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The noise introduced into charge packeis transferred through and
stored in charge-transfer devices is calculated in a manner that includes
all important relaxation, suppression, and correlation effects. First, the
noise induced into each packet during each transfer phase from thermal,
trapping, emission-current, and leakage-current fluctuations, whose
statistics are nonstationary, and from clock-voltage fluctuations, whose
statistics are stationary, is determined. Relazation of the iransferring
charge to these fluctuations is found to suppress their size. Second, the
accumulation (collecting) of the notse as each packet is transferred through
the device is calculated neglecting the role of tncomplete charge transfer.
Attention is drawn to the significant differences belween the collecting of
storage-process noise, which s unsuppressed, transfer-process noise,
whose spectral density is nearly totally suppressed at low frequencies, and
modulation noise, which is nearly tolally suppressed for digital and
analog signals. Third, the role of incomplete charge transfer in suppressing
the collecting of the noise is shown for digital signals and indicated for
analog signals. We conclude with a numerical calculation of the mazimum
possible signal-to-noise ratio that can be expected from charge-transfer de-
vices. The presenlation is sufficiently general and detailed that, with o
minimum of background in formal noise theory, one can use the approach
to evaluate noise in many novel, solid-state devices.

I. INTRODUCTION

Charge-transfer devices (CTD’s), such as the bucket-brigade' (BB)
and charge-coupled-device? (CCD) shift registers, are currently of
great interest. These devices consist of a chain of charge-storage
elements along which charge packets are transferred from input to
output. Noise accompanying each individual transfer of each charge
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packet will be introduced into each packet. It is the purpose of this
article to calculate this noise and its cumulative effects on the output
signal.

Noise generated in solid-state devices has been treated extensively,®—®
and this prior work will be of great assistance to us here. However,
there are three major, significant differences between much of this
prior work and the present treatment.”.® The first difference arises
from the nature of the transfer process.® The usual treatments of
noise discuss situations in which the (noiseless) currents, charge
densities, conductances, etc. associated with the signal are time-
invariant. Under such conditions, the statistics of the noise are also
time-invariant and the noise is said to be stationary. Stationary noise
is readily treated in the frequency domain using spectral-density
functions. Frequency-domain, linear-circuit analysis of equivalent
circuits greatly facilitates the usual treatments. (Sometimes, as in
mixer theory, periodic rather than time-invariant situations are con-
sidered, and frequency-domain analyses are still convenient.)

In CTD’s the situation is quite different. During the transfer of the
charge from one storage region to the next, the (noiseless) currents,
charge densities, conductances, etc. associated with the transfer of the
signal packet are rapidly time-varying.? As a result, the noise generated
during transfer is nonstationary; that is, the statistics of the current
fluctuations that give rise to noise vary appreciably with time. Once
the transfer is complete, a certain amount of noise has been introduced
into the signal independently of the noise acquired in prior or sub-
sequent transfers. The processes of interest, therefore, are nonperiodie
as well as nonstationary. Under such conditions, we have found it best
to work in the time domain using correlation functions.

The second basic difference between this treatment and other
treatments arises from the physical structure and operation of the
device. Ordinarily, we can externally control the noiseless portion of
the voltages and currents associated with the signal. In CTD’s,
however, the size of the charge packets, in addition to the charac-
teristics of the clock voltages, controls the charge transfer. Thus, the
noise currents that we usually calculate function as additional driving
terms in calculating charge transfer and, of course, result in fluctuations
in the sizes of the packets. But it is the reaction of the charge transfer
to these currents, and not the currents themselves, from which we
must calculate charge-packet fluctuations.’®t (Normally, we control
either the voltage across, or the current through, the device of interest
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and calculate fluctuations in the other. Here we control neither
directly.)

A third basic difference is that it by no means suffices to calculate
only the noise introduced during a single transfer. The collecting” of
the noise must also be carefully calculated to include correlation
effects that lead to a suppression in the cumulative noise added to each
packet while being transferred by the device. The number of un-
expected effects makes treating noise in CTD’s truly interesting.?

At first the nonstationary feature of the noise coupled to the reaction
of the charge transfer might seem to preclude a reasonably simple,
analytic treatment that produces useful results. Indeed, some of our
expressions will be a bit complicated. However, owing to certain
suppression effects, which will be discussed in detail, the mean-square
induced fluctuation in the size of a given charge packet at the end
of a single transfer is nearly independent of the size of the packet.
Thus, having calculated the magnitude of this fluctuation, it will be
possible to obtain a simple, meaningful expression for the spectral
density of the accumulated noise at the output which is independent
of the signal. This quantity is quite useful for evaluating the effects
of noise on the analog performance of a CTD. By contrast, for digital-
performance evaluation, only the accumulated mean-square fluctuation
in the size of a charge packet at the output is needed. As we shall see,
this quantity is arrived at in a straightforward manner using our
time-domain analysis without the necessity of working in the frequency
domain at all.

In what follows, we shall outline briefly the noise sources whose
effect on the output charge packets we shall caleulate. Then, following
a review of the lumped-charge model of a CTD, which has proven to
be so useful in the analysis and calculation of incomplete transfer
coefficients, we calculate the statistics of the noise charge introduced
in a single transfer in terms of the statistics of the microscopie fluctua-
tions inducing this noise. Thermal, trapping, clock-voltage, emission-
current, and leakage-current fluctuations are considered. Three
different types of compounding, storage-process, transfer-process, and
modulation, are then treated neglecting incomplete-transfer effects.
Following this, the general problem of compounding in the presence
of incomplete charge transfer is treated and interesting suppression
effects are uncovered. The paper ends with calculations of the maxi-
mum signal-to-noise ratio expected for state-of-the-art devices. As the
techniques employed in calculating nearly all aspects of the noise are
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of necessity different from those usually encountered, we have chosen
to elaborate our methods in some detail. From a knowledge of the
noise at the output, the operational limitations’® and error rates!
associated with CTD’s can be assessed.

The remainder of this article is long and intricate. This arises not
from the nature of the noise treated per se, but rather because of the
complexity of the devices considered. Nonetheless, familiarity with
the physical operation of CTD’s as well as acquaintance with Brownian
motion and shot noise are the only prerequisites needed. No use is
made of highly developed, sophisticated techniques of noise theory.
This is not because such techniques are not considered applicable;
rather, it is felt that the methods used here are the simplest available
for a rigorous treatment. In addition, it is felt that these methods will
be useful in treating noise in other dynamic devices as well. Readers
well versed in noise theory may feel that this problem is amenable to
existing methods. While the contrary is not claimed here, we believe
that such treatments will be more involved than might be expected
at first sight.

Il. SOURCES OF RANDOM NOISE

We should at the outset stress that we are concerned here only
with random noise. We are not concerned with signal distortion arising
from sampling, incomplete transfer,'* !¢ direct clock coupling, nonideal
regeneration, or any other deterministic process. This is not because
we feel that such problems are unimportant. Rather, our philosophy
is that random noise is unavoidable, whereas, in principle, deter-
ministic “noise”’ can be greatly reduced or compensated for by careful
design.’® Thus, it is random noise that plays a major role in setting
the operational limits of CTD’s, which is a problem of general current
interest.

Figure 1 indicates schematically the sources of CTD noise with which
we shall be concerned. At the input, if the charge packet is created
by photon absorption as in imaging application, or if it is injected by
an emission-limited mechanism, full shot noise [{(@ — Q¢)%) = Qo]
will acecompany the signal Q. If, on the other hand, the packet is
injected into the input via a resistor-controlled circuit, as in regenera-
tion and storage applications, no shot noise will be introduced.

