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Optimum Timing Phase for an Infinite Equalizer.
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A digital equalizer for data transmission linearly combines a sequence
of samples [b(r + kt), k = 0, £1, - - - ] of the received data wave to miti-
gate the effects of intersymbol interference and noise. A natural question is,
How will the performance of such a system depend on the timing phase T,
0+=T?

We examine this problem in considerable detail for an infinite equalizer
using a mean-square measure of performance. Excess bandwidth results
in a significant difference in performance between the best and worst timing
phase. Under practical noise conditions, it is estimated that the excess
bandwidth must be down to 1 or 2 percent before the timing effect becomes
insignificant. With a 10-percent roll-off, a 3-dB penalty can be incurred
by choosing a bad timing epoch.

Our main result is that under conditions likely to be encountered on
channels stmilar to voiceband lelephone channels, the optimum sampling
instants will be accurately approximated by the consecutive marima and
minima of the sine wave that result when an alternating sequence of posi-
tive and negative pulses (dotting sequence) is transmitted. There are no
additional local minima of the minimum mean-square error as the timing
phase is varied.

I. INTRODUCTION
We consider a noisy, random, baseband pulse train,

b(t) = X anz(t — nT) + n(d), 1

where z(t) is the channel (or channel front-end filter) impulse response
and the a, are independent binary data which take values &1 with
equal probability. The additive zero mean gaussian noise process is
denoted by n(t). Under very ideal conditions, the pulse z(t) would be
of the form (sin «t/T)/(xt/T), and sampling (1) at time ¢=£T would
yield the quantity a; 4+ n(kT). Under more realistic conditions, the
brick-wall shape of the above pulse is difficult to approximate in prac-
tice, and a smoother characteristic in the frequency domain is taken as
the ideal. Using some excess bandwidth (i.e., the Fourier transform
extends beyond =/T rad/s) still, in principle, allows the ideal set of
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samples expressed by
2(0) =1, zkT) =0, k=0;

but this ideal set is never exactly attained in practice because of un-
known channel distortion. One possible measure of distortion could be

2 2 (kT)
ket
z*(0)
Actually, since there is now nothing special about choosing ¢ = 0 as
the sampling instant for z(f), an even more appropriate measure

would be
> 22(r + kT)

¥=0
e SR
The above measure allows us to choose a best sampling epoch r before
declaring how badly the signal has been distorted. However, any direct
consideration of the above type of criterion seems to result in con-
siderable mathematical difficulty. Also, in practice, one is more in-
terested in the situation where the set of digital samples {z(r + £T)},
or rather their noisy versions {b(r + £T)}, are linearly combined by
an equalizer attempting to undo the channel distortion. It is the dis-
tortion at the output of the equalizer that is of practical interest.
Remarkably enough, it is this distortion measured at the output of an
infinite equalizer that is most easily studied with regard to its properties
as a function of timing phase. A discussion of this dependence follows.
We begin by making more precise some of our general remarks.
The received signal b(¢) is to be equalized by passing it through a
(2N + 1) tap transversal filter to yield for the signal portion of the
output a waveform

q(t) = X ah(t — nT), (2)
where
h(t) = f_; enzt — nT). 3)

The coefficients ¢, are the tap weights of the equalizer and are adjusted
to optimize some measure of performance. Since decisions are based
on the sampled output ¢(¢), one usually discusses the problem by fixing
a sampling epoch r and denotes the sampled values of x(f) and h(f)
by zx and hg, respectively. That is,
z(r + kT) = zx
¥ k=---—1,01,---. (4
hir + kT) = hi = Y cCaZi-n

==
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We assume throughout that the tap weights are chosen to minimize
the expression

&= 3" hi+ (ho— 1)+ a3, (5)
n=—0c0
where o2 is the sampled noise variance at the output of the equalizer,
and the prime on the summation indicates deletion of the n = 0 term.
Letting R, = R_. be the (discrete) correlation function of the sampled
noise at the input to the equalizer, we see that

N

o= 2 cijxck (6)
j. k=—N
and
N N
= ¥ ci(Ri+ A —2 L e+ 1, (7
ik=—N n=—N

where the channel correlation matrix,

An_m = ;,Z ZTr—nTk—m, (8)
has been introduced. The optimum tap settings (copt)n are determined
by differentiating & with respect to the tap gains. This yields a linear
system of equations for the best tap gains which, in an obvious matrix-
vector notation, reads

