Copyright © 1975 American Telephone and Telegraph Company
Tue BELL SysTEM TECHNICAL JOURNAL
SAFEGUARD SUPPLEMENT
Printed in U.S.A.

SAFEGUARD Data-Processing System:

Process Design in the Structure of
Real-Time Software Systems

By W. S. DOYLE and J. R. GIBBONS
(Manuscript received January 3, 1975)

Process design, structuring the real-time program for the CLC, was one
of the difficult aspects of SAFEGUARD software development. Initially, there
were no significant guidelines or eriteria. In the course of the project,
basic process-design rules were developed and stgnificant experience was
acquired. Some techniques that emerged are the use of short-running, asyn-
chronous tasks; overlays lo minimize storage requirements; and multiple
storing of programs to minimize processor queuing.

. INTRODUCTION

Process design involves defining the characteristics, interrelation-
ships, and organizational structure of the tasks that comprise the
operating system and the applications software. It was one of the
difficult aspects of SaArEGUARD software development. Initially, there
were no specific criteria to be followed. Several iterations were required
to converge on the final process design. The purpose of this paper is to
present some of the basic guidelines that evolved in the course of the
SAFEGUARD project. The guidelines included are those believed to be
most workable and most applicable to a wide range of real-time soft-
ware systems.

Il. GENERAL PROCESS-DESIGN GUIDELINES

Major efforts in the process design involved selecting from among
the available methods of enablement for tasks, selection of the time
frames in which they would execute, and the definition of task priorities.
(For a deseription of tasks and proecessor management, see Ref. 1.)

2.1 Task structure

Initial investigation of possible process structures led to the use of
both synchronous (time-enabled) tasking and asynchronous (event-

S101

triggered) tasking. It was clear that critical processing had to be given
high priority, and it was generally of a synchronous nature. Asyn-
chronous tasks were to be used to fill the time slots between critical
synchronous tasks and to provide a uniform distribution of processing
among the available processors. This general approach had to be
modified by a few additional considerations. First, low-priority asyn-
chronous tasks must have a short run time or they will hold o processor
too long, denying access to high-priority tasks. Second, it is generally
more difficult to design and test a process which utilizes asynchronous
tasks. Ifurther, it is not always necessary to achieve a uniform work
distribution, e.g., during the process initialization and termination
sequence. An almost totally synchronous design was chosen for process
initialization and termination tasks to facilitate design and testing.

It is inefficient to enable a synchronous task, only to find that the
task has no data to process because a peripheral deviece has not com-
pleted its transfer or because other tasks have not generated it.
Ultimately, synchronous tasks were utilized when eritical and periodic
response was required and when the availability of data at the same
frequency as task enablement could be guaranteed.

The asynchronous, event-triggered task is enabled by the completion
of an 1/0 transfer or by the successful completion of processing by a
predecessor task or tasks. Each predecessor task can conditionally
enable one or more successor tasks. A successor task is absolutely
enabled, i.e., ready to run, only after all conditional enablement
criteria have been satisfied. The predecessor-successor relationship of
conditional enablement ecan also help alleviate data interference prob-
lems. Table I depicts some of the process-design questions that were
faced and the type of tasks used to answer these questions.

Table | — Process design

Problem Description Task Deseription

Support high-frequency, high- Synchronous task whose frequency is at
accuracy endoatmospheric least as high as the update
target track. requirements.

Process intersite communications Asynchronous tasks whose trigger for
message traflic. enablement is the arrival of intersite

communication messages.

Generate time-ordered, simulated Both synchronous and asynchronous
radar replies during an tasks. Tasks that generate the replies
exercise. are synchronous. These tasks condi-

tionally enable an asynchronous task
which time-orders and outputs the
simulated replies.

§102 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

2.2 Parallel processing

There were several cases where identieal processing had to be re-
peated for several items in a short time frame. In this case, the through-
put requirement exceeded that of a single processor. The solution to
the problem was to parallel process, i.e., to define several tasks execut-
ing identical code. Since the code was re-entrant, only one program
copy was required even though each instance of the task could be
separately controlled and separately enabled. Again, the structure of
this processing could be synchronous, asynchronous, or a combination
of both. It was found necessary to parallel process different types of
tasks to take full advantage of the multiprocessor environment.

