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We consider the problem of source coding subject to a fidelity criterion
Jor a simple network connecting a single source with two receivers via a
common channel and two private channels. The region of attainable rates
is formulated as an information-theorelic minimization. Several upper
and lower bounds are developed and shown to actually yield a portion of
the desired region in certain cases.

I. INTRODUCTION

1.1 Informal statement of the problem

To fix ideas, let us consider the following problem. Suppose that we
are given a data source whose output is a sequence U, U,, - -, that
appears at the source output at the rate of 1 per second. The [U,}&
is a sequence of independent copies of the discrete random variable
U, with probability distribution Pr {U = u} = Q(u), u € U a finite
set. Our task is to transmit this data sequence over a communication
channel having a capacity of C bits per second so that it is represented
at the output as U;, Us, - - -, €EU. We assume that the data are trans-
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mitted over the channel in blocks of length n, and allow processing at
both the channel input and output (encoding and decoding). We define
the “error rate” as

A=ELS dawu., O, (12)
N E=1
where
0, u=1,
du(u, #) = Y (1b)

is the Hamming metric. Thus, A is the average fraction of data digits
delivered in error.

The question we pose is: What is the smallest capacity C such that
(for n sufficiently large) we can transmit the data through the channel
and achieve an arbitrarily small A? The well-known answer to the
question is that the minimum capacity C is the entropy H(U), de-
fined by*

HU) = — X Q(u)log Qu). (2)
uEU

Now consider the case where the random variable U is a pair (X, Y)
where 2 € X and y € Y. We have

Qu) = Q(z,y) =Pr{X ==xY =yj
and
H{U)=HX,Y)=— EQ(% y) log Q(z, v).

Setting U = (X, V), A [as defined in (1)] is the fraction of pairs
delivered in error. Thus, we conclude that H(X, ¥) is the minimum
channel capacity required to transmit the source output { (X4, Yi)}
with the error rate A arbitrarily small.

Next, let us assume that, as above, U = (X, ¥), but that it is only
required to transmit the sequence {X;} through a channel having a
capacity Cs, and to deliver it at the channel output as {X3}. Let

1 n
AJ[ = E—' Z dH(X};, Xk)
n k=1
be the error rate for a system with block coding of block length n.
The special assumption here is that the random sequence {Y:}i-; is

available to the encoder and the decoder. See Fig. 1.

* All logarithms in this paper are assumed to be taken to the base 2.
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Fig. 1—Source coding with side information.

Again we ask: What is the minimum capacity C, required to trans-
mit {X,:} with Ax arbitrarily small (with n sufficiently large)? The
answer? is that the minimum C, is the “conditional entropy,”
H(X|Y), defined by

HX|Y) = = £ Q, 1) log DoY)

= — Zy‘, Qr(y)fg Qxiv(z|y) log @xiv(z|y)],  (3a)

where
Qr(y) =Pr{Y =y} = X Q) (3b)
teX
and
Qxir(ely) = L&Y prix = o|¥ = ). (30)
Qv(y)

Note that H(X|Y) + H(Y) = H(X, Y).

Let us remark that the above still holds if, instead of deliver-
ing {Y:} to the decoder, we delivered a sequence |V}, where
Ay = E(1/n)¥3-1du(Y, ¥i) can be made arbitrarily small. Thus,
the capacity of the “side channel” must be at least H(Y).

Finally, we turn our attention to the problem to which this paper is
devoted. Let the source output be { (X, Vi) }=1, as above. We assume
here, however, that there are fwo receivers. Receiver 1 is interested in
obtaining a reproduction {X,} of the sequence { X}, and receiver 2 is
interested in obtaining a reproduction {¥:} of the sequence {Yi}.
Assume further that a network consisting of three channels is avail-
able, as in Fig. 2. The first of these channels is a “common” channel
(with capacity C) that connects the transmitter to both receivers, and
the other two are “private” channels that connect the transmitter to
each of the two receivers (with capacities C; and C,). Assuming that
we use block coding with block length n, the error rates are

Ay = EL S dp(x,, %) (4a)
M r=1
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Fig. 2—Source coding for a network.

and

Ay = BL S du(ve, 7). (4b)
NEk=1

We say that a “rate-triple” (R,, B, R») is achievable if, for any triple
of channel capacities (Cy, Cy, C2) for which C; > R; (1 = 0,1, 2) and
any ¢ > 0, transmission over the network of Fig. 2 (with these
capacities) is possible (with n sufficiently large) with Ax, Ay = e
Our problem is the determination of the set & of achievable rate-triples.

Before stating our results, we digress to give a formal and precise
statement of the problem as well as some other specialized information.
This digression can be omitted by the casual reader.

1.2 Digression—formal statement of the problem

Let { (X, ¥1)}i=1 be a sequence of independent drawings of a pair
of random variables (X, V), X € &, ¥ € Y. X and <Y are finite sets
and Pr{X ==z,V =y} =Q(z,¥), € X, y € Y. The marginal
distributions are

%@ = T 0@y smd @) = T Q).

vey

Often, when the random variables are clear from the context, we write
Qx(x) as @(x), ete. Define, form = 1, 2, - - -, the set

Im={07112:"'1m_1}' (5)
An encoder with parameters (n, Mo, M., M,) is a mapping

Fe: X% X Yr — Iary X Tary, X Iag, (6)
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Given an encoder, a decoder is a pair of mappings

f80:Ingy X Ingy— X (7a)
8 Ingy X Taey— Y™ (7b)

An encoder-decoder with parameters (n, Mo, M,, M,) is applied as
follows. Let
fe(X,Y) = (8o, 8y, 82), (8a)

where
X= (Xl,'--,X,,) and Y= (Yl,“',Y,,).
Then let

X = 5°(So, Su), (8b)
Y = 798, 8y). (8¢c)
The resulting error rate is
A = max (Ax, Ay), (9a)
where
Ax = B § dn(Xs, 1), (9b)
a-p) ké da(¥e, T, (9¢)

dy(-, -) is defined by (1b), and X, ¥ are the kth coordinate of X
and Y, respectively. The Hamming distance Dy (u, v) between the
n-vectors u and v is the number of positions in which u and v differ.
Thus, Ax = E(1/2)Dr(X,Y) and Ay = E(1/0)Dy(Y, ¥).

The correspondence between the encoder-decoder pair (or ‘“code’)
as defined here and the communication system of Fig. 2 should be
clear. Note that the capacities of the channels in that diagram must
be at least C; = (1/n)log: M, (i = 0,1, 2).

A triple (R, Ri, R.) is said to be achievable if, for arbitrary
e > 0, there exists (for n sufficiently large) a code with parameters
(n, Mo, My ,M,) with M; < 2»(Rite 4 = (), 1, 2, and error rate A < e
We define ® as the set of achievable rates. Our main problem is to
ascertain the region G.

It follows from the definition that ® is a closed subset of Euclidean
three-space and the ® has the property that

(Ro, By, R2) & ® — (Ro + €0, B1 4 &1, B2 + &) € @&, (10)
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&=0,7=0,1,2 The region & is therefore completely defined by
giving its lower boundary ®, where

(?LT é {Ru, R1, Rz) e ®R: (Ru, Rl, Rz) E @s, (11)
R;2R(:=0,1,2) > R; = Ri(: = 0,1, 2)}.
It follows immediately that ® too is closed.

It can also be verified by a simple “time-sharing”’ argument that ®
is convex (see appendix). This leads us to the following equivalent
formulation of the problem. Let a; = 0,7 = 0, 1, 2 be arbitrary. Then
define

Tl(oto, o, ag) = min (aoRu + a1Ry + asz).

(Rg, Ry, R3) €EQR

Then it follows from the convexity of ® that the lower boundary ®
is the upper envelope of the family of planes > 3a:R; = T1(ao, a1, @2).

We can think of Ti(aq, a1, as) as the minimum cost of transmitting,
using a code with rate-triple (R,, E1, R») over the network of Fig. 2,
when the cost of transmitting a bit per second over the common channel
is a¢ and the costs of transmitting a bit per second over the private
channels to receivers 1 and 2 are «; and as, respectively. Now, since
information sent over the common channel (in Fig. 2) can alternatively
be sent over both private channels, it is never necessary to consider
the case where the sum of the costs of a bit per second on the private
channels a; + a2 < ap, the cost of a bit per second on the common
channel. Similarly, we need never consider the cases where a; > ao, or
a2 > aq, since information transmitted over a private channel can
alternatively be sent over the common channel. Since we can nor-
malize a, as unity, the following theorem should be plausible. A com-
plete proof is given in the appendix.

For R = (R, R1, R;) satisfying B; = 0, and « = (o1, a2) arbitrary,
let the “cost’’ be defined by

C(a, R) = Ro + a1R1 + asz. (12)
With « held fixed, let
T'() = min C(a, R). (13)
RER

The indicated minimum exists because ® is closed. For « arbitrary,
let $(a) be the set of R € ® that achieve T'(e) = C(e, R).
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Theorem 1 :
Ha< U sw),
aca

(%) U 8(e) C @&,
aca’

where the boundary ® is defined in (11), @ is the set of @ = (a1, o) that
satisfy
0faya: =1, artazl,

and @' i3 @ with the elements (0, 1) and (1, 0) deleted.