The CTD itself simultaneously transfers charge and stores charge.®
In its charge-transfer capacity, thermal noise from the Brownian
motion of the carriers composing the transfer current and trapping
noise from the fluctuation in oceupancy of interface states'” arise. Care
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Fig. 1—Sources of noise for a CTD.

must be exercised in calculating this transfer noise because of the
tendency of relaxation effects to suppress thermal and trapping
fluctuations.” Since the transfer of charge from one storage region to
the next is controlled by the conductance of the storage regions them-
selves (or portions thereof), shot noise in the transfer current is
totally suppressed for all practical purposes. (Exception: Should such
current become barrier-limited, then some shot noise can result. This
special case is treated in Section 6.1.) In its capacity of charge storage,
noise from leakage-current fluctuations and trap-occupancy fluctua-
tions is introduced. Although intrinsically much smaller than transfer-
noise sources, storage noise is unsuppressed, and, hence, it can be
important in some cases. At the output, we have the usual problems
with detector noise, but we shall not consider these problems at
this time.

What is of basic interest is, of course, the ecumulative noise in the
charge packet by the time it reaches the output of the device. As it
turns out, one must be very careful in calculating the collecting of the
noise introduced into each packet during each phase of each transfer
cycle. For example, if at the end of a transfer phase, a transfer noise
of +AQ has been added to the signal, by conservation of charge, a
quantity of charge —AQ has been added to the charge left behind.
These two contributions to the noise are highly correlated, and this
correlation must be taken into account in calculating the noise spectral
density at the output.” Incomplete transfer of charge distorts the
noise as well as the signal, and must also be included in collecting
effects. Fluctuations in the clock voltage coupled to fluctuations in the
sizes of the storage capacitances of the individual storage cells of the
CTD give rise to modulation noise, which collects quite differently
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from the noise induced by fluctuations in the clock voltage in the
absence of cell-parameter variations along the CTD.

These, then, are the aspects of the noise produced by CTD’s that
we shall diseuss. In calculating these various contributions to CTD
noise, we were surprised by the variety of the results: the presence or
absence of suppression in individual transfer phases, differences in
compounding suppression, stationary fluctuations in charge-packet
fluctuations induced by nonstationary noise sources, ete. Athough we
by no means treat all aspects of CTD noise, the methods we develop
should be helpful in calculating the influence of nearly any source
of noise on the output of a CTD.

IIl. MODEL OF CHARGE-TRANSFER DEVICE

All device noise arises ultimately from fluctuations inherent in the
transfer of charge carriers between states characterizing the flow of
charge through the device.!® It follows that to caleculate CTD noise,
we must first understand how a CTD operates under noiseless con-
ditions.®!* As this topic has been the subject matter of a large number
of papers, 11 g detailed elaboration here is not necessary. We shall,
however, briefly review a lumped-charge model'®!* of charge transfer
within a single transfer unit of a CTD, which has proven useful in
discussing and calculating incomplete charge transfer in CTD’s. This
model enables us to express the device current as a function of several
characteristic voltages, which in turn control the charge passing
through the device. Using this model, we can then calculate fluctuations
in the sizes of the transferred charge packets in terms of the current
fluctuations which accompany the charge transfer and which can be
calculated by standard means.!®

The lumped-charge models we shall use to calculate CTD noise are
shown in Figs. 2a and 2b. Charge @, stored on capacitor C, is trans-
ferred to eapacitor Cy during the transfer cycle. (The clock voltage
which determines the duration of the transfer cycle is V,..) In sub-
sequent cycles, the charge on C; is transferred to the right step by
step to other storage sites, and charge from the left is brought into
C,—both processes are modeled by repetitions of this model for a
single transfer unit. For the present, we shall be concerned only with
a single transfer unit, either of type (a), if the charge transfer is
characterized by a single-step process, or of type (b), if the transfer
is characterized by a two-step process. In the latter process, an inter-
mediate capacitor C, is inserted between C, and C; to enhance their
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Fig.. 2—Lumped-charge model including the effect of interface states for the
transfer of charge through a single stage of a CTD. (a) Single-step transfer. (b)
Two-step transfer.

mutual isolation so as to reduce the incomplete transfer. As we shall
see, this also has the effect of reducing the noise acquired by the
transferred packet.

Let us now review the dynamic features of the lumped-charge
model of Fig. 2a in some detail. Stored on C, = C,(V,, V4, V., V,,) is
a time-dependent quantity of stored charge Q, given by

Va
Qs = Ca(v.;, Vd, Vc, V!l‘)dV;; (13)

V#U
stored on C..(V,, V4, V., V,,) is a relatively small, time-dependent
quantity of interface (trapped) charge @,, given by

VDD
Qo = [V Coa(Vy Vi, Ve, Vi)V, (ib)

880

The total charge @ to be transferred through the conductance
I =1(V.,VaV,V,)isgivenby

Q= Q.+ Q.. (e)
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Stored on C is a charge Qg given by

Va , ,
Qd = Qu_ Q = v Cd(Var Vd: Vc: Vas)dVrh (ld)

do

where @, is the total charge to be transferred through this single
transfer unit. (Q, is some constant for each transfer event: it is the
quantity of charge initially distributed between @, and Q.. to be
transferred to Cy.) The time dependence of the decay of . during
the charge transfer is governed by the equation

Qa=—Q =1V, Va, Ve, Vi) + ialt), (2)

where 7, (f) is the device noise current induced by microscopic fluctua-
tions within the conductance I. To determine CTD noise we must
(7) solve eqs. (1) and (2) for fluctuations in Qs induced by 7.(t) (and
by fluctuations in V., and in trap occupancy), and (%) express .(f)
in terms of the microscopic fluctuations from which it is induced.

For two-step transfer processes, as modeled in Fig. 2b, the dynamics
of the charge transfer are more complicated. One must now be con-
cerned with @,, Qs, Qa, @..1, and Q.2 defined by

Vﬂ
Q= [ " CuVi Vo, Ve VeV, (3a)
v
Qb = v ’ C},(V'E, Vr_:, Vd, Vc, Vasl.; Vuﬂ.)dV};; (Bb)
bo
Vd , '
Qi = , Ca(Vi, Va, Vi, Viga)dVy, (3c)
do
Vsl 1]
Qaal = .[V Casl(Va) Vb, Vc, Vsrsl)dvssh (3d)
2510
Vasz r '
QNZ = ./'V Cﬂ!’z(Vbj Vd; Vc, sz2)dVa'32- (38)
2820

In addition, we have

Q = (Qﬂ + Qul) + (Qb + QasZ) = Ql + QE, (3f)
and

Qu=Q,— Q=Q, — (@1 + Q). (3g)

The corresponding dynamic equations governing the time dependence
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of Q,, Qs and @, are

Ql = Qs + Qul = _'Il(lray by c; Vasl) - inl(t); (43)

QZ = Qb + Quﬂ = Il(V's, be; "fc, V.ul) + %nl(t)
- I2(Vb: Vdr VC: Vn2) - "':nﬂ(t)y (4b)

Qd = Iz(Vb, Vd, Vc, Vuz) + ’f:nz(t), (40)

where again the noise currents ,; and 7,. are the device noise currents
induced by microscopic fluctuations within the conductances I; and
I, respectively. To calculate the fluctuations in Q4 we shall solve
eqs. (3) and (4) for the influence of 7,1, 242, and fluctuations in V. and
in trap occupancy Q,.,; and Q,.s, on Qq.

