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Recently obtained field data and theoretical studies show that, for a fived
subscriber calling rate, dial-tone delay in No. 5 crossbar can be appre-
ciably increased by high average line-link frame loads and also by poor
load balance. The increased delay is caused by waste dial-tone-marker
usage generated by a small number of calls that encounter horizontal
group blocking in obtaining a dieling connection. This paper discusses
an analytical model to predict the time from recetver off-hook to receipt of
dial tone under vartous service conditions in No. 5 crossbar.

I. INTRODUCTION
1.1 Description of the dial-tone connection process

In a No. 5 crossbar switching machine, dial tone is provided to a
subsecriber line, terminating on a line-link frame (LLF), by an originat-
ing register (oR), terminating on a trunk-link frame (TLF), via a series
of three network links: line links, junetors, and trunk links. The dialing
connections are set up by dial-tone markers (pTms), which are common
control devices. Each line-link frame contains a number of crossbar
switches that are used to establish connections between subscriber
lines and trunks, or between subscriber lines and service circuits, such
as originating registers. The crossbar switches that form line concen-
trators on which groups of subseriber lines terminate are called hori-
zontal groups. Maximum size offices typically contain from 4 to 6
DTMs, 40 to 60 LLFs, 20 to 30 TLFs, and up to 140 ors. Each LLF contains
10 horizontal groups and each horizontal group is a concentrator con-
taining between 29 and 59 subseriber lines on the input side of the
switch and 10 line links on the output side of the switch.

To provide dial tone to a subscriber, the off-hook signal from the
subseriber line initiates a bid for a pT™ through a connector circuit
unique to each LLF. As soon as a D™ becomes available, it locates an
unoccupied or and then attempts to find a dialing path (consisting of
4 line link, a junctor, and a trunk link) connecting the or with the
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subscriber line. As soon as the connection is established, the pTm
releases and proceeds to serve other calls waiting for dial tone. The
or provides dial tone, receives the dialed digits, obtains a completing
marker, transmits information to it, and releases. The completing
marker then establishes the connection between the calling subscriber
and an outgoing or intraoffice trunk.

If all ors are busy, the pT™ releases and the call rejoins what is
effectively a queue of calls waiting for a prm. If an or is available, but
no (unoccupied) dialing path connecting the or with the subscriber
line can be found, the pt™ will release the or, obtain a second (usually
different) or, and try to find a dialing path between that or and the
subscriber line. When a pTM™ is unable to find a dialing path between
a given oR and a given subscriber line, a matching failure is said to
occur. If, on the second try, the pT™ cannot find a dialing path, the
pTM releases and the eall rejoins the queue of calls waiting for a pTM.
In such a case, a pT™M second-failure-to-match (pTM2FTM) is said to
oceur.

The method of assigning pTMs to waiting calls is controlled by a type
of “gating”’ circuitry designed to equalize service and to reduce the
incidence of long delays in obtaining dial tone. When one or more
DpTMs are free (light traffic operation), the LLFs look for pTMs according
to a fixed preference order. When all prms become busy and a request
for a pTM oceurs, a gate is closed and only the LLFs containing calls
waiting for dial tone at that moment are put inside the gate. The
pTMs then proceed to serve the LLFs inside the gate. If more than one
call is waiting on an LLF, only one call will be served during the gating
period. Once a call on an LLF is served during a given gating period,
that LLr is put out of the gate, whether or not the pT™ is successful
in establishing a dialing connection for the call. When all LLFs with
requests at the start of the gating cycle have been put out of the gate,
the gate opens; if there are sufficient waiting calls to cause all of the
DTMs to become busy again, a new gating cycle will be started; other-
wise, light traffic operation will resume. During a gating period, a DT™
that becomes idle scans the LLFs in cyclic order. Each pTM has a
different starting LLF for the scan so as to equalize service. (The de-
seription of the gating procedure is taken from Refs. 1 and 2.)

1.2 Effects of maiching failures on dial-tone delay

Repetitive matching failures ean occur in establishing the dialing
connection essentially because the first-stage crossbar switch on which
the subscriber line terminates (the horizontal group) is a concentrator
whose output links (line links) have holding times that are much
longer than the holding times of the common control devices that set
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up the dialing connections (the prms). The average line-link holding
times, being largely determined by conversation holding times (with
allowance for ineffective attempts), can be on the order of 150 seconds
or more, while the prm holding times are typically on the order of
0.25-0.40 second.

Although matching failures (blocking) ean oceur when one or more
of the 10 line links on a horizontal group are unoccupied, repetitive
matching failures under such conditions are rare because a pTwm is
quite likely to be successful in establishing a dialing connection after
a few attempts. The expected holding time in a blocked condition of
a call that finds all 10 line links busy is the lesser of the length of time
for one of the 10 line links to become free (with a short added time
for pr™ uses and matching failures in setting up the dialing path) and
the length of time that a subscriber is willing to wait.

Since, at average busy-hour load levels, less than about one percent
of all originating calls are predicted to encounter an all-10-line-links-
busy condition, previous dial-tone-delay studies have assumed the
effect of matching failures on dial-tone delay to be small. However,
the fact that line-link holding times are much longer than prm holding
times means that a call which finds all 10 line links busy can remain
blocked for long enough to consume a large number of pT™ uses (except
at calling rates sufficiently high that very little of the offered blocked-
call load is carried by the prMs). Thus, it is possible for a small number
of calls experiencing blocking to generate a disproportionate number of
waste DTM uses, increase DTM occupaney, and thereby increase dial-
tone delay for all other calls in the office.

Il. ANALYTICAL MODEL (LIMITING FORM)
2.1 Assumptions

Since the main effect of matching failures on dial-tone delay is
caused by the resulting waste ptM use, and since the dial-tone delay
distribution of the small proportion of calls experiencing repetitive
matching failures can be calculated approximately (see Section 5.2),
the effect of matching failures on the dial-tone delay distribution of
calls that do not experience repetitive matching failures has been repre-
sented in terms of a queuing model with two classes of calls, good calls
and bad calls, defined as follows:

(¥) A good call experiences no matching failures but is subject to
delay caused by pTms and ogs.

(77) A bad call experiences total network blocking (no dialing con-
nection available) and defects from the system after an expo-
nential waiting time.
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We will first describe the mathematical structure of the analytical
model used for dial-tone delay calculations. We will refer to this model
as the limiling model. Next, we derive the pT™ saturation load® and
prove that it is not changed by the presence of bad calls.

In Appendix B, we prove that the equilibrium queue length and wait-
ing time distributions of the limiting model are the limits in distribu-
tion of a sequence of equilibrium distributions arising from a model in
which the expected bad-call arrival rate approaches zero and the
expected bad-call waiting time (until defection) approaches infinity
in such a way that their produect, total erlangs of bad ealls, is constant.

In the limiting model, a good call arrives and finds a random
(truncated) Poisson-distributed (but time-independent) number of
bad calls permanently present in the system.! The queue discipline
is characterized by random order of service. The pTMs cannot dis-
tinguish between good and bad calls when choosing a call to be served.
This corresponds to the fact that, in the No. 5 crossbar switching
machine, a pT™M cannot recognize that a 10-line-links-busy condition
exists on a particular horizontal group and, hence, cannot avoid wasting
time serving calls for which no dialing path exists. Equilibrium good-
call queue length distributions are computed conditional upon the
number of bad calls present in the system. Calculating the expectation
of the conditional distribution over the distribution of bad calls gives
the unconditional dial-tone-delay distribution for good calls. The con-
ditional distributions depend on the total office calling rate and on the
number of LLFs, pTMs, and ors but do not depend on the horizontal
group load or the load variation. Hence, delay distributions for a range
of frame load and balance effects can be calculated using the same set
of conditional distributions, thereby greatly reducing the computer
time needed for parametric studies.

Since pt™ holding times are approximately constant (for a given
set of office parameters and traffic characteristics) and since these
holding times are small with respect to the accuracy with which it is
necessary to be able to predict delays, we treat the dial-tone delay
process as a discrete time queue with a constant service time of T
seconds. Good calls are assumed to arrive in batches according to a
Poisson process at times kT, for &k = 1, 2, - --. Immediately upon
arrival, the good calls join the queue of good and bad calls waiting
for dial tone. Calls are chosen at random from the queue for service

*The pt™ saturation load is defined to be the good-call originating load below
which a steady state good-call-queue-length distribution exists and above which
such a steady state distribution does not exist.