Remarks:

(1) (0, 1) and (1, 0) are the only pairs in @ with zero elements. Thus,
@ and @' are nearly identical.

(2) The theorem implies that ® is upper envelope in (Rq, R1, Rs)-
space of the family of planes defined by

Ro 4 aaRy + asRs = T(a),
o E Q.

1.3 Upper and lower bounds on ®
1.3.1 Lower bounds

We can immediately give some lower bounds to the region &. We
state them as

Theorem 2: If (Ro, R, R2) € ®, then
(@ Ro+ Ri+ R.2 HX, Y),

(b) Ro+ R, = H(X),

() Ro+ R,z H(Y).

Proof: Suppose that (R, Ri, R:) € ®. Then, for arbitrary ¢ > 0, we
can (for sufficiently large block length n) reproduce {X,}, and { Y}
with arbitrarily small Ax, Ay, with capaecity triple (in Fig. 2)

(Co,C1,Cz) = (Ro+ ¢, R1+ ¢, B2+ ¢).

That is, with a code with M; = 2°¢, ¢ =10, 1, 2,
Since the total capacity of the three channels is Co + C1 + C5, we
must have

Co4 Ci4 Cy = Ry+ R+ Ry + 3¢ 2 H(X, Y).
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Letting ¢ — 0, we have established (a). Inequality (b) follows in an
identical way on observing that the common channel (with capacity
Co) and the private channel to receiver 1 (with capacity C:) together
transmit {X;}. Inequality (¢) follows, similarly.

Let us remark that inequality (a) is an expression of the fact that
a communication system with the constraints imposed in Fig. 2
cannot perform better than in the “best of all possible worlds” situa-
tion in which the receivers can collaborate. It is therefore called the
“Pangloss bound.” The set of triples (R, Ry, R:) that satisfy }_3R:
= H(X, Y) are called the “Pangloss plane.” Corresponding to rate-
triples that lie on the intersection of ® and the Pangloss plane, the
approximately H (X, ¥) bits per second that characterize {X,, Y.}
can be split up into three parts (corresponding to the information
transmitted over the three channels in our network) such that { X, ¥}
can be essentially perfectly reconstructed by the three receivers in the
network. In this situation, the information transmitted over the com-
mon channel represents a kind of “core” process. Furthermore, the
smallest Ry, such that (Ro, B1, R2) € ® and lies on the Pangloss plane
(for some Ri, Rs), can be thought of as a measure of the “common
information” of {X,:} and {¥,}. This point is explored thoroughly in
Ref. 3.

1.3.2 Some easily achievable rate-triples
We now assert that certain rate-triples are achievable.

Theorem 3: The following triples belong to ®:

(A) Ro=H(X,Y), Ri=R,=0

(B) Ro=0, R, = H(X), R, = H(Y)
(C) Ro= H(Y), R, = H(X|Y), R:,=0
(D) Ro=H(X), Ri=0, R,=H(Y|X).

Proof: To achieve (A), simply transmit {(X, ¥:)} over the common
channel (and do not use the private channels). To achieve (B), trans-
mit {X,} and {¥:} over the private channels to receivers 1 and 2,
respectively (and do not use the common channel). To achieve (C),
transmit {¥,} over the common channel (requiring a capacity of
about H(Y)), and deliver { ¥} to receiver 1 to use as side information
for transmitting { X} over the private channel to receiver 1. This will
require a capacity of about H (X|¥). We do not use the private channel
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to receiver 2. Triple (D) can be achieved as in (C) by reversing to roles
of X and V.

Let us remark that points (C) and (D) lie on the Pangloss plane
(i.e., they satisfy relation (a) of Theorem 2 with equality), since
HX)+ H(Y|X)=H(Y)+ H(X|Y) = H(X, Y). Furthermore, be-
cause of the convexity of ®, all triples that are linear combinations of
triples (4) to (D) are also members of ®. The situation is summarized
in Fig. 3. The plane labeled “(a)” in the figure is the Pangloss plane
defined by Ro + Ri + R: = H(X, Y). Theorem 2(a) states that the
region ® (and therefore its lower boundary ®) lies above this plane.
Similarly, Theorem 2(b, ¢) states that & and ® lie above the planes
labeled “(b)”’ and “(¢)” in Fig. 3.

Now the points labeled “4,” “B,” “C,” and “D” in the figure are
points (4) to (D) respectively in Theorem 3. As we mentioned pre-
viously, points C and D (as well as A) lie on plane a. Thus (from the
convexity of ®), the triangle ADC lies in ® and must therefore be part
of the lower boundary ®. Further, since points D and B lie on plane b,

ﬁ
. %
N
m— Y

L
—

V4

Fig. 3—Estimates of rate-region ®.

R2

\\\\\\\\\\\\\\\
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the line DB is part of ®. Similarly, line BC is part ®. Finally, since
points B, C, and D are achievable, so are the points on the triangle
BCD. Thus, the only unknown part of the lower boundary ® lies in the
(upside-down) triangular pyramid with base BCD and apex at point
E (the intersection of planes a, b, ¢). The coordinates of point E are
easily seen to be (Ro, Ry, R:) = [I(X;Y), H(X|Y),H(Y|X)].

Let us remark here that there is one special source distribution
Q(z, y) for which point F is achievable.t In this case, the entire bound-
ary region ® lies on planes a, b, c. This special case is when X, ¥ can
be written X = (X', V), ¥ = (¥, V), where X’ and Y’ are condi-
tionally independent given V. Then I(X,Y) = H(V), H(X|Y)
= H(X'|V), H(Y|X) = H(Y'| V), so that point E is R, = H(V),
R, = H(X'|V), R; = H(Y'| V). Clearly, if, in the system of Fig. 2,
we transmit V over the common channel and X’ and ¥’ over the two
private channels, we can reconstruct X = (X', V) at receiver 1
and ¥ = (Y’, V) at receiver 2. This requires a capacity triple
Co=H(V)4+e¢ Ci=HX'|V)+¢ Co=HY'|V)+ e (>0
arbitrary), so that point is in fact achievable.

We now give a characterization of the region ® (and therefore of ®)
in terms of information theoretic quantities. This characterization is,
in fact, the main result.

1.4 Characterization of ®—the main result

Suppose we are given Q(z,y), * € %, y € Y, an arbitrary prob-
ability function, where %, ¢y are finite. Let @ be the family of prob-
ability functions p(x, y, w), where z € X, y € Y, w E W, and W is
another finite set, for which

> pyw =Qy),z€E X,y E Y. (14)
w W

Each p € @ defines discrete random variables X, ¥, W in an obvious
way. For each p € @, define the subset of Euclidean three-space

®® = {(Ro, Ry, Rs): Ro 2 I(X,Y; W), R.z H(X|W),
R, =2 H(Y|W)}, (15a)
and then let
®* = (U &®)e, (15b)
PE®

" M. Kaplan has shown that, in fact, this special case is the only one for which
point E is achievable.
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where ( )¢ denotes set closure. Then our main result (the proof of
which is given in Section III) is

Theorem 4: ® = ®*.
Remarks:

(1) Let us define @7 as the family of “test channel”” transition proba-
bilities. That is, ®r is the family of all p,(w |z, y) (x € X,y € Y, w EW),
where ‘W is a finite set, and for each (z, %), p.(w|z, ¥) is a probability
function on W. Corresponding to each p. € ®r, we have p(z, y, w)
= Q(z, y)p:(w|z, y) € @. Further, for each p € @, we have p.(w|z, y)
= [p(z, y, w)/Q(x, y)] € ®r. Thus @ isin 1-1 correspondence with ®7.

(2) Since ® is convex, Theorem 4 implies that ®* is convex also.

(3) Theorem 4 can be invoked to show that T'(e) defined in (13) is
also given by

T(e) = :g [I(X,Y; W) + e H(X|W) + axH(Y|W)].  (16)

Thus, from Theorem 1, the lower boundary ®, and therefore ®, is
essentially determined by T'(e) given by (16).

(4) Theorems 2 and 3 can be verified easily by using Theorem 4.
Thus, if (Re, R1, R2) € ®, from Theorem 4 for arbitrary ¢ > 0 we can
find a triple of random variables X, ¥, W such that

Ro+Ri+RZIX,V; W)+ HX|W)+HY|W)— e
=HX,V)+[HX|W)+ HY|W) —H(X,Y|W)] — ¢
> H(X,Y) — e H(X,Y), ase—0. (17)

This is Theorem 2(a). The second inequality in (17) follows from the
fact that the entropy of a pair of random variables is less than the sum
of the respective entropies. Part (b) of Theorem 2 follows from

I(X,V; W) + HX|W) = I(X; W) + [(Y; W|X)
+HX|W) 2 I(X; W)+ HX|W) = HX). (18)

The first equality in (18) follows from a standard identity [Ref. 4,
Eq. (2.2.29)].

Theorem 3 follows from Theorem 4 on taking W as follows: (A4)

W=(X,Y),BW=0(C)W=Y,(D)W=X.