IV. NOISE INTRODUCED IN ONE CHARGE-TRANSFER CYCLE

Let us now inquire into the influence of device noise on the size
Qa of a charge packet transferred through one single-step transfer
element of a CTD. (Owing to the additional complexity associated
with a two-step transfer element, we shall relegate the noise treatment
of this case to Appendix A). It is the purpose of the remainder of this
section to write the mean-square fluctuation in @, qq, in terms of the
independently fluctuating voltages and currents characterizing the
transfer and storage process. By expressing all dynamic quantities in
terms of a minimum number of independent ones at the outset, we
can greatly reduce the number of cross-correlations which we must
eventually include.

If we assume that the fluctuations themselves are sufficiently small,
then we can linearize egs. (1) and (2) about their time-dependent,
noiseless solutions. The form taken by eq. (2) upon expanding to
lowest order in the fluctuations (and subtracting out the noiseless
portion) is

.l oI
qa = q = 6V s+ d+aV- c+aVuyu+T'n; (5)

in which lower-case letters indicate the fluctuation portion of the
quantity of interest, e.g., @ = Q° + ¢, Qu = Q2 + gq, ete. Since v, and
vq depend upon g, we must also linearize eq. (1), which will yield this
dependence. In calculating incomplete charge transfer, it was necessary
to pay special attention to the dependence of C, and Cy on V,, Vg,
Ve, Ve This was because most terms in the small-signal expansion of
Q. and Q. contributed to the incomplete transfer of charge. For our
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purposes here, however, we can recognize such terms as small; that
is, we can drop terms of the order of incomplete transfer times noise
compared to terms of the order of unity times noise. As incomplete
transfer per transfer is at most 3 X 102 in devices of interest, this
is certainly warranted. Proceeding in this manner, we obtain

q= C,(V‘;, 3, V?;, V?,)‘v, —_ Cx(Vgo, g, V‘:-; V.rux)vto
+ Cu(Vg, Vg, V:J:; Vgs)vu - CIE(V:) Vﬁ, V‘:-, Vgso)vuo
= C;U; — Cgv.m + Cuvu - C:zvuo (63')

and

go =—¢q = Cd(ng g: V‘,’_-, Vgs)vd - C‘I(Vg’ 30’ Vg’ V::)vda
= Cdvd - Cgudo- (Gb)

It is these equations that must be solved for », and v, in terms of g,
Ve, and vg,.

At this point a minor subtlety enters. In Fig. 2a, contact 1 is tied
to the clock voltage V.. Since a fluctuation v. in V, cannot instan-
taneously alter the amount of charge stored on C,, fluctuations v, and
v,, must be correlated, and indeed this correlation is contained in
eq. (1a). A similar argument also applies to contact 2, va and v4,, and
eq. (1d). (Since the capacitance C,, is not tied directly to the clock,
we need not concern ourselves with trapped charge at this point.)
It follows from eqs. (1a) and (1d) that

OV, V.G LG
Vgo = GVC v, = aVc Cg Ve = (+1) C: Ve (7&)
and that
Ve VaCa _gg
Vio = —a Vc Ve = —676 ﬁg Ve = ( 1) CE Ve (7b)

[In (7b), 8Va/aV. =—1 because it is — V. that is connected to
contact 2.] With respect to the traps, since V,, is the effective level
to which traps are occupied during the transfer cycles, V.., is un-
affected by the dynamics of the operation of the device and, hence,
Veso = 0. We may now solve eq. (6a) for »,, (6b) for v, and insert
into eq. (5) to obtain

R - r ol
qd=—(%_+wg—'d)gd+(gm+g,+rvc)vc
) .
—_ (gm-c‘—' — 6—V.—.)v,. + Tny (SB;)
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from which it follows at once that

qa(?) =fo‘ di’ exp [—f: dt”/r(t”}][(gm +;_;;)

where we have taken g, < g, and defined the time-dependent relaxa-
tion time = by

v.(t)

Iy

vt + z',m] , (8b)

t

/7 = gn/Cs. (8c)

(The capacitances C, and C; are of comparable size.) In eq. (8), gm
is the forward conductance (81/aV,) and g, is the reverse conductance
(— aI/8V,). Because of the inherent undirectionality, g» >> g-. The
statistical distribution of ga(t), which we seek, can be determined from
(8b) and the statistical properties of v, v,,, and 7n.

Our expression for the noise fluctuation in the transferred charge
given in eq. (8) has several interesting features which should be
carefully noted. The charge fluctuation that accumulates is not simply
the integral of the noise current over the time interval. Rather, it is
the integral of the noise current times a damping (relaxation) factor.
Physically, this arises because if an excess quantity of charge —g(=ga)
has been transferred, then the subsequent current (which depends
most strongly on g,) is reduced from what it would have been in the
absence of the fluctuation. The reduced current causes less charge to
flow from C, to Cq4, which in turn tends to partially compensate (null
out) the effect of the previous fluctuation. This leads to a suppression
of the device noise, which is shown explicitly in eq. (8b). During the
initial portion of the charge-transfer cycle, the transfer current is
largest, as is the conductance g.. Hence, although the larger the
current, the more noise is present in the charge transfer, because the
damping is also largest initially, the effect of this noise on the trans-
ferred charge can be expected to be greatly suppressed. On the other
hand, near the end of the charge-transfer cycle, while the noise from
the transfer of charge and its accompanying noise is much reduced in
size, so is the damping. As it turns out, it is the noise produced during
the end of the transfer cycle that is most important. This is con-
venient, because it means that the size of the noise produced by the
end of the transfer cycle is independent of the size of the initial charge
packet (as long as some charge is transferred).

Of primary interest is the mean-square fluctuation in the transferred
charge (ga(t;)?), where ¢, is the time at the end of the transfer cycle.
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Sinee the fluctuations v., v,,, and ¢, are mutually independent, as we
shall see when we determine their statistical distribution, it follows that

) = [[" i [ v | = [/
o[ Lo 5£), -+ )

amn (=), (- )
X {gss(t1)qes(t2) ) + (in(t.)in(u»]_ 9)

]

ty

In (9), we have used C,.v:,s = ¢., and gn/C, = 1/7. Thus, to determine
{q3), we must calculate the autocorrelation function of v, v,,, and %,.
For stationary noise, such quantities are well known.*=® The purpose
of the next section will be to calculate these autocorrelation functions
for the nonstationary conditions that enter the present problem. The
reader should note carefully at this point, moreover, that the factors
multiplying these correlation functions involve time-dependent quan-
tities characteristic of the detailed (but noiseless) solutions to the
nonlinear device equations [eq. (1)]. Although further simplifications
can be made in some cases, it should be evident that, in general, one
must understand the noiseless problem in order to do the problem
with noise.

Two other important aspects of our results (8b) for ga() and (9)
for {qa(t,)?) are these. First, as a result of the suppression factor,
qa(t;) and, hence, {ga(¢;)?) are for all practical purposes independent
of the size of the signal. Owing to the suppression, g4(¢,) depends most
strongly on details of the charge transfer for ¢ & ;. However, consider-
ing the typical size of @, the coefficient of incomplete charge transfer
(a = 107%), the details of the charge transfer for ¢ & ¢, can deviate by
only about 103, which for our purposes is quite insignificant. Second,
qa(ty) is a stationary random variable, even though its statistics must
be derived from the nonstationary distributions of v., v.,, and %..
These two results greatly simplify our treatment of compounding of
the noise in Section V.

(Note that, to avoid undue complication, we have left out leakage
current into the storage regions, as well as the noise associated with this
current. As this noise source is uncorrelated with the other sources
considered above, we can treat it in a separate section. When this
component of noise is included, it is no longer the case that gz = —¢q
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[eq. (6b)], and, hence, greater care must be exercised when we sum
the noise added with each transfer. This effect also shows up in the
distinction between transfer process and storage noise, which is
discussed in more detail in Section V.)