T When the bad-call input is assumed to be peaked, the number of bad calls in
ghe systf{,n has a (truncated) negative binomial distribution. This is discussed in
ection
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by the ptys with each call—whether a good call or a bad call—having
an equal probability of being chosen. A good call served on the pTm
cycle beginning at time &7 will either acquire an or, receive dial tone,
and thereupon exit the system at time (k + 1)7, or else will fail to
acquire an or and will return to the queue of calls waiting for dial
tone at time (k + 1)T. A bad call served on the pTm cyecle beginning
at time k7 will return to the queue of calls waiting for dial tone at
time (k + 1)T. Note that since new arrivals occur only at the time
points kT, a pr™ that is idle on the cycle beginning at time k7T will
remain idle at least until the start of the cycle beginning at time
(k 4+ 1)T. The dial-tone delay for a call is the length of time from the
moment when the call arrives to when it obtains dial tone and (simul-
taneously) leaves the dial-tone queue. Thus, the minimum possible
dial-tone delay in the model is T seconds.

In the analytical model, two pTMs serving N line-link frames are
used to represent four pT™s serving 2N line-link frames. A single pT™
holding time equal to the office average pTm holding time is used for
both good and bad ecalls. In actuality and in the simulation models,
bad calls have somewhat longer v holding times than good ecalls
and good calls that encounter a condition of all-ors-busy have some-
what shorter pT™ holding times than good calls that do not encounter
a condition of all-ors-busy. Comparison of results from the analytical
model with those of the gating simulation model indicates that these
simplifications tend to offset each other in the range of interest.

A further simplification in the analytical model concerns the manner
in which availability of ors is treated. Since No. 5 crossbar offices
typically contain over 100 ors and since the ors are in tandem with
the pTMs, it is presently not practieal to keep track of the number of
occupied ors directly in an analytical model. Availability of ors is
treated by assuming that at each time point kT, all ors are busy with
probability g and two or more ors are free with probabilityp = 1 — q.
The calculated probability that exactly one or is free and that a
dialing connection is available between this one or and the given sub-
scriber line is sufficiently small, in the occupancy range of interest,
80 as not to warrant the additional complexity caused by introducing
this effect.

The idea of using a discrete time model and the method of treating
or availability through use of a fixed probability of all ors busy are
due to Halfin.? Following Halfin, the probability g is taken to be the
erlang C probability of all ors busy. At or occupancies above about
0.90 with frame loads low enough that few second failures to match
oceur, this method of treating or availability somewhat underpredicts
the delay caused by an all-registers-busy condition (based on com-
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parison with simulation results). The underprediction arises because,
at higher or oceupancies, once all ors become busy they tend to remain
busy for a time period equal to several pT™ eycles, as one would expect
from the erlang C delay formula.

Preliminary studies were made using an analytical single-server
eyelic queuing model, developed by S. Halfin,® which represented the
No. 5 crossbar gating process in considerable detail but did not take
into account the effects of horizontal group blocking. These studies
showed that the delays predicted by the cyeclic queuing model do not
differ appreciably from those of a discrete-time M/D/1 queue with
feedback and random order of service. The latter model requires
about 1/30th of the computer time required by the former. Both
models overpredicted simulations. For these reasons, explicit repre-
sentation of the gating process was not attempted and a discrete-
time M/D/2 queue with feedback and random order of service was
taken as the starting point for developing an analytical dial-tone-delay
model to include effects of horizontal group blocking.
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Fig. 1—Comparison of analytical and simulation models. Dial-tone delays are at
1400 ccs/LLF and 0.70 pT™ occ (excluding DTM2FTMS).
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Comparison of simulation results with predictions using the limiting
analytical model (based on two markers and random order of service)
shows that the predicted delays typically fall somewhat above or very
close to simulated delays based on four markers with gating order of
service and somewhat below simulated delays based on four markers
with random order of service. In the light of these results and because
of the large seatter in actual measured No. 5 crossbar dial-tone delays,
it did not seem worth the considerable added complexity to include
explicit representation of the gating process in the analytical model.
Typical results are shown in Figs. 1 and 2.

2.2 Queue length equations for the limiting model

The queue-length process for good calls in the limiting model is a
discrete-time Markov chain with finitely many irreducible classes
{Cx} that are noncommunieating in the sense that no transition be-
tween different classes is possible. Hence, each class is itself an irre-
ducible Markov chain. The kth class is the queue-length Markov chain
for a discrete-time M/D/2 queue with random order of service,
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Fig. 2—Dial-tone delays are at 1600 ccs/Lir and 0.80 pt™ occ (exeluding pT™M2FTMS).
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“feedback” (occurring when an all-ors-busy condition is encountered),
and % blocked calls residing permanently in the system. The pTms
cannot distinguish these & permanently blocked bad calls from the
good calls in the system, so each of the % bad calls and each of the good
calls in the system compete on an equal basis for pTms. Upon comple-
tion of service by a pTM™, a bad call rejoins the queue. With probability
g, the good calls served at any given time period rejoin the queue and
with probability p they leave it. We will show that each of these
queuing systems has the same saturation load and we will describe
how the equilibrium-queue-length distribution and the equilibrium-
waiting-time distribution for each system is calculated.

Viewing the whole process again from the standpoint of a Markov
chain with finitely many noncommunicating classes, the queue-length
and waiting-time distributions referred to above may be regarded as
being conditional on %, the number of blocked calls (permanently)
present in the system. Now let k be a random variable with a truncated
Poisson distribution of mean z, or, equivalently, regard the Markov
chain as having any initial distribution (%, ¢), where ¢ denotes the
number of good calls in the system and where the marginal distribu-
tion «(k, -) of the number of bad calls in the system is truncated
Poisson with mean x. Then the (unconditional) equilibrium-queue-
length and equilibrium-waiting-time distributions for this system may
be computed by taking the expectation (with respect to the truncated
Poisson distribution of k} of the conditional queue-length and waiting-
time distributions for each of the individual systems represented by the
classes C;.

Let X, denote the number of good calls in the queue at time nT and
let ¥ denote the number of bad calls (permanently) present in the
queuing system. Let

Pk(i; J) = Pr I:Xn-i-l = ]an =iand Y = k]

and let P,(7) be the equilibrium-queue-length distribution for the case
of k bad calls. Let A (n) be the probability that n good calls arrive in
one service time interval (of length 7). Then, by assumption,

An) = e:’,‘ n=012,
=0 otherwise,
where
A=MNT
A1 = LLF originating call rate (calls per second on one LLF),
N = number of LLFs served by the two DTMs.
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The transition funetions P,(-, -) are given by
Po(0, j) = A(J)
Po(1, 5) = pA()) + qA(j — 1)
Po(t, /) =pA(1 =i+ 2) +qd(j —0) foriz2, (1)
and for k = 1,
Pi(0, j) = A())
P(z, )
= ple(k—1)A(j—2)+2tkA (j—i+1)+i(i—1)A (j—i4+2)]/
Lk+dE+i-1D]+gd(j—4) for =1 (2)

Note that Pi(z, j) = 0 for i > j 4+ 2 and that P,(j + 2, j) > 0.
If the equilibrium distributions P.(-) exist, then they satisfy the
equation

Pu(j) = z P(i)Pi(i, ). (3)

Let fi be the generating function for the kth queue length process;
then

falz) = gﬂ P()z".

The generating function f, is easily seen to be given by

_ Pz — D[(z + 1)Po(0) + zPo(1)]
fo(z) = 2o (1-2) — (p NP . (4)
If Po(-) exists, then lim.+, fo(z) = 1, and hence
Po(0) + 1Po(l) = 1 = 5. )

Let Sf?(p) denote the saturation load of the kth process with two
DTMs, as discussed above, and let S{"(p) denote the saturation load
of the analogous one-pr™ system with k blocked calls. It can be shown
that S{"(p) = pforallk = 0,1,2, ---, ie., a necessary and sufficient
condition that a steady-state queue length distribution exists in the
one-pTM system is that A < p.* Using this result, we will show that
SP(p) =2pforallk =0,1, ---.

Since the Markov chain for the kth process above is irreducible,
Py(0) > 0 and Po(1) > 0 whenever the stationary distribution Po(+)
exists. Hence, it follows from eq. (5) that S§*(p) < 2p. Since S (p)

* This result can be proved using a theorem of Kushner (Ref. 4) and some properties
of generating functions.
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< 82 (p) £ SP(p) < 2p for ke = ky = 0, it suffices to show that
S@&(p) = 2p forall k = 0.

