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A general method 1s proposed to evaluate the radiation loss of bent open
waveguides. This method consists in evaluating the coupling between the
waveguide mode and the whispering-gallery modes that can be associated
with the surrounding medium. The expression oblained for a reactive
surface coincides with a previous result by Miller and Talanov.! We
investigate in detail the radiation loss of the fundamental (HEy) mode
of a dielectric rod coupled to a slab. This arrangement, described in Part 11
of this article series,? provides a useful mode-selection technique. The
radiation loss is given by a simple closed-form expression. We find that
for a wavelength of 1 um and a rod radius of 5 um in physical contact
with the slab, the bending loss is less than 1 dB/km if the radius of curva-
ture, in the plane of the slab, exceeds 22 mm.

I. INTRODUCTION

Open waveguides support modes whose phase velocity is smaller
than the velocity of plane waves in the surrounding medium. Thus,
no radiation takes place under normal conditions. If the fiber is bent,
however, the phase velocity increases in proportion to the distance
from the curvature center. At some radius, it exceeds the velocity of
plane waves in the medium and a radiation loss is suffered. This effect
is of great practical importance in fiber communication because it sets
a limit on how sharp bends can be made without resulting in un-
tolerable loss. For most single-mode optical-glass fibers, a radius of
curvature of the order of 1 cm can be tolerated. For gas lenses and
weakly guiding millimeter-wave systems, the minimum radius is
sometimes as large as 100 m. The relative insensitivity of glass fibers
to bends results from the rather large change in refractive index in
the cross section that they provide. It constitutes their main advantage
compared to other guiding systems.
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Different methods have been used to evaluate the radiation losses
of curved waveguides. For simple geometries, it is possible to solvethe
boundary value problem using a cylindrical coordinate system, the loss
being given by the imaginary part of the propagation constant. This
method was used by Miller and Talanov! for a reactive surface, and
by Marecatili® for dielectric slabs with various imbedding materials and
for waveguides with rectangular cross section. Another method con-
sists in evaluating the power radiated at the radius where the phase
velocity of the guided mode becomes equal to the velocity in the
surrounding medium. This approach was followed by Shevchenko* and
Marcuse.® Ray pictures have also been used to describe the propagation
in curved dielectric fibers.®

In most practical situations, the fiber curvature is not a constant
but varies along the fiber axis (z). This results in an additional radiation
loss suffered at the transition between straight and curved sections of
the fiber. This transition effect has been discussed in detail by
Shevchenko? for the case of a reactive surface. Because the radia-
tion from the bend itself has the form exp (—p/p,), where p denotes
the radius of curvature and p, a constant, and the radiations at the
junctions have the form 1/p%, the latter becomes significant for large
p, that is, for very low radiation losses. It should be noted, however,
that the mechanical strength of a fiber usually prevents an abrupt
curve. The transition radiation, therefore, is usually unimportant for
single-mode communication fibers (we assume that the fiber is other-
wise perfect). It is more important that, when a highly multimoded
fiber is bent in some random manner, the ray slopes associated with
the guided waves tend to increase in proportion to the square root
of the length of the fiber. Eventually, the rays cease to be totally
reflected. This is easily understood if we observe that randomly bent
fibers are analogous to mechanical oscillators (e.g., harmonic oscil-
lators for the case of square-law fibers) driven by random forces f(f)
proportional to the curvature of the fiber C'(z).5- The equivalent
mechanical oscillator gains energy as time goes on; that is, the ampli-
tude and momentum increase until the limit is reached. Note that,
even in nominally single-mode fibers, higher-order modes can be
excited and can propagate over a certain length (see Part II of this
article for numerical values?) and cause significant pulse spreading.
This problem will not be discussed further here. In what follows, we
assume that the fiber curvature is a constant. This is the case if the
fiber is wound on a cylindrical drum. Our calculation, therefore,
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constitutes a first step in the evaluation of the losses of randomly
bent fibers.