V. NOISE INTRODUCED BY MICROSCOPIC FLUCTUATIONS

In the preceding section, we expressed the mean-square fluctuation
in the charge transferred during a single transfer cycle in terms of the
autocorrelation functions of the various contributions to the device
noise. In this section, we shall calculate these correlation funections
and then use the results to estimate the noise of each type introduced
during a single transfer cycle. Our task is eased considerably because
of the extensive effort that has already gone into the study of noise
in solid-state devices.*~¢

Although at first sight the character of the charge transfer from
C, to Cq in a CCD appears to be rather different from that in an
IGFET bucket-brigade device, in fact, the two types of charge transfer
can be treated in a similar manner. We shall carry over this similarity
in treating the device noise associated with ¢.(f): we shall make use
of the understanding available of noise in IGFET’s and then apply
these results to the CCD as well. In so doing, we must (and shall)
be careful to make note of certain important differences between
CCD-mode and BB-mode transfers which can affect the noise
calculated.

5.1 Thermal noise

Of the primary sources of noise present in IGFET’s—thermal noise
at high frequency,” generation-recombination (g — r) noise at inter-
mediate frequency,® and 1/f noise at low frequency?—by far the
most important source of noise associated with ¢,(¢) is the thermal
noise arising from the Brownian motion of the charge carriers in the
inverted region of the semiconductor, which forms the conductance I.
(This is evident because the spectral densities of 1/f and ¢ — r noise
have dropped considerably from their peak values by 10° Hz, the
lower bound on CTD transfer frequencies.) (In CCD’s the proximity
to the semiconductor-insulator interface of the charge being stored as
well as transferred greatly enhances the role of interface trapping on
(g2). In fact, for CCD’s, it appears that interface noise is the dominant
form of device noise in these devices. For reasons that are apparent in
the next subsection, we shall treat this contribution as a trapping noise
associated with v,, rather than as 1/f noise associated with %,.)
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Of the early theoretical work on thermal noise in IGFET’s, the
treatment by Jordan and Jordan®? seemed clearest to us on first
reading. These authors note that a spontaneous current fluctuation
7.(z, ) at z along the channel of the IGFET (0 £ o £ L) will give
rise to a voltage fluctuation v,(z, £) = 4.(x, {)dz/uo(x, t), where u is
the mobility of the carriers and ¢(z, ) is the mobile charge per unit
length of channel at time ¢ The spontaneous voltage fluctuation
Ve(z, t) will in turn induce an z-dependent voltage fluctuation all
along the channel, which in its turn induces a fluctuation in the
source-to-drain current 74 given by

ia(t) = %a’(z, v, (z, 1). (10a)

Making use of the above relation between v, and 4., we obtain
14(t) = 2.(z, t)dz/L. (10b)

[The same result can be obtained using the impedance field method
(IFM).22 Alternatively, one can develop a current-current method
analogous to the current-voltage method employed in the IFM. This
is outlined briefly in Appendix B.] The contribution to the noise
current 7,(t) due to 74(¢) induced by fluctuations all along the channel
is from (10b)

L
in(l) = [ 4 (x, U)dz/L, (11a)
0
so that
L L
(in(82)in(ts)) = fo dzy fo 9 (G (21, 82)ia (s, 12))/L%  (L1b)

The autocorrelation function of %,(z, ) for thermal noise can be
found from that of the current density j.(x, ¢) obtained from micro-
scopic noise theory !® and given by

(7a(X1, 1) 7a(Xe, £2)) = 28T up (X1, £2)8(Xs — X2)6(81 — t2), (12)

where p(x;) is the charge density at x,. Inserting (12) into (11b)
and noting that o(x) = o¢(z)/A(z), A(x) being the cross-sectional area
of the channel at x, we obtain

(in(ta)in(t)) = 2475t — 1) [ *wo(z, tyde/IA (138)

The integral in (13) must be found from a knowledge of the noiseless
operation of the device at time {;. In general, the integral is directly
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proportional to the forward conductance® so that
(@n(t)in(te)) = 2kT8(t1 — ta)gm(tr) Hn(tr), (13b)

where H, = 1 for the IGFET operated in the linear region, H, = %
for the IGFET operated in saturation, and H, = } for diffusion-
limited current.!! In most cases of interest, the CTD is operated in
saturation so that H, = %. For very long clock periods, H, = 3,
appropriate near the end of the cycle, can be used. As the 30 percent
uncertainty between i and % is tolerable at present for noise calcu-
lations in these devices, we shall not concern ourselves with the
additional dependence of H, on the time {,. (Setting H, = % and
H, = 1 gives adequate upper and lower bounds on the thermal noise.)

[Although (13b) was derived for the bucket-brigade type of charge
transfer, we shall assume that it is valid for CCD-type transfer as
well, where, of course, one uses g, appropriate to the CCD device.!o:!!
This assumption clearly breaks down, however, when (gz)* becomes
comparable to or larger than the amount of free charge incompletely
transferred in a single transfer phase. The reason for this difficulty
goes back to the assumption of linearity in eq. (5). This, of course,
also applies, mutatis mutandis, to all other noise contributions as well.
Treating these interesting nonlinear problems is, unfortunately,
beyond the scope of this paper.]

Returning now to (9), we can calculate the contribution to (gi)
arising from thermal noise during a single transfer cycle. If we set
H, = %, ignore the time dependence of C, (a 0.1 percent effect if
a = 107%), and recall that ! = g,.,/C,, inserting (13b) into (9) and
integrating over ¢, and ¢,, we obtain

(@3)|vr = 3kTC, (14a)
in the limit that

exp [— L" dt’/-r(t’)] <1,

as it must if the incomplete transfer « is to satisfy & << 1. (In deriving
the above, we have not assumed that g. is independent of time.) A
corresponding result was first given by Boonstra and Sangster;*
however, their (gi) was four times larger than the right-hand side of
(14a). We believe that (14a) is in fact correct.

[If one ignores the nonstationarity of the noise, a result similar to
that of Boonstra and Sangster can be obtained in the following manner.
For thermal noise, the mean-square current fluctuation is given by
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(13) = 4kT3gnB, where g, is the conductance and B is the bandwidth.
If 7 = C,/gm is the characteristic relaxation time, then B = ! and
(g3) = (i3)7* = 4kT2C,. (The quantities (g2) and (s3) are mean-square
fluctuations, not Fourier coefficients. The quantity (i) is obtained
from the spectral density of ¢4 using the Wiener-Khinchin theorem.)
While this result is not too bad, attempting to calculate noise in more
complicated, nonstationary situations using stationary results can
lead to trouble. For example, for a two-step transfer process, we obtain
for the thermal contribution to (g3) the result [from eq. (62)]

(@) xr = 2kTCy + 2KTC,(1 + b1), (14b)

where b = (gme/Cs)(gm1/Cs)™", and is assumed to be independent of
time. This result is more of a challenge to obtain from arguments
based on stationary noise sources.]

5.2 Interface (trapping) noise
We now focus attention on calculating the statistics of

qu(t) = Cas(t)”u(t):

the fluctuations in occupancy of the interface states during charge
transfer. To proceed, we must first write down the dynamic equations
governing the trapping. These are simple since we are working in the
lumped-charge approximation. If greater accuracy is desired, one can
be more microscopic and include the position and energy dependence
of the trapping states, as well as their capture cross section and
thermal-release time. The procedure is similar but much more involved.