(5) Although Theorem 4 characterizes ® and @ by an information
theoretic minimization, it must be emphaswed that the minimization
is not, in general, easy. In fact, there is no nontrivial case for which
we have succeeded in calculating the entire boundary ® analytically.
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Its major utility at this point has been in finding upper bounds on ®
by guessing at a p or p. and calculating the corresponding triple
[I(X,Y; W), H(X|W), H(Y|W)], which must lie above ®. See the
example below. The problem of computation of ® both analytically
and numerically is still open.t

(6) For p € @, we can define the quantities

ﬂzy(w)'__Pr{X:x:Yzy’sz}r rtEX,yEe Ywew,

which can be thought of as the transition probabilities of the “backward
test channel.” For a given (z, y), we can think of 8;, = 8..,(W) as a
random variable. Of course, 8., must satisfy

.Bxu = 0, (19&)
2 By =1, (19b)

and
EB., = Q(z, y), (19¢)

where the expectation is taken over the distribution for W. Further,
IX,Y;W)=H(X,Y)-HX,Y|W)=H(X,Y)

— B Buylog L
Iy

2
.B:ny ? ( Oa')

HX|W) = B g log gy, H(Y|W) = BX 67 log 5, (20b)
where
B = ;5” =Pr{X =z|W}, and 8P = Z::.Bzu
=Pr{Y = y|W}, (20c)

and the expectation is taken over the distribution for W. Using this
idea, it is possible to characterize, for example, T'(e) as follows (see
Ref. 3, for a precise proof of this characterization). Given Q(z, y),
rE X, y € Y, define B as the family of collections of random vari-
ables, {8.,}, * € X, y € VY, which satisfy (19). Then

T(e) = min [[(X, Y; W) 4+ el (X| W) + a:H (Y |W)],

T One reason for the difficulty is that I(X, V; W) + a.H(X|W) + aH (Y |W) is
apparently neither convex nor concave in p,.
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where I(X, Y; W), H(X|W), H(Y|W) are given by (20) and the
minimum (which can be shown to exist) is over all sets {8.,} in ®.

This characterization may have value in the computation problem,
since the quantities in (20) are linear functions of the joint distribution
function for the {8.,} and the constraints of (19) are also linear in-
equalities in this distribution function. Thus, calculation of T'(e) is a
linear programming problem.

(7) If p € @ is such that X and Y are conditionally independent
given W, then H(X,Y|W) = H(X|W) + H(Y|W). Thus, with
Ry=I(X,Y;W),Ri= HX|W), R, = H(Y|W),

Ry+Ri+R:=H(X,Y) - HX,Y|W)+ HX|W) + HY|W)
= H(X,Y),

and (R,, By, B:) € ® and lies on the Pangloss plane. Reference 3
shows that this class of triples (corresponding to a p € ®, with X, ¥
conditionally independent given W) completely characterizes the inter-
section of ® and the Pangloss plane.

1.5 An example

As an example of the preceding, let us consider the special case where
the source is the ‘“‘doubly symmetric binary source” (DSBS), where
X =9Y=101}, and

Q(I) y) = %{1 - pD)BJ-y + %PO(I - sw.y): T, Yy = Or 1, (21)

and the parameter p, satisfies 0 = po = 4. We can think of X as being
an unbiased binary input into a binary symmetric channel (BSC) with
crossover probability po, and Y as being the corresponding output,
or vice versa. To get a clearer picture of the set of achievable rates ®,
let us restrict ourselves to the plane in (R, Ri, Rs)-space, where
R, = R,. The intersection of ®& and this plane can be plotted in a two-
dimensional picture.

Let us first take a look at the implications of Theorems 2 and 3. In
this source,

H(X) =H(Y) =1, H(XI|Y)=H(Y|X) = hipo)

and

H(X,Y) = H(X) + HY|X) = 1 + h(po),

where
h(X) = —xlog A — (1 — X) log (1 — A), 0=Xx=1 (22

is the entropy function. [We take A(0) = A(1) = 1.] With R, = R,,
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Theorem 2 yields
Ro+ 2R, =2 1 + h(po), (23a)
Ro+ R 21 (23b)
Thus, ® and therefore the lower boundary ® must lie above the lines
labeled @ and b in Fig. 4.

Now Theorem 3 implies that points A[Ro, = 1 + h(po), R1 = 0],
and B(Rq = 0, R, = 1) are achievable, so that any point on the line
connecting them is also achievable. But we can do better. Let us drop for
a moment the requirement that By = R,. From Theorem 3, C and D, the
points [Ry = 1, Ry = h(py), R = 0]and [Ry = 1, R, = 0, B2 = h(po)]

4

1 -h(Pg) =HIX,Y) §

Ro

R1 =Rz

Fig. 4—Estimates of rate-region ® for the DSBS,
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are achievable. Thus, the point in (Ro, Ry, R:)-space halfway between
them is also achievable. But this point,

[Ro = 1, Ry = 3h(po), R2 = 3h(po)],

satisfies B, = R., and is therefore of interest to us now. Point F in
Fig. 4 is therefore achievable, and therefore so are line segments AF
and FB. But line segment AF coincides with line a, so that it must be
on the boundary ®. So far, the unknown part of the boundary curve
® lies in triangle FHB. We can do better, however, by using Theorem 4.

Theorem 4 asserts that any triple in ®¢®’, p € @, is achievable. We
therefore guess at a p € @ that defines random variables X, ¥, W,
and then assert that the triple Bo = I(X, Y; W), R, = H(X|W),
Ry = H(Y|W) is achievable. Since we choose a p € ® such that
Ry = R., this triple is of interest in our present discussion. The p € @
we have chosen is (with W = {0, 1}) given by Table I. The quantity
p1 = 3(1 — V1 — 2 po). One way of characterizing p is to think of W
as an unbiased binary input and X, Y the respective outputs of two
independent BSC’s, each with crossover probability p,. Note that
these two BSC’s in cascade are equivalent to a single BSC with cross-
over probability, 2p:(1 — p1) = pe.

With X, ¥, W so defined, X, ¥ are conditionally independent given
W, so that (R, Ry, R:) lies on the Pangloss plane. [See remark (6)
following Theorem 4.] We have

Ro=I(X,Y:W)=HX,Y) - HX, Y|W)

1 + h(po) — 2h(py),
R, = H(X| W) = h(py). (24)

R,

This is point G in Fig. 4. Line segment A@ is therefore on the boundary
®. From these simple arguments, we see that the unknown part of
the boundary ® lies in the triangle GHB.

To obtain a still tighter bound on ®, we employ the same technique
as above—i.e., “guessing” at a p € ® and then deducing that &

Table |
XY
% . 00 o1 10 11
0 (1 — p)? ipi(l — p1) ipi(l — o) i}
1 ipi (1 — py) in(l —py) i1 — py)?
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Table 1l

KY 00 01 10 11

1 1
0 ﬁ(l—ﬁ—%) Poss Po/a E(ﬁ—%)
1 1
1 Q(ﬂ—?z—o' Do Pojs E(l—.ﬂ—ﬂ

C @®. Let 8 be a parameter for which
p=31—-+v1—-2p) =B =3 (25)

Then let ‘W = {0, 1}, and p(x, y, w) be given by Table II. Then the
triples (Ry, R1, B: )€ ®, where

Ro=1I(X,Y;W)=H(X,Y)— HX, Y|W)

_ 10, 4 _ Po 11 _g_Do

— 1+ +5(1-8 -5 )loggy(1-8-5)
Po Po 1 Po 1 Po

and
Ry =R, = HX|W) = H(Y|W) = h(B). (26b)

For 8 = py, the triple of (26) coincides with that of (25), i.e., point G
in Fig. 4. For 8 = 4, the triple of (26) is Ry =0, R, = R: = 1, i.e,,
point B of Fig. 4. As 8 increases from p; to %, the family of rate-triples
of (26) generate a curve ¢, which lies below the line GB and therefore
constitutes a tighter upper bound on ®. We conclude that the unknown
portion of & lies in the shaded region in Fig. 4.

In Section 2.5 we give some insight into how we “guessed’” at these
distributions p € @.

Il. GENERALIZATION TO A FIDELITY CRITERION

In this section we formulate a generalization of the problem of Sec-
tion I in which we require that the source sequences {X;} and {Y¥;}
be reproduced to within a specified fidelity criterion and not, as in
Section I, essentially perfectly. The proofs of the main theorems ap-
pear in Section III.

2.1 Definitions and formulation of the problem

Let { (X4, Yi)}i=1 be a sequence of independent drawings of a pair
of random variables X € X, ¥ € <, where the “source alphabets”
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o and Y are either discrete sets, the reals, or arbitrary measurable
spaces. We assume that we are given a probability law that defines
(X, V). If x and Y are discrete, then we write

Q(x,y)=P1‘1X=1':Y=y}; re X,y €Y.

If &, 9y are the reals, then (X, ¥) may be defined by a probability
density Q(z,y), — < < z,y < =. For arbitrary measurable o, 9,
the pair (X, ¥) is defined by a probability measure @ on & X . The
marginal distribution for X, ¥ will be defined similarly by Qx, Qv
respectively.

As in (5), define the set I, = {0,1,---,m — 1} form = 1,2, ---.
An encoder with parameters (n, Mo, M1, M) is [as in (6) ] a mapping

fx:m"xly"—’IMOXIMIXIM,. 27

We assume that the sequences { X} and {¥,} are to be reproduced as
sequences of elements of sets & and 9, respectively, called ‘repro-
ducing alphabets.” Thus [as in (7) ], corresponding to a given encoder,
a decoder is a pair of mappings

TE59: Tagy X Ipp, — &, (28a)
I Iney X Iagy — Ym. (28b)

Let us adopt the convention of denoting n-vectors with bold-face
type (either upper or lower case) and the components as the same sub-
scripted letter in ordinary type. For example, u = (uy, - - -, %n).