Consider a two-pT™ system with 2k blocked calls, which differs from
the 2kth process defined above only in that (¢) each pT™ maintains a
separate queue with half the originating traffic being assigned to one
of the ptMs and the other half being assigned to the other pTm and
(13) each pTM serves k blocked calls. Let Sy:(p) denote the saturation
load of this modified system. Then clearly, Sy (p) = S8 (p) and, by
symmetry, Su(p) = 28f"(p) = 2p, because the modified system
simply consists of two identical one-marker systems working sep-
arately, with each being assigned half the incoming traffic. Hence,
S (p) = 2p and so 8P (p) = 2p for all & = 0.

Thus, for A/2p < 1, a stationary distribution exists for the kth
process for each k = 0. In the sequel, we will confine ourselves to the
case where A/2p < 1. In this case, f, exists and is analytic for |z| < 1
and continuous for |z| = 1, so the numerator of the expression on the
right-hand side of eq. (4) must vanish for any |z| < 1 for which the
denominator vanishes. It is easy to see that the denominator has a
single real root on the open interval (—1, 0) and that z = 1 is a root.
By applying Rouche’s theorem to the funections z?exp [A(1 — 2)]
and p + ¢2* along the circle |z2|] = 1 + ¢, one can show that for \/2p
< 1 and for e > 0 sufficiently small (depending on A and p), the ex-
pression z2exp [AM(1 — 2)] — (p + ¢2*) = 0 has exactly two roots in
the open dise |z| < 1 + e Thus, the root on (—1, 0) and the root
at 1 are the only roots within the closed unit dise and

(& + 1)Po(0) + £Po(1) = 0, (6)
where £ is the unique root of the expression
22— — (p + ¢?) = 0, —-1<z<0. (7)

Solving egs. (5) and (6) for P,(0) and Po(1) yields the unique
solution

(1—8p
py1) = 4 0@ =N, ®

where ¢ is defined by (7). The values Po(j) for j = 2 can now be com-
puted recursively from (3) using (8).

When k > 0, computation of Pr(-) by the method of generating
functions involves numerical solution of some rather unwieldy
differential equations. The following approach, which makes use
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of properties of recurrent Markov chains, is easier to implement
computationally.

In Appendix A we show that, for \/2p < 1, P.(-) is given by
¢(e + rB), where ¢ and r are constants and «, 8 are the two (particular)
eigenvectors, defined by (9) below, of the transition matrix P,(z, 7).*
We further show that the condition, a; + 8, = 0 for each j, deter-
mines r uniquely and provides an easy way to calculate r. Once r is
obtained, the constant ¢ is uniquely determined by the condition that
2_7=0 Px(j) = 1. Since the quantities @; and 8; can be computed re-
cursively, the above observations lead to a simple algorithm for com-
puting P(-). The results are given below, the proof is in Appendix A.
Let

g = ].

o =

n+1 i
@ — T @i, )
=

Qnia = Pe(n + 2, ) nz0 (9a)
Ba=0
By =1
n+1 .
161! - _;0 IBJP}:(J; n)
Brt = P T 2, 0) nz0. (%)

It is shown in Appendix A that there is a unique constant r satisfying

ma <r M, all n = 3 (10a)
lim m, = r = lim M,, (10b)

where, for n = 3, the increasing sequence m, and the decreasing se-
quence A , are defined by
My = Max [~ a—j:a,~ <0,8;> 0}
Jsn Bj
(11)
M, = min[— Yia; > 0,8, < 0]-
isn B
Since the quantities m, and M, can be computed recursively, egs.
(10a), (10b), and (11) yield a well-defined algorithm for computing r.
Once r has been computed, P.(7) can be caleulated from (3), setting
Pi(0) = ¢, Pi(1) = r¢ and determining ¢ by the requirement that
2= Pu(j) = 1.

* Each of ¢, r, @, and 8 depends on k. For each integer j = 0, a; and 8, denote the
Jth components of the eigenvectors « and §, respectively.
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Since recursive calculation of Pi(7) by (3) involves successive sub-
tractions, it is essential to perform all computations in double precision.

In a No. 5 crossbar switching machine, the measured pT™ occupancy
during an hour is defined to be the total work time (in seconds) of all
the pTms divided by the product of the number of pT™s and the number
of seconds in an hour. Thus, the measured occupancy is the average
fraction of time that a given pT™ is occupied. In the mode] the (steady-
state) pT™M occupancy is defined to be the limit, as n approaches in-
finity, of the expected fraction of time that a given pT™ is occupied
during the n work cycles of length 7' beginning at times T, 2T, - - -, nT.
This limit is equal to the probability that a given pT™ is occupied on
a work cycle beginning with the system in steady state. Hence,

DTM oceupancy = P (two or more calls are waiting for dial tone)
+ 1P (exactly one eall is waiting for dial tone)
= 1 — P (no calls are waiting for dial tone)
— 1P (exactly one call is waiting for dial tone).

As discussed earlier, the number of bad (blocked) calls waiting for
dial tone at any given time has a truncated Poisson distribution in the
model. Let

x = total erlangs of blocked calls on two DTMs
K = maximum possible number of blocked calls that can be in the
system (waiting for dial tone) at any time*

K :L'k
Czxk = kgﬂ P *
Then the probability that & blocked calls are in the system is given
by (x*/k )czz. Let p. denote the (steady state) M occupancy for
the case of no blocked calls in the system and let p, denote the (steady
state) oM occupancy including the effect of blocked calls. It follows
from (5) that

pu = N/2p. (12a)
Hence,
ps = 1 — ¢z2Po(0) — % [czaPo(1) + zcz#P1(0)]
=1 = czz(1 — pu) — (x/2)cztP1(0). (12b)

2.3 Delay equations for the limiting model

In this section, we calculate the dial-tone delay probabilities for a
call that arrives when the system (just prior to the arrival of the call)

*The truncation parameter K determines the number of conditional delay dis-
tributions to be calculated, so X should be taken to be no larger than needed to retain
sufficient accuracy in the calculations. For values of z in the range of interest e 2c.x
differs from 1 by less than about 1072 for K = 5; thus, for computational purposes,
K may be taken to be 5.
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is in steady state. Recall that the queuing model is in discrete time
with arrivals at times nT and pT™s operating at times nT". Calls served
on the pT™ cycle beginning at nT either exit the system at time
(n + 1)T or else return to the queue at time (n 4+ 1)7.

Thus, the steady-state probability that a call experiences a dial-
tone delay of {m + 1)T seconds can be computed recursively in terms
of the probability of a delay of mT seconds by straightforward condi-
tional probability calculations involving matrix multiplications.

Let

Y = number of bad calls (permanently) present in the system
X, = number of good calls in the queue at time nT
X = number of good calls in the queue immediately after an arrival
when, just prior to the arrival, the system was in steady state.

Thus, X is the total queue length just after arrival of a eall when the
system is in steady state. Let

Queue is in steady state at time (n — 1)T
with k bad calls permanently present in |
the system, and at least one good call
arrives at time n7

Pu) =P |X.=

Then
P[R = j|Y = k] = P.(3).
Let

Pili, ) = P [Xn+1 _ ’X,, =1, Y = k, and at least one good]

call arrives at time nT
and

A(n)
1 — A(0)
=0 otherwise.