The dynamic equation relating the flow of charge into and out of
the traps is

Qe = I(I, Q) — I1:(Qss) + Tnee, (15)
where the trapping current 7, is given by
I = I(0:/A)(Qss — Qus)/ Qs (16a)
and where the release current I, is given by
I, = Q./7:(1). (16b)

In (15), 2n4, is the noise current associated with the filling and emptying
of traps; in (16a), [ is the transfer current, ¢./A is the ratio of the
effective cross section of all the traps to the area A through which I
flows, and the factor (Q% — @,.)/Q% is the fraction of the total number
of active sites Q% that are empty; in (16b), 7, is the thermal-release
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time. Writing Q,, = Q% + ¢.., expanding to first order in the noise
qss, and subtracting off the zero-order equation, we obtain for the noise

o _er el Lol _ L
Qas = al aQ“ Qss aQ” Qss 6‘Q” Qss

_ | feer 1 1
B [ 10Q, " (t) = 7.(0)

= _Qau/'ru(t) + ?:nu; (170)

+ Znae (17a)

+ ] Qoo+ inne (17D)

where 7, is the effective trapping time (81,/dQ..), and where 75’
equals the bracketed quantity in (17b). (Ordinarily /7 < I, so that
the first term in 7' can be neglected. Under these circumstances, the
noise contribution from different types of traps will be independent,
and the traps may be treated independently.)

Proceeding now, we solve (17¢) for g..(t), obtaining

0.0 = [t exp [— [ dt”/r,,(i”)] (%) (18)

To obtain the correlation function of g.(f), we must calculate
(@ss (t1)qss (2) ). The resulting expression involves the correlation func-
tion of Zn.,(t), Which, since 7., is an elementary microscopic process,
is given by®

(inu(tl)inas(h}) = e[Ig(tl) + I?(tl)ja(tl - E'ﬂ): (19)

where e is the charge on an elementary carrier. (The above is not
obtained from a spectral density, since for a time-dependent current,
a nonstationary process, spectral density is not defined.) For & > t,
it follows that

(qee(t1)qss(t2) ) = exp [~ L :2 dt/r,s(t)]
- ﬁ " dt exp [— f " dz'/f,,(z')] e[ 1) + 20T (20)

If this result is inserted into (9), summation over all trapping states
yields the contribution to the transfer noise arising from these states.
As is evident from (20), in general, one must know the noiseless
solution, especially 7..(t), I5(f) and I3(¢), in order to actually calculate
the noise. A few simplifications, however, permit us to recover
Tompsett’s result’” for a single-step, CCD-mode transfer, which is
valid in the limit of I, < I,, i.e., near the end of a transfer cycle.

NOISE IN CTD'S 1227



To calculate the contribution to {¢}) arising from interface-state
trapping, we must, according to (9), know not only (g..(¢1)q.s(t2)),
which we found above (20), but also (3/d€,,). This quantity entered
into a previous discussion!® of the role of surface states on incomplete
transfer. There it was noted that one could write

91/8Q,, = —a(t)/7(t), (21)

where for CCD-mode transfer ¢ = 0 and for bucket-brigade-mode
transfer a falls from e = C,/C., during most of the transfer cycle
(Ccn being the channel capacity) to a &~ 0 toward the end of the cycle,
where the IGFET current becomes emission limited. [The vanishing
of a for CCD-mode operation is due to the fact that the field felt by
a mobile carrier due to another carrier is independent of whether the
other carrier is free or trapped. The large value of a for BB-mode
transfer arises from the fact that relatively small changes in the
threshold voltage, induced by changes in trap occupancy in the channel
region, can result in relatively large changes in transfer current. If a
is large, it enters (9) as a?, while, as we shall see, {g5) is proportional
to C,, (KC.y for the IGFET channel). This implies that the ratio (R)
of the surface-state-noise contribution to (¢3) for bucket-brigade to
that for CCD is C,/C,s. If, on the other hand, the BB-mode is not
turned off until the channel current becomes emission limited, then
a A2 0. If we assume that the suppression factors in (9) damp out the
noise introduced while a >> 1, then the above ratio (R) becomes
C.1/C,, which means that the contribution to {(g?) of ¢, can be ignored
for BB-mode transfer. We shall assume that this is the primary
operational region of interest, pointing out, however, that if the
BB-transfer mode is terminated while a is large, one should expect an
increase in that portion of (gi) arising from trapping.]

Returning to CCD-mode transfer where we expect interface states
to play the largest role, if we assume in eq. (9) that (g..(t1)qe.(t2))
varies in time slowly compared to =(¢), then we can integrate over
t1 and ¢, to obtain

(ga(tr)®) =2 (gas(tr)?). (22)

If, in addition, we focus attention on long transfer cycles (10—¢ second
or longer), taking 77> I{ and 7,>> r,, then from (20) we obtain

(@ulty)?) = e [ Yt
-exp[—z / "dt'/nw)] 8 (0)/72(8) + (gualt)?).  (23)

1228 THE BELL SYSTEM TECHNICAL JOURNAL, SEPFTEMBER 1974



If we make one more assumption that at time {.(0 <t <),
Q.. = Q% = @Q., and for subsequent t(t. <t <), Q% decays as if
I; = 0, then

5.(t) = Qi exp [— f“dt’/r,(t’)] ) (24a)
(gee(te)?) = 0. (24b)
Inserting these into (23), we find that

(gse(t0)?)
= ¢@, exp [— f1 :" dt'/r,(t’)][ 1 — exp [— L :’ dt’/r,(t')]], (240)

as found by Tompsett!” using other reasoning. Should conditions be
such that any of these assumptions are unwarranted, then, of course,
the result [(20) in (9)] is more complicated.

The result given in (24c) has the following significance. If on the
average 7, > (t; — t.) or 7, <K (t; — i), then (g&) for such states is
negligible. In the former case, the transfer process occurs too rapidly
for the traps to respond; in the latter case, the trap occupancy can
follow the transfer current quite closely; in either case, the noise is
greatly suppressed as a consequence. Thus, only when 7, &t — &
can the traps influence the charge transfer.

If we now sum over the distribution of traps, assumed uniform in
energy E, and take 7! proportional to exp (—E/kT), then following
Strain®® we obtain

(i) = kTN . A2, (24d)

Tompsett’s result,”” where N,, is the number of interface states per
unit energy per unit area, and A is the active trapping area. Like
Tompsett,”” we conclude that the noise introduced into Qs from
trapping has a mean-square value of

(@) = ¢kTN,,AIn2, (25)
that is,
(gi) = (g&)-
5.3 Clock-voltage noise

The influence of fluctuations in clock voltage on the noise added to
the transferred charge in a single transfer can be treated very quickly,
especially if it is white as we shall assume. If the spectral density of
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the noise at zero frequency is S,(0), then
(Ve(t1)ve(ta)) = 58, (0)8(t — t2). (26)

From (9) it follows that the contribution to {¢i) from clock-voltage
fluctuations is

(@) ot = 38.(0) [ at
‘exp [—2 j;’f di’/'r(z’)] (gm + 3I/3V )% . (27a)

We recall that g, = C,/7. The direct dependence of I on V, depends
strongly on the type of device, and one must be careful not to include
in 81/8V, terms already included in (81/9V,)(dV./dV.). Thus, for a
single-step bucket brigade, 01/9dV. =+gm, while for a single-step
CCD, a9I/0V, = 0. If we set dI/dV . = bgn, then

(@) stoox = 184 (0)C2(1 + b)? ﬁ Yt
-exp [—2 [‘ Y dt'/f(t’)] 2(1). (27b)