An encoder-decoder with parameters (n, My, My, M,) is applied as
follows. Say

feX,Y) = (Sﬂl Sl) Si): (293)
where X € x*, Y € y*, and (S,, S1, S2) is a triplet of indices. Then set
X = 280, 80, ¥ = f5(Se, Sa), (29b)

where X € &7, ¥ € 4. The encoder-decoder is said to have average
distortion (Ax, Ay), where

Ax = EDy(X,X), Ay = EDy(Y, Y), (30a)
and the single-letter distortion functions are defined by
“ 12
Dy(x, %) = = 3 di(zk, £4), (30b)
N k=1
~ 12 R
D:(y, y) = ?u; d2(yx, §x), (30¢)
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xXE XHLXE X"y € Y, § € Y, and di(-, -) is a given nonnegative
per-letter distortion function for the X-receiver and ds(-, -) is a given
nonnegative per-letter distortion function for the Y-receiver. An
encoder-decoder with parameters (n, Mo, M, M,) with average dis-
tortion (Ax, Ay) is said to be a code (n, Mo, M1, M, Ax, Ay).

A rate-triple (Ro, Bi, R.) is said to be (Ai, As)-achievable if, for
arbitrary € >0 and 7 sufficiently large, there exists a code
(n, Mo, My, My, Ax, Ay) with

M; < 2nReto, 4 =0,1,2
and
Ax = A1+ ¢ Ay = Ay + e

The set of all (A;, Az)-achievable rate-triples is called @ (A;, Az). Our
main problem is to ascertain ®R(A, Az), A1, Az = 0. Clearly, this gen-
eralized problem reduces to the problem of Section I, if % = &,
Y = 4, di = ds = du, and A; = Az = 0. As in Section I, the region
® (A1, As) is completely defined by the boundary ®(A;, A;), where
® = ®(Ay, As) is defined in (11). Further, we show in the appendix
that ®(A;, Ap) is convex and that Theorem 1 holds with ® = ® (A4, Ag).

2.2 Rate-distortion functions and conditional rate-distortion functions

A major tool in this study is rate-distortion theory. Specifically,
joint, marginal, and conditional rate-distortion functions (or simply
“rates’) are used both in evaluations and bounds. These functions
and their properties are dealt with in Refs. 1, 4, and 5. Here we only
summarize some pertinent definitions and properties.

The marginal, joint, and conditional rates are defined as follows.
Consider first the case where the alphabets &, &, Y, 4, are finite and
Q(z, y), @x(z), Qv(y) are probability functions. Then the (joint) rate-
distortion function is defined by

Rxy(Ay, As) = min [(XY; X7), (31)
where the random variables X ¥ are defined by a “test-channel”
q:(£; 9|z, y)—i.e., a probability function on & X 4 for every (z,y)
€ X X Y. The information in (31) is calculated for the joint distribu-
tion

Pr {X = I, Y = y:X = £, p‘ = g} = Q(I, y)qz(f:mm;y)- (32)
The minimum in (31) is taken with respect to all test channels ¢, such

that Edy(X,X) £ Ay, Ed:(Y, ?) < A,, where the expectations are
taken with respect to the distribution (32). The minimum always
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exists. Similarly, the marginal rates are defined by

Rx(Ay) = min I(X;X), (33a)

4,(£|2): Edi(z,3) SA;

Ry (4,) = min I(Y;7), (33b)

a(yly):Ed(Y, ) sa

where the expressions in (33) are interpreted analogously to that of
(31). Detailed discussions of these quantities and their significance
can be found in Refs. 1 and 4.

Another quantity that plays a crucial role in our study is the “con-
ditional rate distortion function.” Let &, Y be finite, and let Q(z, y)
be given. Let p(z,y, w) be a probability function on % X Y X W,
where W is a finite set such that Y .p(z, ¥, w) = Q(z,y). Then
p(z, y, w) defines a triple of random variables X, ¥, W, where the
marginal distribution for X, ¥ is Q. The conditional rate-distortion
funetions are defined as

Rxyiw(Ay, Ay) = min I(X, V; X 7| W), (34)

where the minimum (which always exists) is taken with respect to all
test channels ¢.(£, |z, y, w) such that Ed:(X,X) < A,, Edy(Y, 7)
= A;. The conditional information in (34) is defined in Ref. 4, p. 21
The conditional rates Rx w(A,), Ry w(As) are defined analogously. A
detailed discussion of conditional rates is given in Ref. 5. Of course,
these definitions are meaningful if X = Wor Y = W. Roughly speak-
ing, Rx v w(A1, As) is the channel capacity required to transmit X , Y
and to reproduce it as X, ¥ to within an average distortion (4;, A)
when both the transmitter and receiver know W.

We shall need several properties of the conditional rate-distortion
function in the sequel. The first is given in Ref. 5. For A = 0,

Rx\w(ﬁ) = min Z Pr {W = w}me..w(Aw), (35)

where Bx w_. () is the rate-distortion function calculated for a source
with outputs € & with probability distribution Pxw (z|w) (the con-
ditional probability function for X given W = w). The minimum is
taken over all sets {A,},ew such that 3 ,Pr {W = wlA, £ A

A second fact of importance is that, say, Rx,w(A) is a continuous,
convex, nonincreasing function of A for A = 0. That Rxw(A) is non-
increasing follows from the definition. The proof that it is convex
parallels the proof of the convexity of the ordinary rate-distortion
function. The continuity of Rxw(A), A > 0 follows from its convexity.
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Finally, the continuity of Rx w(A) at A = 0 follows from (35), and
the continuity of Rxjw=»(A) at A = 0.
A third fact we shall need is that, for any X, W,, W, A = 0,

Rx w,w,y(8) < Bx w,(4). (36)

This follows from Rx w,w,(A) = infI(X;X|W:W,), where the
infimum is with respect to test channels ¢.(#|z, w1, w2) such that
Edy(X, X) < A. Included in this class of test channels are those that
are independent of ws, i.e., g:(£|z, w1, w2) = q.(£|21, w1). This subclass
is exactly the class of test channels in the minimization for computing
Ex w,(4).

The final property of conditional rates is stated as a lemma below.
The proof is given in the appendix.

Let X € X be a random variable with probability distribution
Qx(z) = Pr (X = z}, where & is a finite source alphabet. Let & be a
finite reproducing alphabet and let d(z,£) =20,z € X, 2 E X be a
distortion function.

Now let {W,}?-; be a family of disjoint finite sets and let
{p(x, w)}E=1 be a family of probability distributions on & X W, such
that

> pi(x, w) = Qx(z).

weEWe
The random pairs (X, W,) are defined by
PriX =z W, = w} = pi(z, w), T E X, wE W

Let Rx w.(A), A = 0 be the corresponding conditional rate-distortion
funection.

Next, set W = Y 7., W, where Y indicates union of disjoint sets.
Define the probability distribution on & X W:

p*(x, w) = %p*(:c, w), for wEW, 1 =Zk=n,
and let (X, W) be the corresponding random pair with conditional
rate-distortion function Ry w(A), A = 0. Clearly, p*(-) is a mixture

of the n disjoint probability distributions {p,}, with prior probability
1/n. We now state the lemma.

Lemma &: For arbitrary {Ax}i=1, Ax = 0,
n 1 n
Rxmf( 1 2 Ak) = - ¥ RBxywe(Aw).
n n
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We note here that all the above is meaningful for the case where
Q(z, y) is a probability density function or @ is an abstract probability
measure. We need only make the obvious correspondences between
discrete distributions and more general probability measures and
replace ‘“‘minimum” in (31), (33), (34), and (35) by “infimum.”

We conclude this section by taking a look at the specialization of the
above to the case where d, = d» = dy, the Hamming distortion defined
in (1b), and A; = As = 0. Then

Rxr(0,0) = H(X,Y), Rx(0)=H(X), Ry(0) = H(Y),
Bxviw(0,0) = H(X, Y|W), Rxiw(0) = H(X|W),
Ryiw(0) = H(Y|W),
where the entropy H (-) and the conditional entropy H (- | -) are defined
in (2) and (3), respectively. Analogous to the relation

H(X|Y)+H(Y) = HX,Y) < HX) + H(Y), (37a)

which holds for this special case, the following is established in Ref. 5
for the general case:

Rxiv(A1) + Ry(As) = Rxy(Ay, A:) = Rx(A1) + Ry(Az). (37b)

Further, it is shown in Ref. 5, Corollary 3.2, that the left inequality in
(37b) holds with equality in some neighborhood of the origin {(A;, As):
0 = Ay, A = v}, provided that

Qx,y) >0, alz € X,y € Y, (38a)
and d,, d» satisfy

di(z, ) > di(z, 2) = 0, =z 4,
d:(y, 9) > do(y, ) = 0, y # 9.

2.3 Characterization of R(A,, A.)—the main resuit

(38b)

We first state two simple theorems that are generalizations of
Theorems 2 and 3. The proofs are analogous to the proofs of Section I,
and are therefore omitted. Theorem 6(a) is also called the Pangloss
bound.