To evaluate the radiation loss of curved fibers, we shall use an
approach akin to the one used in Part II of this article series.? For
curved geometries, the guided mode is coupled to the whispering-
gallery type of radiation modes rather than to sinusoidal standing
waves. We first assume that the surrounding medium, which we will
call a substrate, is bounded at some radius p, and has finite dissipation
losses. The loss suffered by the waveguide mode as a result of its
coupling to the substrate is evaluated. Radius p, is subsequently
allowed to reach infinity and the dissipation loss to vanish.

These whispering-gallery modes are characterized by a ecircular
caustic with radius p,. The behavior of the field is oscillatory outside
the caustic and exponential inside the caustic. At the caustic, the
phase velocity is just equal to the phase velocity of plane waves.
It is not difficult, therefore, to find for what values of p, synchronism
with the waveguide mode is achieved. Although p, exceeds only
slightly the rod curvature radius p, the distance y, = p. — p is the
most critical parameter that influences the loss. Once the synchronism
conditions have been obtained, we evaluate the coupling coefficients
and the mode-number densities using the method described in Part II.
We shall use for the waveguide field an expression applicable to
sealar fields (described in Part I of this series?), which is slightly simpler
than the expression applicable to the Maxwell field.

Formulas applicable to arbitrary open waveguides are obtained in
Section II. We investigate in Sections III and IV the case of round
fibers whose dimensions are large compared with the wavelength, both
in free space and coupled to slabs providing mode selection. The latter
configuration is closely related to the single-material fiber proposed by
Kaiser, Marcatili, and Miller,* and to slab-coupled guides.’ Simple
closed-form formulas are obtained for the bending losses in all cases.

Il. GENERAL FORMULA

Let us consider an opened waveguide with propagation constant A
and radius of eurvature p as shown in Fig. 1. The general expression
for the radiation loss given in Part II is

£ = aNC? (1)
where N denotes the mode number density in the substrate (or sur-

rounding medium), that is, the number of substrate modes whose
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Fig. 1-—Curved fiber. The radiation loss is obtained by evaluating the coupling
between the straight fiber mode and the whispering-gallery mode shown with the
caustic (or turning point) at p,.

propagation constant lies between £ and h 4 dh at the waveguide
radius p, divided by dh. The term C?is the coupling coefficient between
the waveguide mode (fields E, H) and a synchronous substrate mode
(fields E,, H,). For the Maxwell field (see Part I) we have

40
C=5 [ (BuHu+ BH.— Bl — EuH)iz,  (20)
if the powers are normalized to unity; that is, if
fEXH-dS=fE.><H.-dS= 1. (2b)
The integral in eq. (2a) can be evaluated, for instance, along the z’
axis shown in Fig. 1.
When the transverse variations of permittivity are small, the

scalar parabolic (Fock) approximation is usually applicable. In that
case (see Part I),

1 [te
c=5 f (EE,/dy — E,0E/dy)dz, (3a)
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with
fuwszjhmw=1. (3b)

The terms % and &, denote propagation constants in the media.* In
eq. (1) the product NC? is to be evaluated in the limit where the
boundaries imposed on the substrate extend to infinity. In that limit
N — o, and C?* — 0, but NC? remains finite.

The waveguide mode, with propagation constant A, is synchronous
to a whispering-gallery mode with propagation constant h, in the
¥,z plane, whose caustic radius p, is given by

hp = hup.. (4a)

When the waveguide field is uniform along the z axis, h, is simply
equal to %k, the bulk propagation constant, and, in free space,
hy = k = w/e.