A(n) = n=1

Then A (n) is the conditional probability that n calls arrive at time
nT given that at least one call arrives at time n7T and Py (7, j) is defined
by eqgs. (1) and (2) with A used in place of 4. Also,

J+2
Pi(y) = Z:[,Pk(i)fjk(i, -
Let W,(%, k) be the conditional probability that a call arriving in
steady state has a dial-tone delay of nT seconds, given that the queue
length of good calls upon arrival of the call is z and that the number

of bad calls permanently present in the system is k. Thus, letting D
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denote the dial-tone delay, we have
W.(G,k)=P[D=nT|X=7and Y =%k] 2Ll

Then
2 .
welr i
and W..1(-, k) can be computed recursively from W.(:, k) as de-
scribed below.
Let X, = ¢ = 1 and consider any one given call out of the 7 calls
present at time nT. Let

W1(?:, r’ﬂ) = min [1

X .41 = jand the given call does
®.(i, 7) = P | not leave the system on the pTM
eyele beginning at time nT

X, =4 and Y=kj-

Then
Wi, &) = 5 @uliy WG B,
and, for 7 = 1, ®:(¢, j) is given by*
outi, ) = [1 = BB |rpa(j — i+ 2) + 04 (G - 9]
+ [w ] qA(j — %)

—1

H'—l]l:zEE(?'— NA(G—i+ 2+ 24—+ 1)]

+aaG = 0|+ [ o et -
2

i—1\(
z(—L)QL—)AQ—z+D

() (k-l-z—l)
2

+qA(j — 17) +(k+@)qA(J—%)

@1(1:: .7) =

| —|
w3,

and, for k = 2,

#ai, 3) = 1 - —||»

The second term on the right-hand side of the above equation is
the probability of the event that: (¢) the given call ¢s selected for

* The derivation of ®x(i, j) for k¥ = 2 is given below. The derivations of ®:(3, j)
for k = 0 and k = 1 are analogous and are omitted.
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service by the prMs, (44) all ors are busy, and (447) X,.; = j. (Recall
that, in the model, either all ors are busy, with probability ¢, or else
two or more ors are available, with probability p = 1 — ¢). The
first term is the probability that: (i) the given call is not selected for
service and (77) X.,1 = j. In the first term, the expression in large
brackets is the conditional probability that X,..; = j given that the
call is not selected for service. This conditional probability is itself
composed of the probabilities of two mutually exclusive events. The
second term within the large brackets is the (conditional) probability
of the event that all ors are busy and X, = j. The first term within
the large brackets is the (conditional) probability that two or more
ORs are free and X,;; = j. The sum from ! = 0 to [ = 2 in this term
pertains to the cases where 0, 1, or 2 good calls, respectively, are selected
for service by the pTMs. Since this sum is part of a probability condi-
tional upon a given good call not having been selected by the pTms,
the available population from which the prms may select calls con-
sists of £ bad calls (k= 2) and 7 — 1 good calls (7 = 1). Since the
selection is without replacement, the selection probabilities have the
hypergeometric form shown above.
By the law of total probabilities,

P[D = nT|Y = k] = % W.(, k)P[X = i|¥ = k],

n

PD>aT|Y =k]=1— ¥ P[D=mT|Y = k],

m=1
and
K C;I%Ik
P[D > aT] = AZ AR P[D > aT|Y = k], (13)
.=D .
where
K
Czk = Z Ik/k I
k=0

lll. CALCULATION OF OFFERED BLOCKED-CALL LOAD

In the limiting analytical model, the number of blocked calls in the
system has a time-independent truncated Poisson distribution with
mean x. This section describes a method for computing z, the mean
offered erlangs of bad calls, in terms of the distribution of carried load
among horizontal groups in the office. Using the limiting analytical
model in conjunction with these methods for calculating the offered
blocked-call load, we can calculate the No. 5 crossbar dial-tone delay
distribution in terms of the calling rate and the distribution of carried
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load among horizontal groups in the office. Thus, we can predict the
effect of frame load and balance on dial-tone delay in No. 5 crossbar
offices.

We first construct a model for an individual horizontal group and
express the expected bad-call load from one horizontal group as a
function of the carried horizontal group load. To get the total ex-
pected bad-call offered load for the office, the expected contribution
from an individual horizontal group is integrated (numerically) over
the office horizontal group load distribution. The model, described
below, for representing an individual horizontal group may be called
a modified finite source Palm delay model.

We assume that the input to a horizontal group is from a finite
number of sources with equal calling rates and that call-holding times
are exponential. The number of sources N is taken to be 35 although
in actuality most horizontal groups have 49 or 59 subscriber lines.
The reason for the use of the lower number of sources is that an earlier
study by W. 8. Hayward, Jr.? showed that blocking on concentrators
with unequal line oceupancies can be approximated by blocking caleu-
lations based on equal calling rates and a lower number of sources.
The use of 35 sources was suggested by J. G. Kappel.®

The calculations take into account the fact that an incoming call
cannot occupy a subscriber line when all ten line links are occupied.
Calls that find all line links busy will either defect or will eventually
obtain a line link. While waiting for a line link to become available,
a call is assumed to have an exponential waiting time until defection,
with a mean of 30 s.*

In the case of ideal load balance, each horizontal group in the office
is assumed to have a true carried load of Z erlangs. In the case of less
than ideal load balance, the distribution of true carried load among the
individual horizontal groups is assumed to be normal with mean 2
and coefficient of variation ¢,, where z is the office average carried
horizontal group load and where ¢, is the group-to-group coefficient
of load variation for the office. The term ¢, may be inferred from office
load balance data either by using analysis of variance or, more com-
monly, by subtracting a standard value of the residual variance from
the total measured variance of the office horizontal group load
distribution.

* This is the same value that was used in step-by-step dial-tone-delay calculations.
(See Ref. 7.) These calculations are based on the Palm delay model® using an assumed
mean call holding time of 150 s and an assumed j factor of 5. In the notation of Ref.
9, this value of j corresponds to a mean-time-to-defection of 30 s. In Ref. 9, it is also
stated that this value was found to be slightly conservative for most applications,
based on review of panel office data reported in Ref. 9 and other (unpublished)
step-by-step data.
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To obtain the total offered blocked-call load for the office, we write
the offered blocked-call load for an individual horizontal group z(z)
as a function of the individual horizontal group carried load z and
integrate the function over the office distribution of carried load. We
now describe how z(z) is ealculated.

Let N denote the number of subscriber lines per horizontal group.
As discussed above, N has been taken to be 35 in all computations.
Let A denote the combined originating and terminating rate when
n subscriber lines are occupied and let x, denote the subscriber line
hang-up rate when n subscriber lines are occupied. Then

An = AMN — n) 0=n=9
%(N—n) 0W<n<N-1

and
un = n/H 0=n=10
= 10/H + (n — 10)/H, 11 =n = N,

where H denotes the office average line-link holding time and H, de-
notes the reciprocal of the defection rate for a call that is waiting for
a line link to become available. As discussed above, H, is taken to be
30 s based on results in Ref. 9.

The parameter A (combined originating and terminating rate per
unoceupied subscriber line) is an unknown whose value will be ob-
tained from the horizontal group-carried load z. The factor of 4 appear-
ing in the definition of X, for 10 £ n £ N — 1 reflects the fact that,
when all 10 line links are busy, an incoming call cannot cause a sub-
scriber line to be occupied. The definition of the hang-up rate u. for
11 = n = N reflects the assumption that, when all 10 line links are
occupied, the holding times of the subscriber lines for which no line
links are available should be shorter than full call holding times.

For a horizontal group with carried load z, let

7, = steady-state probability that n (out of N) subscriber
lines are occupied.

Then, using standard methods for computing the steady-state dis-
tribution of a birth-and-death process,®

Aot Aa1

) for n = 1,
PR

7o = ¢ and 1r,.=c(

where the constant ¢ is determined by the requirement that

N
Y wa=1.
n=0
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Then the carried horizontal group load z is given by

N
z = il’n-':rn + 10 Z:m Mn- (14)
It is not hard to show that the carried horizontal group load z is a
strictly increasing function of the subscriber line occupancy rate A and
that z < min [10, AN H]. This makes it easy to determine numerically
the unique value of X corresponding to a given carried load z.

Once \ has been determined, the quantities As, un, and =, are used
to compute the offered blocked-call load contributed by the hori-
zontal group. We take z(z) to be the expected number of occupied
subseriber lines for which no line links are available. This yields the
value

() = ’z_v;u (n — 10)7n. (15)

IV. PEAKEDNESS OF THE BLOCKED-CALL STREAM

In the model discussed in Section III, blocked calls arrive according
to a Poisson process and defect after an exponential waiting time.
Since blocked calls constitute an overflow stream and since it is well
known! that overflow traffic usually has a peakedness® greater than 1
and hence is not Poisson, some discussion of the peakedness of the
blocked-call stream is in order.

The blocked-call stream is the superposition of overflow traffic from
all of the (typically 400 to 600) horizontal groups in an office. In the
case of an office with ideal load balance (identical horizontal group
loads), all horizontal groups would have equal expected contributions
to the blocked-call stream and standard limit theorems would suggest
that the blocked-call stream should be approximately Poisson.