Theorem 6: If (Ro, By, R:) € R(A4, As), then

(@) Bo+ Ri+ Ry = Rxy(Ay, As).

(b) Ro + By = Rx(Ay).

(¢) Ro+ R: = Ry(Ay).
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Theorem 7 : The following triples belong to ®R(Ay, Az):

(4) Ry = Rxy(Ay, Az), Ry =R,=0.

(B) Re = 0, R1 = Rx(A:), Rz = RY(Az)

It is also possible to generalize Theorem 3 (C) and (D), but this must
await presentation of the main result, which we now give.

Consider first the case where &, Yy are finite. Let Q(z, %), z € %X,

y € Y be given. Now let ® be the family of probability functions
p(z,y, w), where z € X, y € Y, w € W, W is another finite set, and

r plyy,w =Ry, z€XLyE Y. (39)
weEw

Thus, @ is exactly as in Section 1.4. Now each p € @ defines three
discrete random variables X, ¥, W in the obvious way. For p € @
and A;, A; = 0, define the subset of Euclidean three-space

R (A1, Az) = {(Ro, Ry, R2): Ry 2 I(X, Y; W),
R = Rxyw(Ay), R, = Ry\w(A2)}. (40a)
Then let
®R* (A4, Ap) = [pLEJ@(R(F)(Al, AT, (40b)

where ( )¢ denotes set closure. Since Rx w (A1) and Ry w(A2) are con-
tinuous for A;, A, = 0, we conclude that ®*(A;, A;) is continuous in
(A, As) according to the Hausdorff set metric. This metric p(Si, S2)
between two subsets S;, Sz of a Euclidean space is defined by
p(81,82) = sup inf [lrs — rof| + sup inf [lrs — 7],
nES nES €8 nes
where ||| denotes Euclidean norm.

If @ is either a density or a probability measure, then ®* (A, As)
can be defined in an analogous way. In this more general case, we must
require that the source has the property that there exists an £ € X,
9 € 9 such that

Ed\(X, %) < @, Edy(Y,5) < . (41)

If 2, 9y are finite, then (41) is always satisfied. We can now state our
main result.

Theorem 8: ® (A1, Az) = ®R*(Ay, Ag).
Remarks:

(1) Theorem 8 reduces to Theorem 4 when &, Y are finite, d; = d.
= dg, and Ay = Ay = 0.
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(2) If we define ®r as in remark (1) following Theorem 4 as the set
of test channels p,(w|z, y), then ®r is in 1-1 correspondence with @.

(3) Since ®(A;, A:) is convex, Theorem 8 implies that ®*(A;, Aj)
is convex also.

(4) Since Theorem 1 is valid for ®(A,, Az), the present theorem
implies that 7' (e), defined in (13) is also given by

T(e) = iléf@U(X, Y W) 4+ arRx w(A1) + asRyw(A)].  (42)

Thus, from Theorem 1, the lower boundary ®(A;, A.), and therefore
®(A1, A,), is determined by T'(a) given in (42).

(5) As in remark (4) after Theorem 4, Theorems 6 and 7 can be
obtained directly from Theorem 8. The steps parallel those in remark
(4) and will be omitted. We will, however, give the generalization of
Theorem 3(C) and (D). We state this as follows. The following triples
(Ro, Ri, B2) € ®R(Ay, A2):

(C) Ro = Ry(A:), Ri= Rx;#(A1), R:=0,

(D) Ro = Rx(Ay), R1=0, R;= Ryx(4s),
where the random variable ¥ is defined by the test channel that
achieves the infimum in Ry(A:) (assuming that the infimum can be
achieved; if not, a simple modification is possible), and X is defined
by the test channel that achieves Rx(A;). In the discrete case, we can

achieve point (C) as follows. Let pi(§|y) be the test channel that
achieves I(Y; ¥) = Ry(A:). Let W = 4 and let

p(z,y,9) = Qz, n)p:(¥|y) € @.

The random variables X, ¥, V are defined in an obvious way by
p(z, y, 9). Further, since X, ¥ are conditionally independent given Y,
IX,7;9) = 1(Y; ¥) + I(X; 7| Y)

= I(Y; V) = Ry(4,).

Also, tlle conditional rate Ryi(A.) = 0. Thus, from Theorem 8, with
W = ¥, we have (Rq, R1, R2) € R(Ay, Az) where

Rﬂ = I(X, Y, W) = R}'(Az)
R, = Rxiw(A1) = Rx¢(4Ay),
Rz = RY|W{A2) = 0.

This is point (C). Point (D) is obtained on reversing the roles of X
and ¥.
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Since ®(A;, A:) is convex, any linear combination of points (4) and
(B) of Theorem 7 and (C) and (D) above also belongs to ®(A;, As).
But there is no guarantee in this case that points (C) and (D) will lie
on the Pangloss plane. There are cases for which a portion of the
Pangloss plane is known to be realizable, as is shown in the example
below.

2.4 A technique for overbounding ®(A, As)

In this section we present an intuitively sensible ad hoc scheme
for choosing probability distributions p € ® that yield triples
[I(X, Y; W), Rx;w (A1), By w(As) ] which are often close to or actually
on the boundary curve @ (A;, As). In fact, in many cases this triple
will lie on the Pangloss plane.

A natural coding scheme to apply to our network would be to send
a ‘‘coarse”’ version of the source output (X,Y) over the common
channel, and then send to each receiver over its private channel only
the necessary “fine tuning” it needs to meet its fidelity requirement.
This reasoning leads us to the following family of rate triples that
belong to ®(A,, As). Assume for simplicity that &, , &, 9 are finite.

Let A1, As = 0 be given. Let 81, 3. satisfy

.61 = Al; 52 = Az.

Now let ¢.(%, 7|z, y) be the test channel that achieves I(X, V; X, ¥)
= Rxy(B1, B2). Then with W = (X, ¥) we have that the triple
(Ro, B1, Ry) € ®R(Ay, A,), where

Rﬂ = I(X, Y; W) = RXY(.BI; 63)!
and
Ry = Bx\7(A1), R: = Ry x7(As). (43)

Note that the rates corresponding to Theorem 7(4) and (B) and to
points (C) and (D) in remark (5) following Theorem 8 can be gen-
erated as special cases of the rate in (43). We do this as follows:

A: Let (B, B2) = (A4, As).

B: Let 84, B2 be large enough so that Rxy (81, 82) = 0. Then X, ¥ are
degenerate.

C': Let 8 be large enough so that Bx(8,) = 0, and let 83 = A,. Then
X is degenerate.

D: Let 82 be large enough so that Ry(8:) = 0, and let 8; = A;.

The power of this technique is illustrated by the following theorem,
which asserts that under weak assumption the family of rates given
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by (43) includes a substantial subfamily that lies on the Pangloss
bound and therefore on the boundary.

Theorem 9: Given a source that satisfies

(i) x = i: Yy = ‘Ayr X, Y finate,
() Qz,y) > 0,dlzE X,y E Y,
(713) di(z, £) > di(z,x) = 0, all distinct z, £ € X, and da(y, §)
> do(y, y) = 0, all distinct y, § € Y.

Then there exists two neighborhoods of the origin

m = {(A1, Az): 0 £ Ay, Ay = a}
{(B1,B2): 0 = By, B2 < b},

where 0 < a £ b, such that, if (A, As) € n1 and (By, B2) € ns, then

I

n2

Ry + R1 + R: = Rxvy(4y, A9),

where (Ro, By, R2) 18 given by (43).

The theorem can be proved using Shannon lower-bound techniques!®
and, in particular, the proof is similar to that of Theorem 32 in Ref. 5.
Since the proof requires the generation of special machinery that is
only tangential to the main ideas in this paper, we have elected to
omit it.

2.5 Examples

(A) Our first example will be the DSBS considered in the example
of Section 1.5. Here * = 4 = {0, 1}, and

Q(I, y) = %(1 - pD)‘S:.y + %Pu(l - a:.u): T,y = 01 1: (44)

where the parameter po € [0, 3]. The distortion function will be the
Hamming metric, i.e., di = ds = dg, where dy is defined in (1b).
Again, as in Section 1.4, we consider only the plane in (Ro, R1, R2)-
space where Ry = R; and A, = A, = A. We employ the technique of
Section 2.4 to obtain an upper bound for ® (4, A).

Making use of Ref. 1, pp. 46-50 (Ex. 2.7.2), we have

14 h(po) — 20(8), 0=SB=m
L(1 — po) — 3{L(28 — po) + L[2(1 — ) — pol},
m=p =% (45a)

Rxv(8,B8) =
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where

p1 =% — V1 — 2p,, (45b)
h(A) =Alogh — (1 —Nlog (1 —1A), 0SA=1, (450
L(\) = —xlog ), 0<A=1 (45d)

Now, from Ref. 1, the random variables X and ¥, which satisfy
I(X,Y; X7¥) = Rxv(8, B) are such that

PriX=z|X=%V=%5 =Pr{X =2|X = #|
= (1 —B)8:: +B(1 — 8,3), z,%75=0,1 (46a)
and
Pr{Y =y|X =z;7 =35 =Pr (Y =y|V =3}
=(1—=8)8,;+801—208,3), ¥,%%=0,1. (46b)
Thus, again from Ref. 1 (p. 46, Ex. 2.7.1), for 0 < A < 8,

Rx #7(A) = Rx%(A) = Ry\#7(A) = Ry 7(4)
= h(B) — h(A). (47)

Thus, we conclude that, for arbitrary 0 < A < 8 < }, the triple
(Ro, B, Ry) € ®(A, A), where Ry = Rxy(8,8) [as in (45)], and R,
= Ry = h(B) — h(A). Let us note that, for 0 £ A < 8 = p,, these
rate-triples (R, R1, R.) satisfy

Ro + Ry + R: = 1 + h(po) — 2h(A) = Rxv(4, 4), (48)

and therefore lie on the Pangloss plane and ®(A, A). One special case
occurs when A = 0, 8 = p,. This yields the rate-triple of (24)—i.e.,
point G in Fig. 4. In fact, the distribution p(z, y, w) € ®, which we
guessed at in Section 1.5, was obtained by setting W = (X, ¥), where
X, ¥ are as above for 8 = p;.