In general, (27b) must be evaluated from a knowledge of () obtained
from the noiseless charge-transfer characteristic. If, however, we
assume that we can write df/9Q, = dI/dQ,, then

dt/7(t) = gmdt/C, = dtdl/dV,/C, = dtdl/dQ, = didI/dQ, = —dI/I.
It follows that
_ 18.0)C% ALy
(qg)lclouk - 280(0)03(1 + b)z -/;_r I (I T(I) ) (270)

where I; = I(t = t;) and I, = I(t = 0). In this form it is clear how
the integral yields the effective bandwidth B of the white clock-voltage
noise. One can replace the 7! in (27¢) by dI/dQ,, which in turn may
be calculated as a function of 7 using eq. (8) of Ref. 11 (@, = C,V,).
For our purposes, we shall be content with

(@3] otock = 28,(0)BC2(1 + b)2. (27d)

Of course, if the clock-voltage noise is not white, (26) should be
replaced with the actual correlation function, which then introduces
an additional time-dependent function in the integrand of (27).
Relation (27d) will be useful in discussing modulation noise.
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VI. OTHER NOISE SOURCES

In the preceding section, we discussed the three primary sources of
noise that contribute to the fluctuations in the size of a single charge
packet as the result of a single transfer. In this section we examine
two other sources of noise which do not readily fit into (9) without
undue complication. For simplicity, we shall not include the thermal,
trapping, or clock-voltage fluctuations discussed in Section V, as these
can be superimposed linearly on the results discussed below.

6.1 Emission-limited-current shot noise

In describing the types of noise expected to be generated in CTD’s,
we noted that shot noise would not play a significant role under
ordinary circumstances. This is because, in simplest terms, a single
transfer unit of a CTD is like two capacitors connected by a resistor,
and, owing to strict charge neutrality in the resistor, shot noise is not
present. If, however, the clock period ¢, of an IGFET CTD becomes
long (to > 10~* second), the channel current becomes partially emission
limited at the source towards the end of the transfer cycle.! In this
case the shot noise associated with the emitted current will not be
totally suppressed. We shall now show how this can be treated. At
the same time it will become clear why “‘ideal’”’ resistors totally sup-
press shot noise.

In Fig. 3 we represent the barrier region between the diffused source
and the channel by a conductance with current I, and the channel
by a conductance with current I. The voltage V, at the source end of
the channel is set V, asin Ref. 11. In Section V we ignored 7., assuming
its conductance was much greater than that of /. We now consider
the more realistic situation in which the conductances of I, and I are
comparable near the end of the transfer cycle. (In such circumstances,
the g, introduced in Section IV and used extensively in Section V, must
be replaced by the series conductance of I, and I in the expressions
for thermal, trapping, and clock-voltage noise.)

1 .f
o Tcd
l Q,.VvV v Q,.V
pe¥p I a 1 d-¥d

]

Ic(vn'VnAV:J “Vn-vd-vcl

Fig. 3—Lumped-charge model for a CTD including a barrier conductance I,.
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What is happening physically can be outlined as follows. Voltages
Vs as well as V, and V; can fluctuate in response to fluctuations
induced in the conductances. If a small, spontaneous current fluctua-
tion 7, (positive, say) occurs through 7,, then V, will increase, simul-
taneously inducing a (positive) fluctuation ¢ in I and a (negative)
fluctuation 7, in I,. The net current fluctuation is ¢ = ¢, + ¢, If the
conductance of I, is much larger than that of 7, then V, will change
very little, 7 /&2 0, and hence 7, & —4%,. In other words, a current z, is
induced by 7. which nearly cancels 7,; with the larger eonductance of
I,, a small v, induces an 7, sufficient to suppress the ¢, fluctuation,
while with the smaller conductance of I, v, induces a much smaller ¢
and 7. In the limit of an ‘““ideal”’ resistor, since it is the bulk which
controls the current and not the contacts, 7 — 0 in the limit of zero
contact resistance, and the shot noise is totally suppressed.

Let us now calculate the shot noise introduced during emission-
limited operation. We start as before with the equations of the model:

1.V, Vo) = I(V, — V), (28a)
I=1(Va, Vs Vo), (28b)

Vo
Q= [ e, v, v, (28¢)
—Q=1I.+4=1 (28d)

In (28a) we have assumed that 7, is primarily a function of (V, — V),
anticipating that for barrier current, I, is well-described by a diode
equation. Since the variations of I with V4 or V, and of C, with V,
or V. are small, we shall ignore these dependences as we did in Section
IV. Setting I, = I’ 4+ %, and I = I° 4 4, it follows from (28) that

. al,
e = a—V.p (‘Up - Ua), (29&)

. al
1= B—V-ﬂ Va, (Zgb)
qs = cp”p, (290)
—Gs = ts+ % = 1. (29d)

Solving for g, in terms of ¢,, we obtain

_ OI (3I/8V,)(g/Cy) + is

@ = 3V, aI/aV.+ ol/aV, (30a)
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or letting g = 9I/9V,, g» = 8I/8V , and solving for g,

w=—0 = [ e |~ [a/n@)| G0+ /o0l G0D)

where 1, = [(gn! + g5 ")C,»]. This expression tells us the fluctuation
induced in the transferred charge packet gq resulting from the shot
noise associated with the current emitted into the channel from the
source. In the g, — o limit (zero barrier resistance), ga — 0. In the
g» — 0 limit (infinite barrier resistance), gz — S 4.dt, full, unsuppressed
shot noise.

In deriving (30b) our primary goal was to determine (g3). Since
(?:,(tl)’!;,(tz)) = 81"“1)6“1 - tz),

<qgl)lshot = .[U” dt exp [—2 ./:U dt’/ﬂ.(t’)] elﬂ(t)
[1+ g(®)/gm®) ]2 (31)

To evaluate (31) requires, in general, a knowledge of the noiseless
solution to the charge-transfer equations. We can obtain a feel for the
result if we recall van der Ziel’s expression for the current spectral
density of diode shot noise :*

I° + 21,
Sg(f) = 28(I° + Io) = ZkTgb TOTE‘ (32&)
(I, is the diode leakage current that we have neglected.) Although
derived for stationary noise, it is straightforward to redo the derivation
for nonstationary noise to obtain an autocorrelation function of
the form

('!:,(tﬂi,(fﬂ) = 3[Iu(t) + I,,)B(tl - tz:l
= kTgs(ts) 1%(33)_++2[I_: 8(ty — t2) (32b)
or
el°(1)d(ty — t2) =2 kTgs(t1)d (b — 1), (32¢)

where in (32c) we have (again) ignored the diode leakage current
I,. Now then, given the barrier, {g3) will be largest if g, << g. Inserting
(32¢) into (31) and integrating on ¢, it follows that

(ﬁ)lshot < %chp, (33)

which is comparable with the thermal noise produced by I (3kTC).
If one may assume that towards the end of the cycle g,(t) = dga (1),
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then
(gi)|shoe = 3ETCH(1 + d)7. (34)

While (33) and (34) should be sufficient for estimating the contribution
to ga of shot noise, if more accuracy is desired (31) should be used.

6.2 Leakage-current noise

Although leakage currents are small and, hence, fluctuations in
them even smaller, it is of interest to briefly analyze leakage-current
noise. This is because (#) a portion of the contribution to g; from
leakage-current fluctuations is not suppressed and (#2) no longer does
¢a = —¢,. We shall restrict ourselves to the role of leakage current
which flows into the source, drain, and channel of an IGFET, bucket-
brigade, single-step transfer CTD. Leakage current into the source
and sink of a CCD can probably be treated in a similar manner.