(A + R)eope = . (9)
Using this in (7), we then obtain for the minimum mean-square error
& =1 — ho (10)

Finally, we may state our problem. The above discussion of known
results was in terms of a fixed timing epoch r. Here we shall determine
for some special but important cases the value of 7, which will minimize
8%, as defined above. Instead of resorting to a direct numerical in-
version of (9), we introduce the approximation of treating the equalizer
as infinite. This approximation aids the analytical inversion of (9) and
thereby directly leads to useful insights concerning the proper timing
epoch. It will be seen that in the N = « limit, timing recovery is only a
problem when the received pulse z(f) has a bandwidth greater than
1/2T Hz, a result that could have been guessed from the sampling
theorem. With the practical situation of excess bandwidth, there is the
possibility that a badly chosen timing phase will considerably de-
grade performance. Only when there is very little excess bandwidth,
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say of the order of one percent, is the timing unimportant in practice.
Our main result can be best stated in terms of the pure sine wave that
appears at the channel output (sampler input) when the sequence
a, = (—1)* (dotting sequence) is transmitted. The optimum sampling
instants are, under certain conditions, the consecutive maxima and
minima of this wave. Furthermore, if the timing phase is varied, no
extraneous local minima of the minimum mean-square error (regarded
as a function of timing phase) will appear.

Il. MATHEMATICAL DETERMINATION OF OPTIMUM TIMING PHASE

On comparing (8) and (9), we see that the infinite matrix equation is
in the nature of a convolution and, therefore, is best solved by trans-
form methods. Thus, given a sequence {z.}, we define a transform

Xuw) = T ¥ zaexp (—iwnT), |u| < 7, (11)
with the z; recoverable from X . (w) in the obvious way:
z=2 [ X (w)errdw (12)
P 2w ey O '

This formula shows that, from the impulse-response point of view,
Xeq(w) is, in fact, the Nyquist equivalent spectrum of x(f). That is,
if X (w) is the Fourier transform of z(¢), then

od 2
Xaw) = £ X(v—kF), lul s (13)
In this transform language, the solution of (9) is*
*
Cw) = — Xl (14)
Roq(w) + i [ Xeq(w)]?
In writing this, we have made use of (8) to write
1
A(’W) = 71'1' IXeq('w)lg- (15)
Equation (4) gives the relation
2
H(w) = 50 Xg(u) = —1Keal®)] 16)

Rea(®) + 75 [ Xea) |

* We will not always use the subscript ‘‘eq” on the transform (11) when there does
not exist an associated impulse response in a natural way.
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and, hence, from (10) and the recovery formula for ko, we have

T /T R(w)
g — dw. (17)
21r [—(I’IT) Req(w) + IT 1Xeq(w) P

Let us now explicitly put timing recovery into this solution for &3,,.
In evaluating the above formula, one would naturally calculate X (w),
possibly by choosing ¢t = 0 as the peak of the pulse z(¢), and calculate
X.q(w) by (13). Any other timing epoch 7 can be obtained by replacing
X (w) by X (w) exp (fwr). This corresponds to sampling the original
z(t) at t = 7 instead of ¢ = 0; in general, X ¢q(w) will depend on 7.

For further specifics, we limit our discussion to small but nonzero
excess bandwidth, letting @ denote the fraction of excess bandwidth.
Thus, (1 4+ a)x/T is the total bandwidth (in rad/s) occupied by the
baseband pulse, @ < 1. Further, we take the noise at the input to the
equalizer to be independent from sample to sample and to have vari-
ance o7; thus,

Reg(w) = To% (18)
Equation (17) thus becomes
2 , T miT dw
min = Tig_ o7 f r
«In & lX-m("w)I2
T [T (1—a) d,w
= ag._f
2r Joxim (1) 2+4 [Xeq(wﬂ
/T
+20t5 [ du (19)
27

Ed —a ]-
+(x/T) (1 )021 + T’i LXeq(w)P

We note that the first term in the right-hand side of (19) is not affected
by timing phase since the portion of |Xeq(w)| for |w| £ «/T(1 — a)
is not affected, whereas the second term, on account of the foldover
from excess bandwidth, is affected.*

To obtain estimates regarding the magnitude of the effects of poor
timing phase, we consider the case of an undisturbed pulse z(f) having
a transform X (w) that is equal to 7 for 0 £ w £ (1 — a)7/T and
decreases linearly to zero for (1 — a)r/T = w = (1 + a)x/T, with
X (—w) = X (w). If this pulse is sampled at { = 0, the “main bang”
has value unity, and there is no intersymbol interference. From (19),
the minimum mean-square error is ¢%(1 + ¢3) & o} for small noise.