(B) Our second example is a source where Q(z, ¥) is a density func-
tion and &, &, , 9 are the reals. The ad hoc technique used in the
previous example (A) will work here with obvious modifications. The
random variables X, ¥ in this case will be jointly gaussian with EX
=EY =0, EX* =EY*=1, and EXY =7, 0 < r < 1. Thus, the
density

1 24t — 2
Qz,y) = S (T — 7)1 %P | — @ ;‘(;J_ Tz)r:vy) . (49)

We take the distortion to be di(-, -) = da(-, -), where
dl(x,.f):(:c—ﬁ)’, _'°°<m)£<°a'
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For 0 < 8 < o, it can be shown!+ that

1 1—r

Elog( Bzr)s Oéﬁél—'r,
Rxr(8,8) = {1 147 B (50)

298 (3= () LTSRS Y

0, g =1

Further, the random variables X, ¥ which satisfy I(X,Y; X, ¥)
= Rxv(B, 8),0 < 8 < 1 are such that, given X=%¥V=%Xand¥Y
are gaussian with

EX|X=%7=17%) =%,
E(Y|X=f,?=ﬁ)=y,
var X|X =% 7 =% =var(Y|X =% ¥V =3) =8

Thus,!4for0 < A28 <1,
B,

A

Thus, we conclude that, for arbitrary 0 < A = 8 = 1, the triple
(Ro, By, R2) € ®(A, A), where Ro = Rxvr(B,8) [as in (50)] and
Ry = R, = % log B/A. Again, observe that for 0 = A=g=1—r,
1—1r

A

Rxi77(8) = Rriz7(8) = 3log

Ro+ Ri+ Rs = %log( ) = Rxr(a, A), (51)

and therefore (Ro, R1, R2) lies on the Pangloss plane and therefore on
R(A4, ).

I1l. PROOF OF THE MAIN RESULT—THEOREM 8

The proof of Theorem 8 consists of two parts: (i) the ‘“converse”
part, which asserts that any point in ®(A,, Az) belongs to ®R*(Ay, Az)
and (i7) the “direct”” or “positive” part, which asserts that any point
in ®*(A;, A,) belongs to ® (A, Az). We give the proof for the case where
o, Yy are finite sets. The proof for arbitrary &, %Y follows in a parallel
way with integrals replacing sums, etc., in the standard way. We will
begin with the converse.

3.1 The converse

Let (fg, f§°, f8") define a code (n, Mo, M1, M, Ax, Ay). We find
a p*(z;y, w) € @ for an appropriate set W such that

( %log Mo, %Llog M, % log Mg) € RO (Ax, Ay) C ®*(Ax, Ay).  (52)
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The converse follows on applying the definition of (A,, As)-achievable
rates and applying the continuity of ®* as discussed in Section II.

First, let fe(X,Y) = (8o, S1, 82) where S; € Iy, is a random vari-
able (7 = 0, 1, 2). Then we have

@)
llogM[.= Yrso 2 i vis 2 lia, v - Hx, v180]

= ﬁkgl [H(Xk: Yk) - H(Xh Y'ﬂlSU: Xl: ] Xk—l: Yl; ] Yk—l)]
(53)
These steps are justified as follows:

(1) From §, € IM.,-

(2) Standard inequality.

(3) Definition of I (X, Y; Sq).

(4) HX,Y) = >:H(X,, Y.) follows from the independence of the
pairs (X4, Vi), k = 1, 2, -+, n. The rest is also a standard identity.
NOW, for 1 =k = n, let Wy = (So, X1, t ',Xk_l, Yl, Tty Yk_l), a
random variable belonging to, say, W, a finite set.! Relation (53) is
then

Liog o2 13 1(x,, vi; W) (54)
n NE=1

Next, let X = f89%0s(X,Y). Let Ay = Edy(X1, £4), 1 < &k < n.
Then

Ax = ED(X,K) = | ¥ aw (55)
=1
We now write
1 w1 . @ 1 .
Jlog My z - HX[So) 2 1(X;X|S0)
3) 1=
= n };Z I(Xk-‘ X|S°r Xy, oo, Xia)
1 =n
> o Z I(Xk:Xk'Su: Xl, "',Xk—l)
N k=1
(5) 1 n n
= - Z Rxyvi(A1) é o~ Z Bx,wi(Aw), (55b)
N k=1 n k=1
where Vi = (8o, Xy, -+, Xx_1), and Wi = (Vi, ¥y, --+, Vily) as

above. These steps are justified as follows:
T We can, of course, take Wy = I, X 91 X Ykt
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(1) Since X is a funetion of S, and S, we have that, conditioned on
Sy = 89, X can take no more than M, values (since S; € Iy,). Thus,
H(X|8o = s0) < log My, all s,.

(2-4) Standard inequalities and identities.

(5) From the definition of (RX;,IV,E(AI.':), since Edl(Xk, Xk) = A

(6) Follows from (36).

A similar derivation yields

1 1 &
=log My = — 2° Ryywi(Ae), (56a)
n nr=1
where
Ay = 1 2 A (56b)
NE=1

We are now in a position to define p*(z, y, w). With W defined as
above, let

pk(Iryrtv) = Pr [Xk =T, Y, =Y, Wi = u’}:
TEX,yE Y, we W

Let
Plk(iﬂ, w) = Z pk(ms Y, w):

v

pac(y, w) = X pe(z, ¥, w)

be the marginal distributions for (X4, W) and (¥, W)}, respectively.
The {W;] can be considered a class of disjoint sets. Let ‘W = ZW,,
and define the probability function on € X Y X W

1
p*(I: Y, TU) = ﬁpk(:r’l Y, w)l w E wk! 1 é k é n.

Since
n

1
Z P* (.17, Y, "') = Z Z - p;;(.']f, Y, ’HJ) = Q(I) y)l
wEeEwW E=1weg, N

we have p* € ®. The random variables X, ¥, W are defined by p* in
the obvious way. We can think of W as being generated by choosing an
integer K € [1, n] without bias, and setting W = W, when K =k,
1 £ k £ n. A straightforward calculation yields

1 n
IX,Y; W) = o % I(X, V3 Wa). (57a)
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Furthermore, Lemma 5 can be applied to pix, pa to yield

1 n
Rx w(Ax) = o kZI Ex,wi(4:), (57b)
Ry w(Ay) = 1‘%‘15:1 Ry w,(Ay). (67¢)

Inequalities (57a, b, ¢) can be substituted into (54), (55), (56), re-
spectively, to obtain

%mg My2 I(X,Y; W)

1
ﬁlog Ml = Rxmr(Ax)

111,103 M, = Ry w(Ay),

which is (52). This completes the proof of the converse.

3.2 The direct half

We begin the proof by stating a lemma concerning conventional
source coding for a single memoryless source. The source is defined by
a random variable X € 2, with probability distributions Qx(z), and
a reproducing alphabet & with distortion function dy(z,4). As
above, X = (X,, -+, X,) are n independent copies of X. Let Q¥ (x)
= II§-1Qx(x:) be the probability distribution for X. Let E(A) be the
rate-distortion function.

A source code with parameters (n, M) may be thought of as a
mapping f: X" — € C &n, wherecard @ £ M. LetX = (X, ---, X.)
= f(X). Then D:(X,X) = 1/nX}_1d1(X4, X;) is a random variable.
We are interested in the quantity

PAr+8) =PriDXK) za+0) = T QP@®, (38)

where ®(x) = 1, if D[x, f(x)] = A + 5, and ®(x) = 0, otherwise. We
now state a lemma, which follows immediately from Lemma 9.3.1 and
inequality (9.3.31) of Gallager.*

Lemma 10: Let A = 0, and ¢, 6 > 0 be arbitrary. Then there exist A,
B > 0 such that for all n = 1, 2, - - - there exists a code with paramelers
(n, M) satisfying
M g 211]R(A]+!]’
and
T(A+8) = Pri{Di(X,X) = A+ 8} < AeBn,
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With the aid of this lemma the standard source coding theorem
follows readily (Ref. 4, Theorem 9.3.1).

Next, let us consider a compound source for which the source output
in n time units is an n-vector X = (X4, ---, X4) € X" The {X:} are
still independent, but the X are not identically distributed.

