is beneficial. The role of the program librarian removes as
many clerical tasks as possible from programmers, allowing them to

$218 THE BELL SYSTEM TEGHNICAL JOURNAL, SAFEGUARD

concentrate more directly on the technical content of development. The
productivity trend indicated in Table I is presented to indicate the
effect of these new technologies on programmers. Obviously, produc-
tivity should increase as programmers are freed of time-consuming
clerical tasks as indicated by phase I1. However, it can also be seen that
produetivity in phase I increases simply with the use of standardized
programming techniques.

REFERENCES

1. C. Bohm and G. Jocopini, “Flow Diagrams, Turing Machines,”” Communications
of the ACM, 9, No. 4 (May 1966).)

2. J. P. Haggerty, “SarecuarD Data-Processing System : Central Logie and Control
Operating System,” B.S.T.J., this issue, pp. S89-599.

3. J. W, Olson, “Sarrcuarp Data-Processing System: Architecture of the Central
Logic and Control,” B.S.T.J., this issue, pp. S41-861.

STRUCTURED PROGRAMMING S219