Comparisons of calculated and observed dial-tone delays discussed
in Section V (covering measured pT™ occupancies up to about 0.84)
indicate that, when the blocked-call stream is assumed to be Poisson,
the calculated delays generally fall in the midrange of applicable data.
However, there is a large variability in observed dial-tone delays
measured in the same office under nearly identical levels of pT™
occupancy, second-failures-to-match, and percent all-ors-busy. The
presence of this variability may be regarded as evidence that, in some
busy hours, the blocked-call stream may be peaked in nature. Peaked-
ness of the blocked-call stream is capable of accounting for substanti-

* The peakedness of a stream of calls is, by definition, the variance-to-mean ratio
of the number of busy servers when the stream is offered to an infinite group of
servers with independent identically distributed exponential holding times.
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ally higher caleulated dial-tone delay at a given level of pT™ occupancy,
second-failures-to-match, and percent all-ors-busy than would be
calculated under the assumption that the blocked-call stream is
Poisson.

One would expect the blocked-call stream to be peaked whenever
most of the blocked calls are contributed by a small number of highly
overloaded horizontal groups. Data on the horizontal group load dis-
tributions during individual busy hours are not available for the test
discussed in Section V and would be impractical to obtain on an on-
going basis in any office. In the absence of data from which one could
deduce directly the blocked-call peakedness, a treatment has been
made using some results which R. I. Wilkinson obtained in the course
of formulating his “equivalent random’ method of characterizing
overflow traffic.!!

Wilkinson' assumes that traffic arrives and departs according to a
birth-and-death process in which the arrival rate is increased when-
ever the number of calls in the system exceeds a nominal number and is
decreased whenever the number of calls in the system is less than this
nominal number. The equilibrium distribution of the number of calls
In the system resulting from these assumptions is shown to be negative
binomial and, hence, this distribution is completely determined by its
mean and variance (or by its mean and peakedness). Wilkinson then
shows that negative binomial distributions rather closely approximate
true overflow distributions under a number of different conditions.

The effects of peakedness of the blocked-call stream on dial-tone
delay were explored using the limiting analytical model of Section II
by replacing the (truncated) Poisson distribution of blocked calls by
a (truncated) negative binomial distribution of blocked calls. (Note
that this does not require recomputing the conditional delay distribu-
tions.) In this manner, dial-tone delay distributions were ealeulated
and compared with the observed dial-tone-delay distributions dis-
cussed in Section V, assuming peakedness values of 2 and 4. The re-
sulting delay curves approximated the higher delays observed for
given occupancy parameters. These calculations indicate that much
of the observed variability in dial-tone delays under nearly identical
load can be explained by peakedness of the blocked-call load.

It is not difficult to modify the birth-and-death model discussed in
Appendix B so as to accommodate peaked blocked-call input using
Wilkinson’s method of representing this input.?

Thus, when a negative binomial blocked-call distribution is used in
the limiting model, the resulting distribution of the good-call dial-
tone delay may be regarded as the limit of a sequence of good-call-
delay distributions corresponding to models with blocked-call input
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having the peaked form suggested by Wilkinson." The limit is taken
as the bad-call-arrival rates approach zero and the mean bad-call-
waiting times approach infinity with their products approaching posi-
tive constants. Incorporation of the negative binomial distribution in
the limiting model is accomplished simply by replacing the terms of
the truncated Poisson distribution in eq. (13) with the corresponding
terms of the negative binomial distribution,® using any convenient
truncation.

V. COMPARISON OF CALCULATED AND OBSERVED DIAL-TONE
DELAY DISTRIBUTIONS

5.1 Summary

Theoretical dial-tone-delay distributions, calculated using the ana-
lytical model discussed in Section 1I, were compared with dial-tone-
delay measurements made in a field test. The test was conducted in
a No. 5 crossbar office with 60 LLFs, 4 DTMs, 68 dial-pulse (DP) ORs,
and 68 multifrequency (MF) ors. The data discussed in this section
are from the time period February through April, 1974.

The main conclusions of this study are that (z) the calculated delays
generally fall in the midrange of applicable data, (dZ) there is a large
variability in observed dial-tone delays measured under nearly
identical levels of DT™M occupancy, second-failures-to-match, and
percent of all-ors-busy, and (i7¢) the field data show a clear increase
in the ratio of waste prm usage to total pT™ usage as frame load
increases. The observed amount of increase in waste DTM usage agrees
with theoretical predictions.

In this section, the manner in which the dial-tone-delay measure-
ments were taken is discussed and the method used to obtain the
calculated delays is outlined. Next, some of the sources of variability
in No. 5 crossbar dial-tone delays are identified and an explanation is
given as to why a large variability in observed delays should be ex-
pected. Two data plots are given indicating, respectively, the effects
of frame load on waste pT™ usage due to second-failures-to-match and
the effects of frame load on incoming-first-failures-to-match. Finally,
the conclusions of the study are discussed.

5.2 Methods of obtiaining the calculated and observed delay distributions

Hourly dial-tone-delay measurements were made by placing ap-
proximately 900 test calls per hour, using a standard 3-s dial-tone-
delay testing machine which had been modified to record the pro-
portion of test calls with delays exceeding X seconds, for X = 0.5,
1.0, 1.5, 2.0, 2.5, and 3.0.
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‘The observed actual DTM occupancy py for a single hour is expressed
in terms of the measured parameters by the formula:

. _ (Total pT™ peg count) (0.015) 4 (Measured seconds of pT™ usage).
o= (4) (3600)

(16)

The term in eq. (16) involving the pT™ peg count is to adjust for the
seconds of pTM usage which pTM usage measuring devices do not
record.

The (adjusted) pr™ holding time for each hour was computed by
A. R. Thorne from the prM peg count, the all-ors-busy peg count,
the adjusted pr™ usage [the latter of which comprises the numerator
of eq. (16)], and an additional “light-traffic adjustment”’ (used when-
ever the observed actual pT™ occupancy is below 0.80). Most of the
adjusted pT™ holding times are between 0.28 s and 0.31 s. A pT™
holding time of 0.30 s is assumed in the theoretical dial-tone-delay
distributions discussed in this section.

To compare predicted dial-tone delays with measured dial-tone
delays, it was necessary to infer the observed increment in pT™ occu-
pancy due to prm second-failures-to-matech (prm2rrM). This incre-
ment, denoted by 4, is taken to be

(Total prM2FT™M peg count) (HBC + 0.015)

A= (1) (3600) ’

a7

where

HBC = prm holding time during a second-failure-to-
match (seconds).

A value of 0.40 s is used for HBC, based on data obtained during an
earlier dir.l-tone-delay field test.® The observed good-call DTM occupancy
pu 1s defined to be

pu = ps— A (18)

Dial-tone-delay distributions were calculated, using the analytical
model, for a range of values of actual pT™ occupancy p, and good-call
DTM occupancy p,, where the parameters p, and p, are defined in
Section II. The specific manner in which the distributions were calcu-
lated is discussed below. The results of these calculations were tabu-
lated into a set of dial-tone-delay distributions, indexed by the pairs
(pe, pu). To compare the calculated and observed dial-tone delays,
measured dial-tone-delay distributions from data-collection hours with
similar values of 3, and 5., were plotted on a graph along with one
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theoretical dial-tone-delay distribution selected from the tabulation
discussed above, such that py =% p» and p. &2 p. hold for the values
s and p, corresponding to the observed delays shown on the graph.

These graphs are shown in Figs. 3, 4, and 5. Table I lists data per-
taining to each of the observed delay curves on each of the graphs.
At the top of each graph are listed the actual pT™ occupancy ps and
the good-call pT™ occupancy p. used for the theoretical dial-tone-delay
curve (the solid line) on the graph. Also listed are the ranges of the
#» and p, values corresponding to the observed dial-tone-delay curves
on the graph. The plotting symbols on the graphs indicate measured
dial-tone delays. The dotted lines are smoothing curves fitted to the
measured delays by the computer plotting routine used to draw the
graphs.