Obviously, multiple-instance task use may cause processor queuing
problems. These can be alleviated by storing one program copy for
each task. The eritical consideration determining the number of pro-
gram copies needed is the response requirement on the tasks involved.

2.3 Data interference

One of the primary design goals was to maximize throughput of the
processing system. A natural implication of this was an attempt, in the
beginning, to multiprocess everything. This immediately triggered
task-to-task data-interference problems. Reviewing the task-response
requirements made it obvicus that not only was it not necessary to
multiprocess all tasks, but in many instances it was impossible.

This observation led designers to take a closer look at task time-
frame design and the serial-processing relationship among tasks. From
these investigations evolved two basic task-design guidelines for
avoiding data interference. If possible, competing tasks should be
assigned to nonoverlapping time frames of possible execution.* If this
could not be done, an attempt was made to establish predecessor-
successor relationships among them. These techniques could be used
only infrequently when tasks were competing for data.

Since a large number of data-interference problems were not solvable
by either of these techniques, attention was directed to data-base
design. Many interference problems arose when only two tasks were
in competition, one loading the data and the other processing them. In
those instances where the competing tasks were accessing a variable
number of data items each time executed and the response requirements
on the task were not eritical, a cireular queue with an access mechanism
called a take-load pointer was used. With this mechanism, the loading
task uses the load pointer to control the writing of data. It never

* A time frame is a time “window’’ in which a task is allowed to execute.

PROCESS DESIGN S103

writes beyond the take pointer. The processing task uses the take
pointer to control the reading of the data. It never takes beyond the
load point. This technique alleviated about 10 percent of the inter-
ference problems.

When two high-frequency tasks with eritical response-time require-
ments were competing for data, a double-buffering technique was useful
to avoid data interference. In this case, two tasks both execute at a
high frequency and in the same time frame. One loads the data and the
other processes it. The competition question was solved by dividing
the data area into two identical buffers, one of which was being loaded
while the other was being unloaded. When unloading was complete,
the buffers were switched. This technique works, but was of limited
applicability.

As a final resort to solving interference problems, locking and un-
locking conventions were used. These conventions required use of
predefined program-logic sequences to lock and unlock data areas.
These sequences relied on a special cLc instruction called a “biased
feteh’”” which was implemented for this purpose. (For a more complete
description, see Ref. 2.) Locking will always work, provided locking
conventions are observed and enforced. Improper use of locking has
caused the integration effort many headaches. The improper use of
locks will manifest itself in a thousand disguises. However, it was
necessary to use locking to solve more than half of the interference
cases.

2.4 Discussion

How well is the process working? How close does the process conform
to the process-design requirements? These are two questions that were
constantly asked. To answer them, a process performance-monitoring
capability was implemented. The implementation relied on constant
monitoring of “probe” or test points within the process. Implantation
of these probes into the process and interpretation of the resulting
data proved useful for fine tuning the design and verifying that the
basic requirements were being met. This should have been done much
earlier in the design cycle. Probes should be capable of furnishing such
data as routine and subroutine execution timing; the time differential
between when a task is enabled and when it actually acquires a proces-
sor; minimum, maximum, and average task run times, etc.

This section would be incomplete without a few words about the
position of the process designer. It became obvious that the process
designer must participate in program design and integration. He must
do this to guarantee that the program designers do not stray from the
process-design requirements on program timing and interfaces. He

$104 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

must be part of the integration effort to ensure that the process design
1s actually implemented in the process. Furthermore, it was found that
the process designer required this program design experience and
integration experience to be able to accurately interpret performance
data and to use it to refine the design of the process.

lll. SYSTEM SIZING CRITERIA

Estimates of the number of processors, program stores, and variable
stores needed to do the job were continually monitored in the light
of the mission to be fulfilled by the system. System sizings were an
iterative effort. As requirements solidified and understanding of them
improved, as routine, subroutine, and data-base estimates improved,
and as simulation tools for forecasting system loading improved, sizing
estimates changed.