* Of course, if there is no noise, the equalizer inverts Xeq(w) (if the latter is not Zero)
without any penalty, and the question of timing is moot.
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If, however, it is sampled at » = T/2, we have

T2, 0§'w§(1—a)%

| X oq(w) |2 = (20)
T 7 \? T T
az—ﬁ(w“ﬁv)’ (l-—a)pswsq

and, hence, with the infinite equalizer doing the best it can, we obtain
from (19) for small noise
2w = (1 — a)o? 4 ao; tan™? Ul. (21)

m(1—a)a=:+12'

ac;.

If for binary transmission we assume a 10 or 15 percent roll-off (« = 0.1
or 0.15) and ¢% = 0.01 to 0.04, we see that a degradation of from 2 dB
to 4 dB might be encountered. Only if the roll-off is of the order of
1 or 2 percent is the effect of timing negligible for the value of noise

power considered here.
We now concentrate further attention on the second term of (19).

We introduce a variable

p=5[w—%] (22)

T

for #/T(1 —a) £ w = 7/T(1 + a); thus, —1 £ up £ 1. When w and
u are related by (22), we define a nonnegative amplitude function R (w)
and a real phase function ¢(u) by the relation

X(w) = B(pe*®, R(u) 2 0. (23)

Further, we introduce the even and odd parts of amplitude and phase
about the Nyquist frequency w = #/T(u = 0):

R(u) = R.(s) + Ro(w)
Ru() = Ru(—1); Ro(w) = —Ro(—1); 24)
(1) = @o(u) + @olu)
eo(u) = ge(—n); 0o(w) = —eo(—p). (25)
Thus, for —1 = u = 0, we calculate
| Xoq(u) |* = 4[ (R} — R}) cos® ¢, + RE], (26)

where, for notational simplicity, the u dependence of the function on
the right has not been shown. Using (26), the second term S of (19) is
written

8 = oot /o . du : (27)
1424 N [(R% — R}) cos? ¢, + R3]
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A number of remarks concerning (27) are in order.

(i) The odd component of phase distortion about the Nyquist
frequency does not influence “foldover” or the timing recovery
problem.

(#7) From the positivity of R(u), we note that (R? — R3) = 0. We
assume that [R2(u) — R}(z)] > 0 on some interval contained
in—1<u=<0.

(#77) Relative to an arbitrarily selected sampling instant, called zero,
the timing phase 7 enters ¢, through

Pe = %T + @d(u)s (28)

where ,(u) is the phase characteristic for » = 0. It is evident
that the mean-square error is a periodic function of r with
period T. Physically, if  is displaced by an integer (k) mul-
tiple of T, the “center tap” will be shifted & units down the
equalizer.

(i) In many situations, @, can, to a first approximation, be treated
as a constant. A recent survey' shows that an “average” tele-
phone channel has an envelope delay that changes by 312 ps
from 2850 Hz to 3000 Hz. Assuming this to be an excess band-
width region and the change to be due entirely to a quadratic
term in the phase curve yields a phase change of 8.4 degrees.*

We now come to the main point of this section, which is to recognize
where the optimum timing phase is. This will be done with the sim-
plifying assumption

7. = 0 = const. (29)
Since S is a smooth periodic function of 7, we look for a minimum by
examining solutions of

as
= =o, (30)
that is,
0 2 _ p2
sin 2, f (% — R)du =0. (31)

- {cr% + %[(RE — R}) cos® ¢, + Rﬁjr

From (#7) we deduce that the integral is strictly positive and, hence,
the only solutions are those of

sin 2¢, = 0. (32)

* This is meant to be a rough estimate only. No attempt was made to separate out
even and odd contributions to the change in phase. Low-end envelope delay is more
severe and this separation should be carried out so as to obtain a not-too-pessimistic
answer.
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Thus, because of periodicity the only solutions 7 of interest may be
written

%f+s=0 (33a)

or

FTHo+5=0. (33b)
By taking second derivatives of S with respect to =, we see that the
first of these, namely (33a), corresponds to the minimum of S while
the second solution is a maximum. In addition to giving a description
of optimum timing phase, our discussion has also shown that for
¢, = const. there are no other local minima of &%, as 7 is varied.* Thus,
a gradient search for the optimum r is feasible. More precisely, we
have shown this for the quadratic Nyquist I criterion (5), and have
assumed that the search is slow in the sense that the equalizer ‘“‘settles
down”’ before the next step in r is taken.