More generally, if k. denotes the z component of the wave vector,
then

he = (K2 — k2)%. (5)
The distance y, between the waveguide and the caustic is from eq. (4a):
yomp(l - ha/h) (4b)

The field of whispering-gallery modes is easily obtained from
ray-optics considerations, as illustrated in Fig. 2, in the paraxial
JWKB approximation. For a detailed discussion the reader should see
Ref. 13. We obtain

ytsin [(2/3)hep Yyt + 7/4], y>0
F(—y)texp [— (2Y/3)hp (=)', ¥ <O.
These expressions are asymptotic forms of

E,(y) = m4(2h3/p.) 2AI[ (2h3/pa) Yy ], (6b)

where (Ai) denotes an Airy function of the first kind, for large |y|.
Alternatively, these expressions can be obtained from asymptotic
forms of Bessel’s functions with large arguments and orders [see, for
example, the first eq. (42) in Ref. 37]. With sufficient accuracy we have

[Bwayg [y = o0 — o) @)

E,(y) = (6a)

* Within the Fock approximation, the difference between k and k, can be ignored
in evaluating the powers in eq. (3b). However, for improved accuracy, we retain the
distinction when n is not close to unity (e.g., n = 1.41),
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(a) PHASE (b) AMPLITUDE

Fig. 2—Illustration of how the field of whisgering-gallery modes given in eq. (6)
is obtained in the JWKB approximation. (a) The argument of the sine function is h,
times the difference in length between the ray AQ and the caustic arec AC. (b) The
amp[iltude term is obtained from a power conservation argument applied to the ray
pencil.

because only the oscillatory part of Z,(y) contributes significantly to
the total power, {(cos?z)~ %, and py — ps = ps — p in the limit
pp —>0,

The reciprocal of the mode-number density N is the change in
propagation constant at the waveguide radius p corresponding to a
change in the argument of the cosine function in eq. (6) equal to .
We find by differentiation of this argument

N = (2Y/m)p}(ps — p)*. (8)

Thus, if we characterize the y dependence of the radiation field by a
function

sw) ==NE) /| [rrima), (%)

we obtain, with the help of eqs. (6), (7), and (8),
S(y) = (2Y/4)pH(—y)~k " exp [— (2V/3)ho~}(—9)}], ¥y < 0. (9b)

In eq. (9b) we have replaced p, by p and &, by k. Therefore, the value
of S(y) at y = —y,, where y, is given in eq. (4b), is

S(yo) = (2Y/4)(1 — hy/h)~k" exp [— (2¥/3)ho(1 — hs/R)}]. (10a)
This expression is the asymptotic form of
S(yo) = 2trh~1(2h2p?) 8 Ai2[ (2h2p*)¥(1 — h./h)]. (10b)

Because we are limiting ourselves to small delays, 1 — h,/h <1,
we have
p= (B2 — k)2 20h(1 — hy/R)A. (11)
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Note, for later use, that at the waveguide radius p, E;'(0E./dy) is
equal to p. Using eq. (11), eq. (10) can be written in the simpler form

S(y.) = (3p) exp [—p/ (3p~*h)]. (12)

Let us now consider a waveguide structure, such as a reactive
surface or a slab, uniform along the z axis, and fields that are inde-
pendent of z. Because the field of the waveguide has an exp (—py)
dependence on y, the general expression for the radiation loss, eqs.

(1) and (3), is
e=p|&/ [y |sw), (13)

S(y.) being given in eq. (12).
For a reactive surface with normalized susceptance p (see Fig. 3),
we have

B / ji :w kEdy = 2p/k. (14)

Therefore, the radiation loss (in nepers/unit length) is, substituting
eqs. (12) and (14) in eq. (13),

£ = (p*/k) exp (—p/p.), (15a)
where
po = 2k2/p0. (15b)
AXIS
F————- ;

Fig. 3—Radiation loss of a curved reactive surface with normalized susceptance p.
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This expression coincides with a previous result by Miller and
Talanov.!*

For arbitrary waveguides with field £ (x), we need consider radiation
modes for all values of k. and not just &, = 0 as before. A simplification
comes from the fact that, as k. increases, the caustic moves away from
the waveguide and the coupling becomes negligible for some small

value of k..
Let us introduce boundaries at x ==L/2 and assume symmetry
for simplicity. The bending loss associated with some k. is

£(ks) = S(yo, kz) R (k2), (16)
where R(k.) is essentially the spatial spectrum of the waveguide field