Let ny, ns, ---, ny be such that Xj-m; = n, and let Qi(-),
Qs(+), -+, Qr(+) be J probability distribution functions on X. The
source is characterized by the fact that a known subset n; of the n
coordinates of X are distributed according to Q;(:), j =1, -+, J.
Let R;(A) be the rate-distortion function corresponding to @;(-) rela-
tive to the distortion function d;. A code is defined exactly as above,
and X = f(X). We now have

Corollary 11: Let A; 20,7 =1,2,---,J, and ¢, & > 0 be arbitrary.
Then there exist A;, B; > 0,7 = 1, - -+, J, such that, foralln = 1,2, - -+
and any set {n;}7 such that Zn; = n, there erists a code with parameter
M satisfying

M = Jlj: expz {n;[R;(4;) + €]} = expa { X ni[R;i(4)) + €]} (59a)

and

F(A+8) =PriDiX,R) 2 A+8) =5 A28, (50b)
=0

where A = n'Y. n;A; The (4,, B;)'s are the (A, B) of Lemma 10 corre-
sponding to Q;(-).

The corollary follows immediately from Lemma 10 on noting that,
for any random variables {U;} and any set of constants {c;},

Pr{iZU;z Ll =2 Pri{lU;2c¢l.

Let us also remark that the Q¢ (x) used to compute I'(A 4 &) in the
corollary is of the form

@ = T Qe [ @@ [ @@, (60

where the i;:th coordinate of x has distribution Q;(-), 1 = k = n;,
0=s;=J—-1

Let us now turn to our network coding problem. An alternative
(though equivalent) way of defining a code for our network with
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parameters (n, My, My, M,) is

(1) A mapping
g: X* X Yr— ¢, (61a)

where € is an arbitrary set with cardinality <M,. The mapping g is
called a “core code.”
(2) For each w € @, a mapping

g xm X Yr— e C &, (61b)

where card ¢ = M,.
(3) For each w & €, a mapping

gl X Yyr — e < g, (61c)
where card @ = M,.

The code defined in this way can be used on our network (Fig. 2) as
follows. Let € = {w;}}". Then, if g(x,y) = wi, the index 7 is trans-
mitted over the common channel. Let € = {%a}M4, 1 <7 £ M,
Then, if g(x,y) = wi, and ¢g&(x,y) = X;, we transmit the index I
over the private channel to receiver 1. The decoder at receiver 1,
knowing the indices 7 and [, emits X;;, and the resulting distortion is
D, (x, %.;). Receiver 2 works analogously.

Let us fix our attention on receiver 1, and assume that ¢&(x, y)
= gi?(x). Then we define the quantity ¢(x, w;)(x € X, w; € @) as
the probability that X = x € «™ and Y = y such that g(x,y) = w..
Thus,

gx,wi) = ¥ QU(xy). (62)
yig(x,5)=w;
Q) (x,y) 2 IT%-1Q (zx, ys) is the probability distribution for X and Y.

Then, as in (58) with X = ¢ (X), W = ¢(X, Y),

I'(A; + 8) £ Pr{Di(X,X) > A, + 6} = %:z q(x, w)®;(x), (63a)

where
oy |10 Di[x, g0 (x)] > A+ 8,
®:(x) = 0, otherwise. (63b)
Substituting (62) into (63), we obtain
My
ra+d) =31 X QWkxyndkx)}, (64a)

i=l (z,9) ©G:
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where
Gl' = [(X, Y) g(xr Y) = W.'], 1 é ) é Mo- (64b)

Now our goal is to show that there exists a code for n sufficiently large,
with My, My, M, appropriately chosen, and with I'(A, + 6) arbitrarily
small.

Let us assume that we are given a probability distribution p(z, y, w)
€@, where 2€ X, y € Y, wE W. Let pw(w) = 2.,p(z, 9, w),
w € W be the marginal distribution of W. Assume with no loss of
generality that pw(w) > 0. Let

p(z, y, w)
pw(w)

be the “backward test channel.” For x € X", y € Y*, w € W, let

po(z, y | w) =

.p(n)(x’ y, W) = - ,p(zk, Y&, Wi)

be the probability distribution for X, Y, W (n independent drawings
of X, V, W). Let pi{(w) = [[f-pw(ws), and pi(x,y|w)
= [Ti=1pe(xs, yi| we). For (x,y,w) € ™ X Y» X W, let

PP (x, y W) _ & pe(@e yi|we)
@&y &% Qa0 O

be the information “density.” Of course,

EiWX, Y; W) =1{X,Y;W} =nl{X,V; W]

1M (x,y; w) = log

Finally, let A; = 0 be given and let {A,},ew satisfy

Ryiw(A) = 2 pw(w)Rxiwaw(dw), (66a)
WEW
and
Ar= 2 pw(w)h. (66b)
vew

See (35). A similar expression can be written for Ry w(A.).

We now return to our network coding problem. With p € @ given,
we set out to construct a core code g with certain desirable properties.
For any core code g: X" X Y» — @ = {w;}i* C W, let Ny = the
number of occurrences of symbol w in code vector w;, 1 £ 7 £ M,,
w & W. The existence of a desirable core code is assured by

Lemma 12: Let p € ® and ¢ > 0 be arbitrary. Let I* = I(X,Y; W)
correspond to p € @. For n sufficiently large, there exists a code g as in
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(61a) such that
(?;) M, = 2n(I*+e)

(i) [N
(f2) Pr(8) = X QW(x,y) =
(x.r)¢8,

— pw(w)| £ e[min pw(w)], for all w E W,

where
1.
Se=1{(xy):2i"xy;9xy)]=I*— ¢,
and (X, y; w) s defined in (68).

We defer discussion on the proof of Lemma 12 to the end of this
section.

Let us suppose that ¢ is a code that satisfies conditions (z), (4%),
and (447) of Lemma 12. Let {g&}} be a family of encoders as in
(61b). Consider expression (64a). The term in braces is

2 Q" (x, y)®:(x)
(x,y) G
B 2 Q™(x, y)e:(x) + 2 Q" (x,y). (67)

(x,y) €GiNS, (x,y) €GiN 85

But if (x,y) € G; [i.e., ¢(x,y) = w.)] and (x,y) € S, then
Q™ (x,y) = 27 9np{M(x, y|wy),

so that the first summation in the right member of (67) can be over-
bounded :

<2-U*—on 3 i (X, ¥ | w.)d:(x)
(x.y%x: a(x.!g =wi

<2-(-0n T pfP(x, y) | 0)i(x) (68)

é 2_(1‘—¢)n Z pé") (x | W;‘)‘pi(x)'

Combining (68), (67), and (64), we have
I'(Ay + 8) = Pr {Dy(x, X) > Ay + 6}

My 0
s2rw-0r ¥ TP alws@ + X L QWY

i=1 x i=1 (x,y) EGiNS;

<2--on 3 ¥ (x| w)di(x) + Pr (5. (69)
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Now consider
P (x|wi) = an Do (i | wer),

where w; = (w1, Wi, **, Win), 1 £ 17 = Mo, With Ny, as defined just
above Lemma 12, we see that (for a given 7) pi” (x| w;) is the same form
as Q™ (x) in (60) with n; = N;,. It then follows from Corollary 11
that, with w; held fixed, we can find a source code for X—i.e., a
mapping g&’—with parameter M = M, such that, for arbitrary
e 6 >0,

M, S exps { L Ni[Bxiw-u(Bu) + €]}, (70a)
weEW
and
5 " (x| WRi(x) S T Au2-BeNn (70b)

where ®;(x) is defined in (63b) with A; = 'Y uNivAw, and {Au}
satisfying (66). The {(A ., Bw)} correspond to ps(z|w). Further, since
the {Ni.,} satisfy condition (1) of Lemma 12, (70) becomes [using
(66) ]

M, < exp: {n mgw (pwlw] + 9 (Rxiw=u[Au] + €}
< exp: {n(Rxyw[A1] + eH[X] + ¢} (71a)

and

S P (x|W)Ri(x) S T AL2Ferw0-0 < (2718G-0, (T1b)
x wEeEW
where C = (card W) -max,4, and B = min,Bu.p.(w). Substituting
(71b) into (69) and using conditions (z) and (747) of Lemma 12, we have

I'(Ay + 8) £ 2 I*=OM,-C2-"BU-e L Pr (8
<2-n(B-Be2e) 4 ¢ (), asn— « and then e — 0.

Since we can do an identical construction for ¥, we have proved

Lemma 13: Let p € ®, and let the corresponding informalion be
I(X,Y; W) = I* Let Ay, Ay = 0 and ¢, & > 0 be arbitrary. Then, for
n sufficiently large, there exists a coding scheme as in (61) with param-
eters (n, Mo, My, M,) such that

(1) M, = 2nI™e,
(1) M,y £ 2n(Rxiw(@n+e)

=
I
(1) M, £ 2n(RYIwAn+o),
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and

(Gv) Pr{Di(X,X) > Ay + 6} < ¢,
() Pr (Dy(Y,Y) > Ay + 8} < e

The following corollary follows from Lemma 13 in the usual way
(exactly as does Theorem 9.3.1 in Gallager?).

Corollary 14: Let p & ®, and let the corresponding information
I(X,Y; W) = I*. Then, for arbitrary A,, A; = 0, the rate-triple
[I*, Rx;w(A1), Ry w(Az)] 7s (Ai, As)-achievable. Thus, R (Ay, Ag)
C ®R(Ay, Ag), for all p € @.