Equation (33a) provides a mathematical description of the optimum
timing phase 7 in terms of the phase # of the channel at the Nyquist
frequency =/T. It is useful to give a more physical interpretation of
this result. Consider the transmission of the special sequence a,
= (—1)" From (1), we receive the signal

> (=1)mx(t — nT),

n=o0

which has as its Fourier transform
X (w) _Z (=1)"exp (—iwnT)

= X (w) ;,;i.. exp (—iw2kT) — X (w) exp (—iwT) 3 exp (—iw2kT)

=2T‘H'X(w)ia(w_%r)—%’r)((w)exp(-iwi") _fwa(w—"—;f)

=%X(w)kgd:d6(w—k%)-

Hence, if X (w) is band-limited to a bandwidth less than 3x/T, and if
we write X (r/L) = A exp (26), the received signal is

4 it
T A cos ( T + 0)-
Comparing this with (32) and (33a), we see that the optimum timing

* See the appendix for a more general condition under which the existence of a
unique minimum is guaranteed.
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phase is at the successive maxima and minima of the tone that results
when a dotting sequence is transmitted.

Finally, we note that corrections for a small, varying, even compo-
nent of phase distortion about the Nyquist frequency are easy to make.
If we define v by
ilpr +6 =7, (34)
where, again, 0 is the phase at the Nyquist frequency, and if we write
[recalling (28)],

ee(p) = v + e(u), €(0) =0,

where e(u) is assumed small, then

" (RI— RDelw) o
. AB&GW%W

Y - fﬂ (Rz ) q )
1 {od + @R

35)

where y* is the approximate value of vy for optimum timing phase 7.
We see v* is bounded in magnitude by max e(u), but in general it will
be a fraction of this. Assuming max e(u) corresponds to 9 degrees, this
rough bound suggests that a correction of at most 5 percent of a sym-
bol interval would be required.

For a more refined estimate we take the following

R.(u) =1, Ro(p) =g, and e(u) = e’ (36)

Note that R2 — R = (R, — Ro) (Re + Ro) = R(u)R(—p). Since E(1)
will vanish by the design of the signal, R? — R will be zero at p = —1
and, thus, no multiplicative constant is included in Ro(s). Using (36)
in (35) yields

[ a- u’)n’du

37)
] (1 — u)dp

Tt m

Thus an estimate of } of the even part of the phase variation over the
roll-off band results for the correction term to (34). This would appear
to be a negligible effect.

lll. DISCUSSION FOR PASSBAND TRANSMISSION

We now generalize the foregoing discussion to treat a am passband
signal format. We assume a transmitted signal

[Z a.p(t — nT)] cos wt — [T bap(t — nT)] sin we, (38)
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where (a.) and (b,) are independent digits. Let the impulse response
of the linear distortion medium m () be written as

m(t) = 2F(¢) cos wit — 2F4(t) sin w,t. (39)

Further, denote the convolution of p(f) with F1(¢) and F1(t) by z(i)
and y (), i.e.,
p()*F1(t) = z(t) p)*F:(t) = y(2). (40)

Then the received signal is

r(t) = cos wet[ 3 anz(t — nT) — 2 bay(t — nT)]
— sin wl[ Y any(t — nT) + X bax(t — nT)] + n(t), (41)

where n(f) represents additive gaussian noise. The waveform r(¢) is then
linearly filtered by a passband equalizer, whose output can be de-
scribed by replacing z(t) by g(t) and y(f) by h(t), where

g(t) = _f:‘,v enz(t — nT) — _Zj:’v d.y(t — aT)
and (42)
ht) = _zz duz(t — nT) + _Zi:rc,,y(t — nT).