The predicted dial-tone-delay distributions were obtained in several
steps. First, values of the good-call origination rate per LLF A, were

0.6
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0.1 =
0.08—

0.06—
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0.008—

0.006 |—

PROBABILITY THAT DIAL-TONE DELAY IS AT LEAST X SECONDS

0.002 | I I | ]
0 1 2 3 4 -5 6
SECONDS OF DIAL-TONE DELAY

Fig. 3—Calculated and observed dial-tone delays. Actual occupancy in calcula-
tions = 0.75 (data: 0.740 to 0.758). Good-call occupancy in calculations = 0.70
(data: 0.684 to 0.697).
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. Fig. 4—Caleulated and observed dial-tone delays. Actual occupancy in caleula-
tions = 0.82 (data: 0.795 to 0.837). Good-call occupancy in caleulations = 0.76
(data: 0.744 to 0.782).

computed so as to produce good-call pT™M occupancies of p, = 0.60,
0.66, 0.68, 0.70, 0.72, 0.74, 0.76, 0.78, and 0.80. The values of \; were
obtained numerically fromn the formula p, = \\NT/2p given in Sec-
tion III. Note that p, the erlang C probability of all-ors-busy, is a
function of X\;, whereas N and T are constants. For the office in which
the test was conducted, N = 30 and, as discussed above, T = 0.30.
In computing p, an average or holding time of 10.25 s was assumed
based on data from the test. In all cases, the calculated values of p
were greater than 0.99, so the all-ors-busy condition has a calculated
probability of less than 0.01 under the conditions to which these
distributions apply. (The observed fractions of all-ors-busy were
also below 0.01 during most of the hours of the test. Hence, ors do
not appear to have caused much of the dial-tone delay observed in
the test.)

Next, the conditional delay distributions corresponding to these
parameters were computed using the analytical model. Using eq. (12),
values of x (total erlangs of blocked calls) corresponding to a range
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Fig. 5—Calculated and observed dial-tone delays. Actual occupancy in calcula-
tions = 0.82 (data: 0.795 to 0.837). Good-call occupancy in caleulations = 0.76
(data: 0.744 to 0.782). (Note that a blocked-call peakedness of 4 is assumed in the
caleulations shown sbove. Figures 3 and 4 are based on an assumed blocked-call
peakedness of 1.)

of values of p, were computed for each fixed value of p,. For each such
pair of ps and p,, the good-call dial-tone-delay distributions were then
computed by (13) using the value of z, obtained as discussed above,
and the conditional delay distributions corresponding to p.. The re-
sult of these caleulations is a set of good-call dial-tone-delay distribu-
tions indexed by the pairs (ps, pu).

These good-call dial-tone-delay distributions include the indirect
effect of bad calls in that they reflect the increased pT™ congestion
produced by the bad calls. As discussed earlier, the direct effect of bad
calls is expected to be small and therefore may be accounted for in a
somewhat approximate manner. To reduce the number of variables
that need to be considered, a single blocking probability is used in
lieu of integrating the blocking probability formula over an assumed
distribution of expected horizontal group loads. For the purpose of
computing an average blocking probability pB, the average waiting-
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time-until-defection of a bad call (Bcwr) is assumed to be 10 s.* A
consequence of this assumption is that the total bad-call origination
rate corresponding to z total erlangs of bad calls on two pT™s is z/10
bad calls per second. The total origination rate of good calls on all
30 LLFs is 30A;. The average blocking probability B corresponding to
the occupancy pair (ps, pu) is then defined to be the ratio of the bad-
call origination rate to the total origination rate of good and bad calls.
Thus,

z/10

PB = 27(10) + 30A;°

(19)

where z and A, are the values corresponding to the occupancy pair
(pby pu)-

The conditional delay distribution of bad calls should be nearly
exponential with mean delay mt/(10 — @), where HT is the average
call holding time and a is the carried horizontal group load in erlangs.!
For each occupancy pair (ps, pu), the theoretical dial-tone-delay dis-
tribution for all calls is then given by

P(D >1t) = (1 —pB)Pe(D >1t) + PB [exp [— Q();T_W]I , (20)

where Pg(D > t) is the good-call dial-tone-delay distribution cor-
responding to the occupancy pair (ps, pu).

In the theoretical dial-tone-delay curves shown in Figs. 3, 4, and 5,
a = 0 is used in eq. (20). The effect on P(D > 3 s) of setting a = 0,
rather than using a more nearly correct value for each graph, is less

* The value of BcwT = 10 s used in calculating pB is consistent with the mean-
time-to-defection Hy = 30 s used in the horizontal group blocking calculations in
Section III. The difference between the numerical values arises because these two
parameters are defined differently. For the purpose of calculating pB, it is assumed
that a bad call arrives, remains waiting for dial tone an exponential length of time
with mean BcwT, and then defects. In the horizontal group blocking model discussed
in Section III, a call which finds all 10 line links busy may either defect or may
eventually obtain an idle line link. The eall contributes to the bad-call load during
the time that it remains waiting for one of the line links to become available. Thus,
the quantity in the horizontal group blocking model corresponding most nearly to
the parameter BcwT is the mean time until a call that finds all 10 line links busy
either obtains a line link or defects. Based on delay calculations for the horizontal
group blocking model discussed in Section III, and assuming a mean-time-to-defec-
tion of 30 s for calls that do not obtain a line link and a mean line-link holding time
of 150 s, the mean time until a call that finds all 10 line links busy either obtains
a line link or else defects is caleulated to be between about 10 and 12 s for horizontal
group carried loads in the range of interest. Thus, it is reasonable to take Bowr = 10s.

This expression for the conditional delay distribution of bad calls should over-
estimate their delays somewhat because the expression does not account for finite-
source effects. Since the fraction of calls experiencing these delays (i.e., the fraction
of bad calls) is typically less than 0.01, the effect on 3.0-s dial-tone-delay probabilities
of neglecting finite-source effects is typically less than 5 X 1074 For this reason,
these effects are neglected in eq. (20).
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than 8 X 10~ in all cases. This error is in the opposite direction from
the error, of comparable magnitude, resulting from not including
finite-source effects in the bad-call delay distribution.

Since the analytical model is a discrete time model with a time step
of T seconds, P(D > kT) = P[(D =z (k+ 1)T]fork=1,2, ---. In
Figs. 3, 4, and 5, T = 0.30. Because of the way that dial-tone-delay
measurements are taken, a call which is recorded as having a delay
greater than ¢ seconds may actually receive dial tone within a few
milliseconds after time {. Thus, in comparing the theoretical dial-tone
delays with the observed dial-tone delays, the observed fraction of
dial-tone delays greater than t seconds is taken as representing the
observed fraction of dial-tone delays greater than or equal to t seconds.
The theoretical delay curve plotted is the curve P(D = kT) for
k=1,2, ... interpolated so as to produce a smooth curve.

5.3 Sources of variation in observed No. 5 crossbar dial-tone delays

Dial-tone delay in No. 5 crossbar is influenced by a number of
factors capable of producing a large variation in delays measured in
different hours within the same office under very similar conditions
of pT™M occupancy, percent all-ors-busy, and second-failures-to-match.
As discussed in Section IV, much of the variability in dial-tone delay
measured under very similar load conditions ean be explained by
differences in peakedness of the blocked eall stream. Whenever most
of the blocked-call load comes from a small number of extremely over-
loaded horizontal groups, the blocked-call stream should have a peaked-
ness greater than one. When a large number of moderately overloaded
groups contribute to the blocked-call load, the blocked-call stream
should be approximately Poisson (peakedness equal to one). Thus,
differences in the individual busy-hour-load balance would be expected
to produce different amounts of blocked-call peakedness, which in
turn can account for appreciable differences in dial-tone delay mea-
sured under nearly identical average load conditions. For example,
Fig. 5 shows dial-tone delays calculated assuming a blocked-call peaked-
ness of 4 for the same conditions shown in Fig. 4, which is based on a
blocked-call peakedness of 1.* The calculated delay curve in Fig. 5 fits
the top two observed delay distributions rather closely.

Some additional identifiable sources of dial-tone-delay variation
under similar load conditions are: (i) within-hour trends in traffic,
(#7) nonstandard (and possibly erratic) gating caused by improper
functioning of the master traffic controller circuitry, (7i7) pt™ prefer-

* The method by which blocked-call peakedness is treated in the model is dis-
cussed in Section IV,
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ence for calls from a small subset of lines on each horizontal group,
(iv) variation in pT™ first-failures-to-match, and (v) competition be-
tween pTMs and completing markers for line-link connectors.

The first of these sources should produce effects similar to those of
blocked-call peakedness. The second source may cause nonuniform
congestion. The third source is predicted to result in a slight outward
shift in the delay curve. The fourth and fifth sources should be reflected
in increased measured pt™ holding time and in increased pT™M occu-
pancy. Although approximate allowances can be made for the average
congestion increase produced by some of these phenomena, no quanti-
tative estimate is available for their total contribution to hourly
variation in dial-tone delay.