The direct-half now follows on noting that, if §; € S, and S, is
closed, then the closure S{ © Si. Thus, ®* (A1, As) = [U,R® (A, Ag) T
C ® (A4, A,), which is what we had to prove.

It remains to prove Lemma 12, Since the proof is nearly identical
to that of Lemma 9.3.1 in Gallager,* we will only outline the steps.
Let € > 0 be arbitrary. For w € W, let N,(W) = the number of
occurrences of symbol w € W in the n-vector W. Then define

T() = ‘we we: all w € W, E‘%‘ﬂ — pw(w)‘ < e}-
Then, paralleling Gallager, there exists a mapping g [as in (61a)] for
which
M, < 2niI*+o

and
Pr { %i‘")[X,Y;g(X, YVISI*—e or ¢X,Y) & T(e)l
< Pi(A) + exp {—en= ] £ £(n),

where e > 0 is arbitrary and

A= [(X, Y, W): either%ﬁi‘"’(X,Y;W) > I* + e or

%i‘")(X,Y;W) ST — gor W T(e)},

and P,(-) is probability computed with respect to p(z, y, w) € ®. By the
weak law of large numbers, if e; < ¢, then ¢, — 0, as n — .

Let the code whose existence we have just asserted be {w;}#. There
must be at least one code vector, say, wi, which belongs to T'(¢). Now

Pri{gX,Y) & T(e} = &(n).
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If x, y are such that g(x, y) & T'(e), change g(x, y) to w;. The new code
has ¢(x,y) € T(e) and

Pr %“‘(")[X»Y;Q(X. Y)] S I* — €f < 2¢(n) > 0.
Thus, this new code satisfies conditions (z), (¢7), and (77z) of Lemma 12.
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APPENDIX
A.1 Proof of the convexity of R(A:, As)
Let A, A; be given and held fixed. Write ®(A,, A,) as Q.

Theorem 15: ® is conver.

Proof: The theorem follows by a “time-sharing” argument. Let R®,
R® & ®,and 0 = 0 = 1. We must show that

RE @, (72a)
R = 6RW + (1 — RO, (72b)

Let (gg, g5°, g8”) and (hg, A5, h5”) be codes with parameters
(nlu Mé”r MEUJ Mé]): A}é’, M}’) and (712; MISZ)J ﬁ-’[{z}s Méz}r Ag)r Aﬁ’m)s re-
spectively, where AP, AP = Ay, AP, AP = A, Say 6 = A/B, where
A, B are integers,0 £ A < B £ «. We show how to construct a code
(n, Mo, My, Ms, Ax, Ay), where

1 = l (1) — _}; (2])
Log a1, = G(m log M} ) +a a)(m log M®),  (73)

(i=0,1,2), and Ax < A;, Ay = A.. This will establish (72) for
rational 8. Since the region ® is closed, (72) must hold for all 8, estab-
lishing Theorem 15.

We now define a code with block length n = en; + dns, where
c=Any, d = (B — A)ny. Let (x,y) € £ X Y" be a sequence of n
pairs. Partition this sequence into ¢ blocks of n; pairs and & blocks of
n. pairs. Encode-decode the first ¢ blocks using encoder-decoder
(gE, 952, 98"), and encode-decode the remaining d blocks using encoder-
decoder (hg, h5Y, h§?). Denote this combination encoder-decoder
by (f&, 52, 7). Consider fg(x,y) = (8o, S1, Sz). The quantity
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S:(z = 0, 1, 2) takes values in a set with
(M D). (MP)3 A M;

members. This set can, of course, be put in 1-1 correspondence with
In,;. Thus, fori=0,1, 2,

1 = ¢ m @ @ _ 0 m . 1—=10) 2
nlogM. = nloth +ﬁlogM, = nllogM, +—n2 log M,

which is (73). Further, the new code has Ax < A;, and Ay < A, so
that the lemma follows.

A.2 Proof of Theorem 1

Again let A}, A; = 0 be given and fixed, and write R (A, A,) = @®,
and ®R(Ay, A;) = @.

We first establish part (i7) of the theorem. Let R € 8(a), « € @'.
If R ¢ ®, then there exists an R = (R, By, R,) € ®, such that
Ri=Ri i=0, 1, 2, and at least one of these inequalities holds
strictly. Thus,

C(aq,R) — C(e,R) = (Ry — Ro) + au(R: — Ry)
+ as(R; — Ry) < 0. (74)

The inequality follows from i, a; > 0. This contradicts R € $(a).
Thus R € ®, which establishes part (i7).

It remains to establish part (z). We must first obtain some pre-
liminary facts.

Lemma 16: Let (Ro, Ry, RB2) € ®. Then

(@ for a;=20(=0,1,2), (Ro+ ao, R1+ a1, R: + a2) € @R,
(d) for 0=6=1, [(1 —8)Ry R+ 6Ry, R: + R ] € @,
() for 0=<6,6,=<1,

[Ru + 31R| + Gsz, (1 - 31)R1, (1 - 92)R2:| e Gl.

Proof :

(a) follows immediately from the definition of ®.

(b) follows on noting that data sent through the common channel
can be transmitted instead through each private channel.

(c) follows on noting that any data transmitted through either
private channel can be transmitted instead over the common channel.
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Next, for Ry, R: = 0 write r = (R, R3), and define the function
F(r) = F(Ry, R:) = min{Ry: (Ro, By, B2) € ®}. (75)

The minimum exists because ® is closed. Clearly, (Ro, Ri, R2) € &
only if By = F(Rl, Rz)

Lemma 17: F(r) is convez.

Proof: Let t®, r® be arbitrary. Then [F(r®?), r®7], [F(r®), r®] € ®.
Since ® is convex, for0 =6 = 1,

OLF(r®), 1] + (1 — OLFE®), 1]
= [P(®) + (1 — OF (x®), rD + (1 — r®] € &

Thus, by the definition of F(-),
Flor{? + (1 — )r®] £ gF(rV) + (1 — ) F (@),

establishing the lemma.
Now it follows from the convexity of F(-) that, for arbitrary
r* = (R}, R3), RIR; = 0, there exists constants a; = ai(r*), 7 = 1, 2,

such that, for all r,

F() — P(r*) = g (R} — RY). (76)

This is a statement of the well-known fact that any convex curve lies
above a plane of support. Here the curve is the locus of points in
(Ro, R, Rs)-space given by Ry = F(r) = F(Ry, R,), and the plane is
the locus of points Ry = F(r*) + > 7-:(Ri — R.). Note that the curve
and the plane coincide at r = r*.

Now let R* = (R;, R}, R3) € ®. Then R; = F(R], R3). Let R =
(Ro, R1, R2) be any triple in ®. Then with r = (R), R,), (76) yields

F(r) + exRy + 2Rz = Ry + auR] + a:R:.

Since, by definition of F(:), F(r) £ Ry, we have:
Ry + auR} + azR; = ;IIEilal1 (Ro + a1Ry + aaRs)
= min C(e, R) = T(e),
RER
where C(a, R) and T(e) are defined by (12) and (13), respectively.

Thus, we have shown that, if the triple R* € ®, then R* € $(e),
where e need not necessarily belong to Q.
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Now suppose that R* = (R;, R, R}) € &, and R* € $(a) where,
say, a; < 0. From Lemma 16(a) (with a > 0), R = (R, R} + a, R})
€ @&, and

C(e, R) < C(a, R¥),

which implies R* € $(e), a contradiction. Thus, «; (and similarly
as) = 0. Next, suppose R* € ®, and R* € $(a) where, say, a; > 1.
Then, from Lemma 16(c), R = (Rs + R}, 0, R:) € ®, and

C(e, R) < C(a, R¥),

again a contradiction. Thus, a;, and similarly @, < 1. Finally, suppose
that R* © ® and R* € $(e), where a; + as < 1. By Lemma 16(b),
R = (0,Ri + R, R: + R}) € ®, and

C(e,R) < C(a, R¥),
a contradiction. Thus, a; + a; = 1. We conclude that

acad

where @ is the set of @ = (ay, @;) that satisfy 0 < ey, a2 £ 1, and
ey + a2 = 1. This is part (7). This completes the proof of Theorem 1.

A.3 Proof of Lemma 5

Let {A:}? be given, and, fork = 1,2, - - -, n, let qu (2|, w), £ € &,
w & W, be a test channel for which
2 X d(x,8)qu (2], w)pi(z, w) £ Ax, (78a)
wEW =, £
and
I(X;X|W)) £ Rxjw,(A) + ¢ (78b)

where € > 0 is arbitrary. For w EW = Y., W,, 1€ X, 2 € &,
define the test channel

qi(2|x, w) = qu(d|z,w), forw EW,L1=Zk=Zn

Then
2 d(z, £)q.(|x, w)p*(z, w)

z.y.w
L

= ¥ T T d@ Heult]z wpie ) < 2 z A
k=1 wEWs z,¥ nr=1
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Thus, corresponding to the distribution p*(z, w)-qi(£|z, w),
1
I(X,X‘W)éRX{W(E§Ak)' (79)
However, by a straightforward calculation,

10X, X1W) = & & T, R W) <

S| =

él Rxyw,(Ak) + . (80)

The inequality follows from (78b). Combining (79) and (80) and letting
e — 0, we have Lemma 5.
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