If we assume that a leakage current per unit length of the channel
Jen(z, t) enters the channel, following Jordan and Jordan,* we find
that a fraction (L — z)/L flows towards the source and z/L flows
towards the drain. We have assumed, of course, that /° J.x(z, t)dz < I.
From the standpoint of noise this means that

o = —qu/7 +f: dzjen(z, t)(L — x)/L +j: dzji(z, 1), (35a)

and

o
—t [T 102 4 [ dzjata, v, (35b)

where J = J° 4 j. Solving (35a) for ¢, and (35b) for g4, we obtain

0(t) = j:dt' exp [— [' dt"/r(t”)]
[_[ ds L= ? % Jen(z, ) -i-fd:cj (z, ’)] (35¢)

and

r
ga() =L'dc' [‘—"% +f ay L& 12 + [ dajta, :')] (35d)
Comparing (35¢) and (35d), we note that while the fluctuation j is
suppressed in ¢, and, therefore, in the first contribution to ¢4, it is
not suppressed in the second or third contributions to gs. Thus, even
though leakage currents may in themselves be small, since a portion
of their noise is not suppressed, one may expect to see some contribution
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to gs from this source. As a rough estimate, if after many transfers
the size of @, is increased by . (leakage charge), one may expect
(¢3) due to leakage to be about ¢@.. The autocorrelation and cross-
correlation functions of ¢4 and ¢, can be calculated at once from (35b, ¢)
if one notes that for full shot noise,

(]‘(1?1, tl)j‘(zz, tz)) = eJ (CE[, il)a(tl — tz)ﬁ(ﬁ.’l —_ I2). (36)

Since an accurate calculation of the results again requires some
detailed knowledge of the noiseless charge transfer and the role of
leakage current, we shall not pursue this topic further.

VIl. STORAGE-PROCESS AND TRANSFER-PROCESS NOISE

Up to this point in our discussion, we have been concerned solely
with the various contributions to gs that result from a single charge
transfer of a single charge packet. A charge packet reaching the
output of a CTD has, however, been transferred typically 10* to 10
times. The noise in the output packet is an accumulation not only of
the noise acquired by the packet of interest during each transfer, but
also the noise contained in incompletely transferred portions of pre-
ceding packets. In addition, there is correlation between the noise in
successive packets at the output. Some of this correlation arises, of
course, from the incompletely transferred portions picked up along the
line.” However, even in the absence of incomplete charge transfer,
there is substantial correlation from packet to packet (see Fig. 4). For
example, for thermal and interface-state noise, we noted that through-
out a single transfer cycle qs = —¢. While g4 accompanies the packet
of interest, (= — gq) is picked up by the next packet.? At the output the
correlation will affect the spectral density of the total noise accompany-
ing the signal. In this section, we consider this correlation and in the next
section, we consider modulation noise, both in the absence of incom-
plete transfer; in Section IX, we discuss the output noise including
incomplete transfer effects. (Finally we remind the reader that all
along we have been concerned with reandom noise which is generated
in addition to the signal distortion resulting from incomplete transfer.
In many cases, physical processes which contribute to random noise
also contribute to incomplete transfer. However, it should be kept in
mind that while the noise is random and characterized by stochastic
processes, the incomplete transfer is deterministic and characterized
by a specific transfer function for the entire device.)

We noted in the case of contributions to g4 arising from thermal,
trapping, clock-voltage and barrier-current fluctuations that conserva-
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Fig. 4—Schematic illustrating the difference between the origin of storage-process
and transfer-process noise.

tion of charge led to the relation ¢q; 4+ ¢ = 0, where gq is the noise
added to the transferred charge packet and ¢, which is picked up by
the following packet, is the noise added to the untransferred charge.
Using the notation of Ref. 8 in which ¢f%* is the transfer-noise charge
introduced during the oth phase of the sth transfer cycle as charge
flows from the (u — 1)th to the uth phase of the mth CTD cell, the
accumulated noise AQY in the charge at the last phase of the Nth cell
at the end of the rth transfer cycle is given by

N

AQ:I'V = qu El (q;ﬂ'—'u(N—m),p - Q?'—"‘(N—m)—i,p)- (37)
[In (37), p is the number of charge transfers per cell. If n is the total
number of charge transfers in the CTD, then n = Np. During the
(r + 1)th transfer cycle, Q¥ (=.QY + AQY) flows from the device to
the output through a low-pass filter. If by g(t) we designate the output
current per total charge transferred for a single packet, then the
output noise current is given by

i(t) = 2 AQTg(t — rto), (38)
where ¢, is the clock period. One can calculate the spectral density of
1(t), obtaining

Si(f)|re = 4n{g*)refo|g(f)|*(1 — cos 2nf/ f.), (39a)

where TP denotes transfer process and f, is the clock frequency
(fo = &71). [Here we have assumed that (g?) is independent of
(s, @&, m, u) or, equivalently, of the signal. This is quite reasonable
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since the suppression effect renders the noise dependent only on the
final portions of the charge transfer. And owing to the smallness of
the coefficient of incomplete transfer, the dependence of the final
portion of charge transfer on the signal is negligible for noise purposes. ]
For f <« f./2, S:rp is greatly suppressed below its mean value, S;(f,/4)
(see Fig. 5). This effect results from the fact that at low frequencies
one is averaging over such long times that nearly all the g4 are cancelled
by their corresponding ¢ = —qs. For f=&2 f,/2 (f is constrained by
the relation |f| < f./2), Site is in fact enhanced by the strong,
mutual correlation between adjacent packets. The suppression of the
transfer process noise at low frequencies is advantageous, since by
increasing f, one can increase the signal-to-noise ratio (S/N).

For the moment, we ignore the transfer-process noise associated
with leakage and consider only storage-process (SP) noise, which we
define as fluctuations that influence the size of each packet inde-
pendently during each transfer phase. Since, under such circumstances,
there is no correlation between the noise in different packets, the
spectral density of the filtered current at the output is independent
of frequency (white) and is given by

S:(f)|se = 2n<q2)SPfalg(f”2 (39b)

Cle(H| =~ 1for | f] < f./2]. If {g®)re = {¢*)sp, the integral of S:(f)
over 0 < f < f,/2 is twice as large for TP as for SP noise. This is
because in the case of TP noise each fluctuation contributes to two
charge packets, whereas in the SP case, only one packet is affected.
We note that S;(f) for SP noise is not suppressed for f < f./2. Thus,
although leakage noise is expected to be small, since neither is a portion
of it suppressed in forming (g?)sp nor is S;(f) suppressed by packet-
packet correlation, the role of leakage-current noise may in some cases
be more important than is usually appreciated.
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Fig. 5—Noise spectral densities Ssp and Ste plotted versus frequency f.
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In discussing TP and SP noise above (and in Ref. 8), we have
assumed that different, or rather independent, mechanisms contribute
to {(¢*)sp and (g?)rp, and, for TP noise, that gs = —q. For leakage-
current noise, we found that in fact the same fluctuation could con-
tribute to both SP- and TP-like noise, and that q; * —q = —gq,. The
question is raised : What is the spectral density of such noise?