Further, if the input noise n(f) has correlation R(t), then the output

noise has variance
o2 = ¢tRc + d+Rd, (43)

where R;; = R[ (1 — j)T]. We adopt as our criterion

8= N+ —g+ > K+ dd (44)

=m0

and seek to minimize this quantity. Analogously with the baseband
case we define two baseband autocorrelation functions [corresponding
to z(¢) and y(¢) in (41)] by

0
Anm = An—m = Z Tjnlj—m

j=—o0

and (45)

Bnm = Bn—m = Z Y j—nY j—m.

j=—o0
Further, a cross-correlation matrix between z(t) and y(t), namely,

Knm = Kn-.-m = —Kmﬂ. = EJ (xj—nyj—m - xj—fﬂyf—ﬂ)' (46)
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If, as before, we write (z), = z_n, (¥)» = y—n, then
8 = c¢t(A + B)e + dt(A + B)d — 2¢ctKd — 2¢-x + 2d-y
+ 1 4+ ¢tRe + d*Rd. (47)

If one defines the matrix @ = A + B + R, the equations for the
optimum taps are

z (Qﬂ—mcm - Knﬂmdm) = T-n

4.
Y (Quomim + Knomtm) = —Y-n (48)
and
81211111 =1- (qﬂ)opt. =1-— Copt* T + dopt"y- (49)
We introduce the same transform as before, noting
2 2
Qu) = Kol * | YealW* L oy = g-w)  50)

and

K@) = 7, [X20(@)Veqt) — Xea() V()] = —K (). (51)

Straightforward solution of (48) and (49) yields
T =7 Q(w)E (w)
2 ,[—(:r,'T) Q*(w) + K*(w) dw
_T = [Q(w) — K (w)]R(w) dw
2 J_oxm Q*(w) + K*(w)

._I T R(w)
= [ rm @) + K@) > 6

where the oddness of K (w) [and evenness of @ (w) and E(w)] has been
used. If we formally introduce S(w) by

Sw) = X(w) + ¥ (w), (53)

2 -
8mln -

and
Seq(w) = Xeq(w) + i‘qu(w): (54)
we see that

|Seq(w) [* = [Xea(w) 4 1¥eq(w) JLXG(w) — 1¥e(w)]

| Xeq(w) [? + [¥Veq(w)|?
+ 1Y oq (0) Xoq(w) — 1 X eq(w) Yoo (w)

= T[A(w) + B(w) + iK(w)], (55)
or, briefly,
Q+z’K=|S—,E§‘I—2+R. (56)
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Thus,

/T
& = % f 3 (wﬂ(zw) duw. (57)
—(r|T) eqT + R(’U))

This formula has a close analogy to the baseband formula when we
realize that the overall channel (transmitting and distorting filter)
has frequency characteristic

C(w) = 8w — w) + 38*(—w — w.). (58)

Thus, in terms of the overall channel, (57) has a straightforward
interpretation. One uses a formula similar to the baseband version (17)
except that now one forms an equivalent Nyquist characteristic using
twice the positive frequency part of the passband channel and treats
the carrier frequency as zero. It is essential to note that the transfer
characteristic from which S,,(w) is formed no longer needs to have
even amplitude and odd phase about ‘‘zero’” as would be required in
the baseband case. In particular, the envelope delays at the two band
edges can have an effect on timing phase. In practical cases, the carrier
frequency can be chosen to give equal envelope delays, thus minimizing
the effects of odd phase about the band edges. However, in doing this,
the amplitude effects may have worsened the situation. The main
point to be emphasized here is the interplay of carrier placement and
bit timing with an excess bandwidth system.

Regarding the description of optimum timing phase, let ¢* be the
channel phase at w = w, + x/T, and assume these phases to be con-
stant over their respective roll-off regions. Then, for any reasonable
amplitude distortions, the unique best sampling instant 7 is given by

FrHier—¢) =0 (59)

Under these conditions, we again have that there exists but one local
minimum.
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APPENDIX
Uniqueness of Local Minimum of Mean-Square Error for Small .(x)

The interesting portion of the mean-square error is given by (27),
which is of the form
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_ ! dx
10 = [ s Tt e T T e @1 (60)

with a(z) and b(z) positive. If ¢(z) is always small, then any local
minimum of (60) has to occur when v is small. Thus, if | ¢(z)| < 7/8,
we see that the derivative

[ b(@)sin[2y + 20(@)]
' = [, 1a@) 4 00 07 Ty + ¢@IFE (61)

can only vanish if |y| < =/8 or |= — v| < #/8, for otherwise the
integrand always has the same sign. Let us investigate the solution
in |y| < /8 in more detail. Taking another derivative gives

" _ 1 bcos (2v + 2¢)
¢ = 2fn % e+ boost (v + ) F

1 b?sin? (2v + 2¢)
t2f e T

which is positive. Hence, there can be only one solution of ¢'(y) = 0
for |v| < x/8 (we cannot have two minima without a maximum in
between). Likewise, if | ¢(z)| < /8, there is precisely one maximum
of g(v), and it occurs in the range |r — y| < =/8.

(62)
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