In addition to identifiable sources of dial-tone-delay variation, simu-
lation studies indicate that there can be an appreciable residual varia-
tion in simulated hourly No. 5 crossbar dial-tone delays obtained in
different runs with identical input parameters (and, hence, with identi-
cal expected load conditions).”

Figure 6 shows four dial-tone-delay distributions obtained using
the gating simulation model. In this model, the blocked-call stream
is Poisson. These distributions were produced by simulating four
individual hours, using identical input parameters. The delay distribu-
tions shown are for the calls that did not encounter horizontal group
blocking and are based on the total number of such calls processed
during the hour. The set of four 3-s dial-tone delays has a coefficient
of variation of 0.28 and a mean of 0.069. (The coefficient of variation
is the ratio of the standard deviation to the mean.) Plotted on the
graph along with the delay curves are error bars indicating the 2-sigma
limits of 0.034 and 0.107 associated with the above mean and coeffi-
cient of variation.

Actual dial-tone-delay measurements are based on test calls. During
a given busy hour in a typical No. 5 crossbar office, approximately
900 test calls are made on a fixed set of 60 (out of 600) horizontal
groups. The use of test calls introduces sampling error, which is not
represented in the distributions shown in Fig. 6 and which would
have an associated coefficient of variation of about 0.12 for the parame-
ters applicable to Fig. 6.

5.4 Data on frame load effects

Figure 7 is a data plot of line-link frame load versus waste DTM usage
due to second-failures-to-match based on data from the test. The
quantity “pT™ usage fraction due to 2FrMs” shown on the ordinate is

* This result is one of the main conclusions of an earlier No. 5 crossbar dial-tone-
delay simulation study conducted by S. Halfin 3
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Fig. 6—Simulated No. 5 crossbar dial-tone delays. Distributions are based on simu-
lation of four individual hours with identical inputs.
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Total pT™ usage
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DTM usage fraction due to 2FrTMs

|
2

Figure 8 is a data plot of line-link frame load versus incoming-first-
failure-to-match (17Fm) based on data from the test. In each figure,
each of the data points represents data from 1 h. The average actual
pT™M occupancy (averaged over all the data-collection hours with
measured line-link frame loads of 1100 ccs/LLF or more) is 0.54; the
DTM occupancy range is from less than 0.40 to 0.84.

Existing theory indicates that, for a given office configuration (in-
cluding a given junctor pattern), rrrm is directly and primarily de-
pendent on frame load. This conelusion is borne out by Fig. 8, which
demonstrates a well-defined trend (with a moderate amount of data
scatter) of inereasing 1IFFM with increasing frame load.

The extent to which frame load affects pTM usage and dial-tone
delay in any given hour depends, in an indirect way, on several differ-
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Fig. 7—Effect of frame load on increased pTM usage due to 2rT™s. The assumed
pr™ holding time during a 2rTM = 0.40 s.

ent variables, including p™ occupancy and the distribution of carried
load among horizontal groups. Because of this dependence, the nature
of which has been discussed more fully in previous sections, the data
scatter in the plot of waste pT™M usage fraction versus frame load (Fig.
7) is much larger than in the plot of 1FFM versus frame load (Fig. 8).

The curve labeled “raEorRETICAL” in Fig. 7 was calculated using the
limiting analytical model [eq. (12)] and the horizontal group blocking
model discussed in Section III. In these calculations, the blocked-call
load was assumed to be Poisson (peakedness equal to 1).

To obtain the theoretical curve, it was first necessary to determine
what calling rates should be assumed in the calculations. The calling
rates were inferred from the data upon which Fig. 7 is based by first
using linear regression (least squares) to express the observed good-call
DTM occupancy, ., as an empirical function of the observed frame load,
ccs/LLF. For each value of the frame load, the calling rate was taken
to be the particular calling rate corresponding to the least squares
value of p., assuming an average pTM holding time of 0.30 s and a
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Fig. 8—Effect of frame load on incoming first-failure-to-match.

zero probability of all-ors-busy. The justification for the assumptions
regarding the pT™ holding time and the probability of all-ors-busy
is given earlier in this section.

Next, the horizontal group blocking model discussed in Section III
was used to compute the expected blocked-call offered load correspond-
ing to each value of frame load and (empirically associated) calling
rate. The office distribution of carried horizontal group load was
assumed to be normal with group-to-group coefficient of variation
inferred from the office horizontal group load distribution using the
method discussed earlier. The calculated values of offered blocked-
call load were then used in eq. (12) to compute the theoretically pre-
dicted fraction of waste pT™ use, (ps — p.)/ps, corresponding to these
frame loads and calling rates.

Since both the theoretical and the observed values of waste pTM
use depend not only on frame load but also on the calling rate, neither
the data plotted in Fig. 7 nor the theoretical curve shown on the figure
should be regarded as being applicable to calling rates or load balance
conditions other than those upon which this figure is based.
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The

purpose of Fig. 7 is to illustrate—for the conditions of calling

rate, frame load, and load balance represented in this study—an
empirical relationship between frame load and the ratio of waste o™
usage to total pTM usage with increasing frame load and to show that
this empirical relationship is consistent with predictions of the theo-

retical

models.

5.5 Conclusions

The

conclusions which the author has drawn from this comparison

of theoretical and observed dial-tone-delay distributions are as follows:

(7)

(1)

(441)

(w)

1786

Where two or more observed delay distributions appear on the
same graph, the theoretical delay distributions usually fall
approximately midway between the maximum and minimum
observed delay distributions. This indicates that, in the
(actual) pTM occupancy range spanned by these data (pTM
occupancies up to about 0.84), the analytical model shows
good agreement with the data.

Much of the large variability in observed 3-s dial-tone delays
measured under nearly equal conditions of pT™M occupancy,
second-failures-to-mateh, and percent all-ors-busy can be ex-
plained by assuming the blocked-call stream to have different
peakedness values (ranging from 1 to about 4) in different
hours. High blocked-call peakedness, illustrated by Fig. 5 in
which the peakedness is taken to be four, would be expected
whenever most of the blocked-call load comes from a small
number of extremely overloaded horizontal groups. Low
blocked-call peakedness, illustrated by Fig. 4 in which the
peakedness is taken to be 1, would be expected whenever a
large number of moderately overloaded horizontal groups con-
tribute more or less equally to the blocked-call load.
Simulation results indicate that there should be a large residual
variability in 3-s dial-tone delays measured in different
(simulated) hours under identical expected load conditions.
This variability, illustrated in Fig. 6, is in addition to the
variability due to blocked-call peakedness discussed above.
A third nonnegligible source of variability in observed dial-
tone delays is the sampling variability associated with the use
of test calls to measure delays.

For the conditions of calling rate, frame load, and load balance
represented in this study, the observed increase in the ratio of
waste DTM usage to total pT™M usage as frame load increases is
consistent with theoretical predictions. This is illustrated in
Fig. 7 and discussed in Section 5.4.
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APPENDIX A

Computation of the Two-Marker Stationary Distribution for k = 1

The purpose of this appendix is to prove that the limit r defined
by (10) exists and that the quantities v; = a; + 78;, satisfy (21),
where «; and 8; are defined by (9).

v; = 0, all 7 =0

vo=1;

i+2 L. i
v; = ;ﬂ Ua'Pk(z: J)r all J —2. 0

iv,- <o, (21)

=0
We first show that there exists exactly one positive number r such
that v; = «; + rB; satisfies (21). Then we show that the limit in (10)
exists and is equal to this number.
When N < 2p, we know that the stationary distribution P, exists

and P(7) > 0 for each j. Let m; = Py(j)/Px(0). Then for r = P,(1)/
P(0), we have

Ty = 1,
™ =T,
i+2 L. .
m; = 2 miPi(e, 7), all 7 = 0.

1=l

Now let v; = a; + r8;, with r as defined above. Then, it follows from
(9) that

Vo = 1,

=T,
i+2

v; = ¥ 0Pu(i,j), allj=o0. (22)
=0

Since v = mp and »; = 7, and since the vectors v and = both satisfy
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the same recurrence relation, which has the property that the jth
term for each j = 2 is uniquely determined by the Oth and 1st terms,
we see that v; = m; > 0 for all j = 0. Since the Markov chain is posi-
tive recurrent for A\/2p < 1, it follows from (22) and Karlin* that
S rov; <. Hence, v satisfies (21). Thus, there exists at least one
value of r for which v; = a; + rg; satisfies (21). If 7’ is any number
such that v; = a; + »'8; satisfies (21), then by uniqueness of the
stationary distribution, 7’ = v{/vg = Px(1)/Px(0), so r' = r. Thus,
exactly one such r exists.