3.1 System operating points as design input

It was the process designers’ responsibility to map system perform-
ance requirements into the number of instructions needed to code these
requirements, the amount of variable store required to support the
data base, and the number of processors needed to meet throughput
requirements. The design effort attempted to balance, on a system cost
basis, the inevitable trade-ofis among these three resources.

To facilitate evaluation of the impact of the various trade-offs on
process design, a contour or envelope of possible system operating
points was developed. Points on this contour reflected maximum usage
of one or more resources and/or maximum processing capability of one
or more process functions. It soon became clear that there were not
enough resources to support the ‘“worst-case” condition for all process
functions. Further, it was not only impossible to support the worst
case, but not necessary, since all functions do not peak simultaneously.
Once the contour was identified and a feasible and reasonable set of
operating points selected from it, trade-offs could be thoroughly
examined.

After the operating point was selected, it was the responsibility of
the process designers to ensure that the design supported it. It was this
effort that required the continual resizing of the system to guarantee
that it would fit into the resources available.

3.2 Minimizing core requirements by the use of overlays

As design proceeded, program storage resources were rapidly ex-
hausted. Further investigation showed that there were certain sets of
programs that were not required to be in core simultaneously since their
functions were mutually exclusive. Another set of programs had such

PROCESS DESIGN §105

“loose”’ timing requirements that they could be called in from a
peripheral storage device prior to execution. Examples of such sets are
hardware test programs, display update programs, and system initiali-
zation programs.

3.3 Load balancing

One of the most critical factors that influenced selection of the system
operating point was the need to maintain a balance between the
capability of the application process and the exercise process; that is,
the exercise process must be capable of driving the application process
at or above the system operating point.*

When planning for load balaneing, two factors must be studied.
These factors are the “immediate-response’’ processing requirements,
representing a maximum allocation ol resources applied for a short
time, and the “long-term’ or residual processing requirements, repre-
senting the load over a typical processing cycle.

Since the process had two basic time frames, one approximately 5
to 10 ms and one approximately 50 to 100 ms, two levels of load balanc-
ing were needed, short term and long term. Experience showed the
most eritical need for load balancing to be at the short-term level. It
was also the most difficult to satisfy. Once the short-term problem was
solved, the long-term problem disappeared. Short-term balancing was
found to be extremely sensitive to changes in routine and subroutine
execution times, and tuning the balance was always required.

IV. ALLOCATION OF RESOURCES

Consideration of possible process structures led to three basic alter-
natives for the allocation of the most critical system resources, processor
and radar time. The first alternative is fixed allocation in which the
execution time frame of each task is fixed in nonreal time by the
process designer. The second alternative is real-time allocation in which
the execution time frame of each task is determined dynamically by a
synchronous allocation task included in the process. The third alter-
native is a combination of the previous two.

Initially, fixed allocation with its heavy reliance on synchronous
tasking was favored because it appeared to be easier to design and test,
and its reactions to traffic were easier to predict. After study, this
design was rejected because it resulted in a nonuniform distribution
of the work which, it was thought, would result in unacceptable system
performance.

The second alternative to a process structure centered on attempting
to allocate almost all resources in real time. This technique yields a
much more uniform distribution of work among the processors and a

§106 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

better utilization of resources ; however, designing and testing this type
of process appeared to be very complex. In addition, it was decided
that the uniformity of the distribution of work was not as critical as
first thought.

Process design eventually included both types of allocation. This
combination allowed the process to be designed and tested in a
timely manner and yielded a nearly uniform distribution of work,
giving reasonable processor utilization.

V. OVERLOAD RESPONSE REQUIREMENTS

SAFEGUARD process designers had to answer the question of what to
do when there were more requests for service than could be accom-
modated. Because it was felt that the inherent overload handling of
the priority tasking structure was not sufficient, a predefined, fixed-
response technique was developed.