Rk = | [ 108 - a8/ay)
- COS (k,x)d:v]z/(% fknE’dxdy) , (17)

po = (B — k) A 2Wh(1 — k/h)%. (18)

The quantity S(y., k.) given in eq. (10) is a function of k. through the
dependence of h, on k., and is given, according to eq. (5), by

where

he = (k2 — KDY=k — 1ki/k. (19)
To first order in k. we have
(21/3)hp(1 — ho/R)} =2 p/po + (ppo/ kD)K. (20)

This approximation supposes k. < p, or p>> p,, where p, is the
critical radius given in eq. (156b). These assumptions are acceptable
for long fibers, where only very small bending losses can be tolerated.
The dependence of k, on k. is important only in the exponential term.
Summing £(k;) in eq. (16), with S(y., k2) given by eqs. (10) and (20),
over k. we obtain

£ = (L/2r) fo * 8 (ka)dks
= (1/4mp.) exp (—p/ps) X jo ® LR(k.) exp (—ppok—2k2)dk.. (21)
po = 3K/ pg.

* The results in Ref. 1 are applicable to anisotropic bent surfaces and arbitrary
k.. For our case, the expression for the loss £ reads [as in Ref. 1, eq. (13.18)]
oL = val(l + o) Ha+ (1 + DL —2(1 4 a®)¥y]exp (2av),

where T means “to the power,”” v = kp and a« = p/k. This expression goes to eq. (15)
when « — 0, as one can (but not too easily) verify.
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This is a general expression for the bending loss of open waveguides.
Note that some of the assumptions could be relaxed with little addi-
tional complication. The integration over k., for instance, could be
performed without using the approximation in eq. (20), and we could
use the Maxwell field instead of the scalar field.

lll. BENDING LOSS OF A DIELECTRIC ROD

We consider in this section the fundamental HE,; mode of a dielec-
tric rod with refractive index n and radius a, with a 3> \ (see Fig. 4).
The asymptotic form of the field, given in Part II, is

E(r) = Jolgr), 7 <a, (21a)
with
Jo(ga) =0,
ga = (k*n* — k*)la = 24 - (21b)
h = kn — 2.87/kna?.
Therefore,

f B2rrdr 3 2r f * J3(gryrdr = 0.83a2. (22)
1]

By specifying the continuity of the first derivative of the field, we
obtain the field near the boundary (which is small but not strictly zero):

E(z,y) =~ (1.25/p.a) exp (—p.x”/2a) exp (—poy’). (23)

HEq,

Fig. 4—Field of the fundamental HE;; mode of a dielectric rod. The important
quantity is the field averaged over the z’ axis. Only the close neighborhood of point 0
contributes significantly to the radiation loss.
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The parameter E(k,) defined in eq. (17) is, in the present case,

—oo

+o 2
LR(k.) = (3.75/kna4)[ f exp (—p.xt/2a) cos (Ic,x)dx] - (24)
Using the equality

[[jm exp (—azx?) cos (r’c,x)dx]z = (w/a) exp (—kZ/2a),

we obtain
LR(k.) = (7.57/p.kna’) exp (—aki/p.). (25)

The total loss is obtained by substituting this result in eq. (21) and
integrating

£ = (1.6/pskna®) (op.k~2 4 a/p.)"t exp (—p/po). (26a)

The term p, is the same as in eq. (156b). The exponential term coincides
with the exponential term in Ref. 3 and is applicable to fibers with
rectangular cross section. For n = 1.01, A = 1 uym, and a = 10 um,
we obtain

£~ 18 X 10%(p + 480)~t exp (—p/80) dB/km, (26b)

where p is expressed in micrometers.
The loss in dB/km is plotted in Fig. 5 as a function of p for A = 1
wum, » = 1.01, and @ = 10 um. The bending loss is considerably

1000

100 |-

RADIATION LOSS IN dB/km

0.4 0.6 0.8 1.0 1.2 1.4 16
RADIUS OF CURVATURE p IN MILLIMETERS

Fig. 5—Bending loss in dB/km for a round fiber with radiuse = 10 um andn = 1.01
in free space, as a function of the radius of curvature p.
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Fig. 6—Slab-loaded rod. For selection of a single mode, the slab thickness must be
about half the rod diameter if the refractive indices are equal.

smaller for an oversized dielectric rod than for a reactive surface
having the same curvature and the same propagation constant.