Since a; + r8; > 0 for each j, it follows that (10a) holds. Hence,
the increasing sequence m, is bounded above by r and the decreasing
sequence M, is bounded below by r. So both m = lim,m. and
M = lim, M, exist and satisfy

ma=r =M, (23)
mn £ m,
M = M,. (24)

If either of the inequalities in (23) were strict, then m < M and, in
view of (24), each z in the interval m < z < M would satisfy

m, 2z =M,

for each n, from which it follows that v; = o; + 28, satisfies (21).
This contradicts the uniqueness of  and proves that m = M = r.

It is easy to extend the above result so as to give a method for
computing the stationary distribution of any irreducible positive re-
current Markov chain on the nonnegative integers such that a fixed
positive integer nq exists for which P(j + no, j) > 0 and P(j + n, j)
=0 for all j and all n > n,.

APPENDIX B
Convergence in Distribution to the Limiting Model

In the limiting model, the number of bad (i.e., blocked) calls in the
system is a time-independent, truncated-Poisson-distributed random
variable. We will show that the steady-state distributions of good- and
bad-call queue lengths and the steady-state good-call dial-tone-delay
distribution in the limiting model are the limits of the corresponding
distributions for a sequence of models in which the bad call queue
lengths form birth-and-death processes.

In the nth model, the bad-call arrival rate, denoted by A*), ap-
proaches zero and the bad-call mean waiting time until defection, de-
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noted by H (), approaches infinity in such a way that their product
(total expected erlangs of bad calls) approaches a finite positive con-
stant x.

The physical motivation for considering the limiting model is that
the actual situation is one in which blocked calls appear infrequently
(relative to total call arrival rates) and tend to remain in the system
for a long time (relative to pTm holding times). The mathematical
motivation is that the limiting model is much easier to analyze than
a model in which the bad-call arrival and departure processes are
represented explicitly.

Preliminary computations using a single marker version of the
analytical model, which represented the bad-call arrival and departure
processes explicitly, showed that different bad-call arrival rates and
waiting times had little effect on dial-tone-delay distributions as long
as the product of the bad-call arrival rate and bad-call waiting time
remained constant. In addition, these distributions were all quite
close to those obtained from the limiting form of the model. These
results make sense intuitively because bad calls simply eycle through
the system, absorbing some pDTM uses while present, and eventually
defect; thus, what should matter is mainly the distribution of the
number of bad calls in the system at any time. In the version of the
analytical model discussed in this appendix, the blocked call queue
length distribution is shown to be a truncated Poisson with mean
equal to the total erlangs of bad ealls.

Let K be the maximum possible number of bad calls that can be
in the system at any time. In all computations using realistic No. 5
crossbar busy-hour input parameters, the expected erlangs of bad
calls have been low enough that the Poisson probability of more than
five blocked calls being present in a two-marker system has been less
than 10-%. Hence, K may be taken to be 5. (Note that in an actual
No. 5 crossbar office, the maximum number of bad calls that can be
in the system at any time is trivially bounded above by the number of
subseriber line terminations in the office.)

Let S.(p) denote the saturation load of the nth model. Since no
more than K blocked calls can be in the queue at any time, in the
nth model, we have 2p = S (p) = S.(p) = SP(p) = 2p for all n;
hence, S, (p) = 2p. Thus, the saturation load of the nth model is the
same as the saturation load of the limiting model. For the nth model,
let

X = number of good calls in the queue at time mT,

Y™ (mT) = number of bad calls in the queue at time mT,
Palk, ) = P{Y®[(m + 1)T] = 1| Y™ (mT) = k}.
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In the nth model, ¥ (¢}, the bad-call population size at time?,is a
finite-state space birth-and-death process with birth-and-death rates

AP = A 0=Em=K—-1

=0 otherwise
m
w = fm 0=m=K
=0 otherwise.

Since the queuing model is in discrete time, only the values of ¥ (™ (f)
at t = m7T are of interest. The transition matrix p.(k, ) is given by

— oTA
p_e n’

where A, is the infinitesimal generator matrix of the birth-and-death
process ¥ (™. (See Ref. 15.) Since limp . A = 0and lim,_,, H™ =,
it follows that lim,.., A, = 0. Hence,
lim pn(k, l) = 8 (25)
foreach k,1=0,1, ---, K, where 6,; = 0for k ## [ and 8z = 1.
We also have

P{X{a = j, Y®[(m + 1T] = | X2 =4, Y@n = k}
= pﬂ(k; Z)Pk(?’: j):
where P (<, 7) is given by (1) and (2). Since the nth model has satura-

tion load 2p, we know that a stationary queue length distribution
wn(7, 1) exists for A/2p < 1 and satisfies the equation

K j+2
™5, = % 2 7, Dpalk, DPLG, 5). (26)

Let (-, 1) b;e the marginal equilibrium distribution of the number of
bad calls in the system. Then

o0

7a(, 0 = £ mli D (@)
and by (26)
ma() = & mali Dpalk, ) 5 PaGi, 9
K
= % m(c, BpallsD. (28)

Hence, r.(-, k) is the stationary distribution of a Markov chain whose
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transition matrix is p,(k, ). Using standard theorems on birth-and-
death processes (Ref. 10) it follows that, for all valuesof [ = 0,1,-- -, K

wa(+, k) = lim PLY (1) = k| Y™(0) =[]

?

-1 ...k
C.t..Kxn
== 0=k=K
=0 otherwise, (29)
where
I, = ARV H (n)
and
K E
_ In
CznK = Lgﬂk!
We will now show that
-1k
lim 7, (j, k) = Z55 P,(j) (30)

forallk = 0,1, ---, Kandall j = 0,1, - - -, where P, is the stationary
distribution of good-call queue length in the model with % bad calls
permanently present in the system. The right-hand side of (30) is the
queue-length distribution for good and bad calls in the limiting model.

Let X (" denote the number of good calls in the queue for the nth
model in equilibrium. Since the number of bad calls present in the
nth model is always less than or equal to K for all n, it is clear on
intuitive grounds and can be proved rigorously using stochastic order-
ing that

P[X™ 2 j]1£ 3 Px(3) (31)

i=j
for each j.
To prove (30), it suffices to show that if =.. is any subsequence of
m for which lim,: 7. (j, k) = =(j, k) exists for each j and k, then
. . :+2 . . -
(@) 7(j, k) = X m(i, k)Pi(4, J)

=0

and

) % w0 b) =

To see that (i) and (77) are sufficient, note that, by uniqueness of
the stationary distribution, Py, (¢} and (i7) imply

cIazk

7(j, B) = ZEE Py(j). (32)
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Since 0 < 7,(J, k) = 1 for all j and k, every subsequence r,- contains
a further subsequence . for which the limit lim,. 7, (J, k) exists
for all j and k. In view of the above discussion, all of these subse-
quences have the same limit, namely the right-hand side of (32).
Equation (30) follows.

We now prove (z) and (7). Condition () follows immediately from
(25) and (26). To see that (7z) holds, we proceed in two steps. First,
note that by (27), (29), and Fatou’s lemma,

@ -1 .k
. CzgL

<
E (R =7

for each k. If any of the above inequalities were strict, then

E o
> (k) <L
k=0 =0
Hence, to prove (7) it suffices to show
w K .
2 2 w(k) 21,

=0 k=0

i.e., we must show that, in the limit, no probability mass escapes to
infinity. Let ¢ > 0 and choose j, such that

3 Pr(j) < e
=20
Then, using eq. (31),
v K o K
2 Xtk =2 X ¥ w(i,k)
0

i=0 k=0 i=0 k=i

jo K
—lm Y 3w (i, k)

n!! i=0 k=0

= lim PLX™" 5 j]

(\%

jo

2 Px(2)
i=0
=1—e

Thus, (72) holds and eq. (30) follows.

It can be readily shown, using the above results together with
standard theorems, that the delay probabilities in the nth model
converge to those in the limiting model. (See Refs. 16 and 17.)
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