In this approach, a tunable processing load point was defined at
which overload-response rules were invoked. The exact rule to be used
depended on the outcome of an overload function which “predicted”
processor usage for the next cycle. This prediction was done by sum-
ming selected system-traffic components weighted by an appropriate
factor. Depending upon predicted processor usage, the execution of
certain lower-priority tasks was curtailed. The higher the predicted
usage, the more tasks were curtailed. Once the system entered over-
load, it remained there for the duration of the engagement.

This technique eliminated the additional testing and design required
to implement a feedback type of overload response. The feedback
technique was tried in the prototype system and was found to be
impractical.

VI. MULTIPROCESSOR QUEUING PROBLEMS

Minimizing task run times was of eritical importance for certain
process functions; e.g., endoatmospheric tracking. Generally, functions
with eritical response times were also those functions selected for
multiprocessing. This quickly led to a realization of the impact on task
run time of processors queuing for instructions.

A decision had to be made either to use multiple copies of multiple-
instance parallel tasks or to divide the program into subunits. The final
decision was based on each task’s response requirement. I'or example,
in one instance five identical tasks executing from a single program
copy ran 77 percent longer than single-processor run time. The same
programs were suitably subdivided and partially distributed to five
independently addressable storage units and run time was reduced to
a level about 25 percent greater than single-processor run time. Of

PROCESS DESIGN S§107

course, if ive complete copies were stored in five different independently
addressable storage units, there would be no increase in the parallel-
tasking time versus single-processor execution. The final decision made
was to use multiple program copies only for those tasks that always
had to execute at maximum efficiency. This was done to conserve
program storage. More commonly, large programs were divided into
subunits distributed among program storage units in such a manner as
to equalize the number of accesses per storage unit per time interval.
This general technique was found to be sufficient for a large number of
applications.

Vil. SUMMARY

Initially, there were no significant guidelines to process design ; these
were developed as design progressed. No claim is made that the criteria
which evolved in our design are exhaustive, but they should be ap-
plicable to a wide spectrum of real-time software systems.

It was good design practice to use short-running, low-priority,
asynchronous tasks wherever possible. This helped alleviate task
scheduler conflict problems, which arose when there were a large
number of high-priority synchronous tasks. It helped guarantee that
high-frequency, high-priority tasks would execute at their specified
frequency, and it also aided in achieving a more uniform work
distribution.

Data-interference problems arise naturally in a multiprocessing
environment. The most useful technique to solve these problems was
consistent use of software locking conventions ; however, improper im-
plementation of these techniques caused problems during integration.

To minimize system overhead and to avoid wasting processing time,
tasks should be enabled only when they have work to do. Synchronous
tasking should be used only if data are available to be processed at the
same frequency as the enablement.

Since it was essential to maintain a balance of capabilities between
the application process and the exercise process, it was required that
the interfaces between these processes be established as soon as possible
and that their integrity be rigidly maintained.

Because it wus necessary to measure how well the process was work-
ing, it was found that performance probes should be included in the
initial design and considerable thought should be given to their correct
placement. Performance probes proved invaluable throughout the
system-integration process, particularly in helping to identify task-
timing and queuing problems. Resolution of these problems requires
that the process designer become deeply involved in the test-and-
integration effort.

§108 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD

Finally, process design is iterative. For this reason, it is important
that the design be kept as simple and straightforward as possible. This
standard guideline of programming is even more important in process
design because of the inherent complexity of the multiprocessing
environment.

REFERENCES

1. J. P. Haggerty, “SarrGUarD Data-Processing System : Central Logic and Control
Operating System,”” B.S.T.J., this issue, pp. S89-599.

2. J. W, Olson, “Sarecuarp Data-Processing System: Architecture of the Central
Logic and Control,” B.S.T.J., this issue, pp. S41-S61.

3. B. P. Donohue IIT and J. F. MeDonald, “SAFEcuarD Data-Processing System :
Process-System Testing and the System Exerciser,” B.S.T.J., this issue, PP
S111-5122.

PROCESS DESIGN $109