IV. RADIATION OF A BENT ROD LOADED BY A SLAB

We now investigate the radiation loss of a dielectric rod coupled to
a slab having the same refractive index n shown in Figs. 6 and 7.

10,000

1000

8

RADIATION LOSS IN dB/km

| |
8 10 12 14 16 18 20

RADIUS OF CURVATURE p IN MILLIMETERS

Fig. 7—Bending loss in dB/km as a function of the radius of curvature p for a
slab-loaded rod withn = 1.41, A = 1 ym, and @ = 5 pm.
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The mode selection mechanism provided by this arrangement was
discussed in Part II. The thickness 2d of the slab is chosen equal to
half the rod diameter 2a so that, in the absence of curvature, only the
fundamental (HE;;) mode of the rod propagates without radiation
loss.

The propagation constant A of the rod is given in eq. (21b). For the
fundamental mode (H,) of the slab, we have k; & 7/2d = =/a. Thus,
from eq. (5), with % changed to kn, we obtain

he = kn — 4.9/kna?. (27)

Substituting these results in eq. (4b), we obtain the rod-caustic
spacing yo:
Yo = 2p/k*n*a®. (28)

It can be shown that the higher-order modes of the slab H,, Hj, - - -,
corresponding to k. = 2n/a, 3n/a, - - -, respectively, do not couple
significantly to the rod and can be ignored.

The normalized field at the surface of the slab (as we have seen in
Part II) is, with d = a/2,

+
B / f B2(z)dz 3 2n/p'a. (29)

Substituting the value of y, given in eq. (28) in eq. (9b) and multiply-
ing by the expression in eq. (29) to take into account the distribution
of the radiation field in the z direction, we obtain

S(y.) = (x*/2)/pa’. (30)

Here it is legitimate to assume that only the average waveguide field
is important. Thus, we can set k; = 0 in eq. (25). Dividing by 2,
because the field E, is a constant along x instead of a cosine function,
setting L = 1, and taking into account the spacing D between the rod
and the slab, we obtain

R = (3.75w/pkna®) exp (—2pD). (31)
Finally, we obtain the bending loss
£ = SR = 58(p*kna®)~! exp (—5.3p/k*n*a®) exp (—2pD). (32)

The term exp (—2pD) in eq. (32) is the same as in eq. (76) in
Part II, and is applicable to the spurious Hy mode of the straight
fiber. Thus, moving the fiber away from the slab reduces the mode
discrimination and the bending loss of the fundamental mode in the
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same proportion, A trade-off is necessary, therefore, that depends on
the application, e.g., integrated optics or long-distance communication.
The prefactor in eq. (32) also has the same form as for the diserimi-
nation loss of the straight fiber, with a very fast a=* dependence on the
fiber radius a@. The numerical factor, however, is almost 20 times
smaller. This, of course, is a welcome result. The first exponential
term in eq. (32) has the form

exp (—p/po), (33)
where the critical radius is now
po = kn2a3/5.3 = 15a%/A%, n = 1.41. (34)

For example, if A = 1 um and @ = 5 um, the critical radius is py = 1.9
mm. If n = 1.01 and @ = 5 um, the critical radius is py = 0.95 mm.
The complete expression in eq. (32) is explicitly, for n = 1.41,

£ = 2.3 X 108\ ;L (a/N) 5 exp (—12.5D/))
-exp [—p/(15a®/7?)] dB/km. (35)

This expression shows that the radiation loss does not exceed 1 dB/km
if p > 24 mm, when A\ = 1 yum and a = 5 gm. If » = 1.01 or, almost
equivalently, if the space between the fiber and the slab is filled up
with a material whose refractive index is 99 percent of the rod and
slab index, we have

£ = 12 X 1005 (a/\)5 exp (—1.75D/))
-exp [—p/(7.5a3/3*)]dB/km. (36)

For instance, for A = 1 yum, a = 5 um, and D = 0, a 1-dB/km bending
loss is obtained for p = 9 mm.

The radiation losses of the higher-order modes (e.g., Ho1) of the
rod can be obtained along the same lines. Because hspurious 1S sSmaller
than h,, the caustic radius p, is, for spurious modes, smaller than p.
Thus, the spurious modes see the oscillatory part of the whispering-
gallery modes. The radiation losses of these spurious modes, already
quite high, are not significantly affected by bending, except near the
“sound barrier’”’ h &2 h,. Near this point, the JWKB approximation
that we used to describe the radiation field is not applicable, and one
needs the description in terms of Airy’s functions. For the fundamental
mode (HEq) and first spurious mode (Hp), only the H; mode of
the slab need be considered. For high-order modes, however, a sum
needs to be performed over the various slab modes. We obtain from
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eq. (10b)
hS = 2ix Y. m2(2hip?)/6

m=1

A{ (2R [1 — kn/h + Fm*(x/2hd)?]}. (37)

The first factor m? in the sum expresses the fact that the slab field
at the boundary increases in proportion to the slab mode number m.
The term 3m?(w/2hd)? results from the change in the synchronism
condition with the slab mode number m. This function is plotted in
Fig. 8 as a function of: 1 — (kn/h) for A = 1 um, n = 1.41, a slab
thickness 2d of 10 um, and for a radius of curvature p = 16 mm. The
propagation constants of HEy; and H g modes for a rod with a radius of
10 um are shown on the same figure. We observe that the radiation loss
of spurious modes fluctuates by a factor as large as 100 (in dB/km) for
small changes of parameters. Of course, if the radius of curvature is
not a constant, these fluctuations tend to smooth out. Fig. 9 gives in
more detail the region 2 = kn for the same wavelength, slab thickness,
and refractive index as in Fig. 8, and for p = 16 mm and 48 mm. The
propagation constant of the rod modes are shown by arrows for a rod
radius of 11.5 um. This radius is to be preferred to the radius of 10 um
originally chosen because it provides a better discrimination ratio,
almost 10 in dB/km, for p = 48 mm. The next 16 higher-order modes
(each arrow, except the first, corresponds to a group of four modes)
have somewhat less radiation loss than the H; because they are

104
E
= 102
©
z
8 10k
S 10 A= 1um H
g ROD SLAB
E 072 a=10um 2d = 10um
g n=141 n =14
< p =16 mm
o
B 104
@ HEq4

H
10-6 1 ] 1 o )
—0.04 -0.03 -0.02 -0.01 0

1 —kn/h

Fig. 8—Radiation loss (proportional to AS) resulting from the coupling of the wave-
guide to the various slab modes (H,, H; ---), as a function of h (the waveguide
propagation constant), for 2d = 10 gm, A = 1 um, n = 1.41, and p = 16 mm.
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Fig. 9—Detail of Fig. 8 for h = kn, for p = 16 mm and 48 mm. The arrows denote
the rod modes (HE1, Ho, - - +) for a rod radius of 11.5 pm.

beyond the “‘sound barrier” (we are ignoring the dips that would be
smoothed out anyway in a real system). It is desirable, therefore,
that a second slab, with smaller thickness, be coupled to the rod to
damp strongly the modes just following the Hy; group, and to improve
further the discrimination against the other modes.

The bending loss that we have calculated is applicable to the fiber
bent in the plane of the slab. When the fiber is bent in the perpen-
dicular plane and with the same radius, the radiation loss is practically
negligible. Slab-loaded fibers should be manufactured, therefore, in the
shape of ribbons so that the mechanical rigidity of the fiber favors
bending in the plane perpendicular rather than parallel to the slab.
Physical considerations also suggest that a slight curvature of the
slab, which is unimportant when the fiber is straight, may help to
reduce the radiation loss.
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