To calculate the spectral density of the noise in cases where TP-
and SP-like effects are correlated, we proceed as follows. Let the noise
accumulated on the source in a single transfer phase be ¢.(s, ¢, m, u)
and the noise on the drain be gu(s, ¢, m, ), where (s, o, m, ) is defined
above. Then

AQY = ﬁ; 2 talr = (= m), iy m, ]
Falr— (N —m) — 1,umul], (40)

where we continue to ignore incomplete transfer effects. It follows
that the spectral density of #(¢) defined by (38) is given by

8:(f) = 2nfolg(N) P[{qd) + (63) + 2(qugs) cos (2 f/f.)]. (41a)

[For pure TP noise, g, = —qs, and we recover (39a); for pure SP
noise, g, << ga owing to suppression, and we recover (39b).] By rewrit-
ing (41a) slightly, it separates into SP and TP portions:

Si(f) = 2nfolg(£) [*((qa + @)%}
+ 4nfolg(£)[*(—gga)[1 — cos (2nf/fo)].  (41b)

Thus, we find that even when the sources of noise leading to TP and
SP noise are correlated and, hence, more complicated than those
treated in Ref. 8, we still obtain an unsuppressed, white-noise con-
tribution and a suppressed contribution. If incomplete transfer effects
are included, the spectral densities become much more complicated.
We take up this matter again in Section IX.

ViIl. MODULATION NOISE

In Section 5.3, we calculated the noise introduced into the signal
during a single transfer resulting from fluctuations in the clock voltage.
To calculate the effect that this modulation noise has on the output of
the CTD, we must notice that each clock-voltage fluctuation is felt
simultaneously by each transferring packet throughout the entire
device. If the elements of the CTD are physically quite similar, each
fluctuation will induce nearly the same noise contribution to the
(¢s, g2 = —¢,) pair generated in each CTD element during each cycle.
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This means that modulation noise can be expected to be substantially
suppressed, which is in fact what we find. In calculating modulation
noise, we shall first assume that the transfer parameters of each pair
of transfer elements of the CTD are identical, and then we shall
include some variation in these parameters.

If by ¢ we represent that portion of gq introduced by clock-voltage
fluctuations, since ¢ is purely TP noise, it follows from (37) that

) N—1
20" = % | ~02va+ 0 + T @ ona = ) | @20)

u=1

= ,é (@ — @GN (42b)

The simplification attained in (42b) results from the above observation
concerning the similarity of contributions to the noise throughout the
CTD, which stated quantitatively is that

G’ = gsu (43)

for all cells m, n during a given cycle s. It follows from (42b) that the
contribution to the total mean-square fluctuation in the output due
to clock-voltage fluctuations is simply

((AQ'{V)E) | clock = 2p (qﬁ) I clock) (44)

where (gi) is given by (27d) and p is the number of phases per cycle.
The most interesting feature of (44) is that it is independent of =,
the number of transfers each charge packet is subjected to in the CTD.
Thus, this portion of modulation noise is not compounded and as
such can be expected to be small.

If we introduce the possibility that the physical parameters charac-
terizing each transfer stage of the CTD are slightly different, then
(43) will not hold, and, as a consequence, the clock-voltage fluctuations
will not essentially cancel. Let us assume that these physical param-
eters are distributed according to some probability distribution. Then,
in place of ¢in (42a), let us write (g + ¢’) where ¢ is the charge fluctua-
tion averaged over the distribution of the device parameters, and ¢’
is the deviation from this average. Inserting (¢ + ¢') into (42a) for
g, expressing AQ as (AQ + AQ’), a straightforward calculation leads to

(AQ:"VAQQV) = 2p(@*)[6r.c — 3(br.s-~ + Br0+n)] (45a)
and

(AQNAQY) = 2n(q)[br.e — 3 (Br.am1 + br041) ], (45b)
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in which the bar denotes averaging over the device parameters. To
calculate (g%) = ((g — 9)?) = (¢®) — (g%) for clock-voltage fluctua-
tions, it is perhaps simplest to carry out the average first over the
clock-voltage fluctuations obtaining (27), and then average over the
device parameters. If we assume that the primary variation from cell
to cell is the size of the storage capacitance C,, then (27d) yields

((AQM)%) = 2n-3Sy(0)B(1 + b)*((C, — C.)2). (45¢)

This result expresses the effect on the size of the charge packet of the
coupling between fluctuations in clock voltage and deviations in
storage capacitance. Unlike ((AQY)?) given in (44), ((AQ,Y)?) is
proportional to n, expressing the fact that during each transfer event,
noise is added to the signal. Finally, we note from (45b) that AQ;" has
the character of transfer process noises so that its spectral density is
suppressed for f << f,/2. The spectral density of AQY, which can be
obtained from (45a), is weird. It oscillates once between 0 and 4p(g*)
each time f changes by only f,/N. It is probably best approximated
as white of size 2p(g?).

IX. INFLUENCE OF INCOMPLETE CHARGE TRANSFER ON COLLECTING

In the two preceding sections we have ignored the influence of
incomplete charge transfer on the noise accumulated in charge packets
by the time they reach the output. In Section VII, we took a = 0
to illustrate as simply as possible the suppression in the spectral
density of transfer-process noise at low frequencies. In Section VIII,
we took a = 0 to treat the multicorrelated charge fluctuations induced
by the clock voltage in a straightforward manner. We now include
incomplete transfer and find that, even though it alters only a small
fraction of the signal and, hence, of the noise on each transfer, typically
10-® to 104, its accumulated effects are extremely important in
some cases.”

The effects of incomplete transfer on a charge packet are not simple,
even when linearity is assumed. The key is to write down a general
expression for the charge, seen as a function of time at the output,
which arises from a given charge packet introduced at an earlier time
on an arbitrary cell. Once this is done, one can combine the effects on
the output of fluctuation-induced noise charge which is created on
each stage during each phase of each cycle. The result is a complex,
combinatorial expression which for na = 1 is nontrivial to evaluate
numerically. Despite these complications, the results obtained are
worth the effort needed to obtain them.”
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To calculate the effect of incomplete charge transfer on the collecting
of noise, we first calculate the portion of the noise ¢ added to the
charge packet in the mth cell during the rth clock cycle which is
observed at the output during the sth clock cycle. As defined, ¢ is
related to the ¢g** of Section VII according to

@ = g g, (46)

Thus, for purposes of simplicity, we shall ignore for the moment the
fact that the transfer of charge within each cell involves p distinet
(independent) transfers. The error involved in so doing is of the order
of na?, which for devices of interest is less than 0.01. Since the linear
model we shall use to treat incomplete transfer is probably not this
accurate, this approximation is justified. However, we must be careful
to use (46) when we calculate terms such as (¢f*q?) so that we do not
neglect correlation effects.

The dynamic equation that governs the transfer of the charge
g(r, m) on the mth cell during the rth eycle is

gir +1,m+ 1) = q(r,m) — eq(r,m) + eq(r,m + 1), (47)

where ¢ is the coefficient of incomplete transfer per cell.’® [One can
relate ¢ to «, the coefficient of incomplete transfer per transfer,'®
through ¢ = pa, or more accurately, through (1 — ¢) = (1 — a)?.]
Using (47), it is straightforward to calculate the charge ga.(s, N + 1)
observed during the sth cycle at the output, the (N + 1)th stage of
an N-cell register, as a function of charges ¢,(r, m), which are added
to the packet present in the mth cell during the rth cycle. The result is

gn(s, N +1) = (1 — E)N—mﬂéo(r-fl\;—m)

ceg[s— (r+ N —-—m+1),m]. (48)

[If € = 0, the limit of negligible incomplete transfer q.(s, N + 1)
becomes

gm(s, N+ 1) = g[s — (N — m + 1), m].

Thus, the additional output charge seen during the sth cycle is just
the charge added to the mth cell, N — m + 1 cycles earlier.] Using
(48), we calculate the total noise charge AQY observed at the output
of an N-cell CTD during the sth cycle by replacing g,(r, m) by the
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noise charge ¢ and summing overall cells m. The result is

A =-9 % a-gn T (TFN ™)

r=0 r
€ e N-mtn),  (49)

where
g = qa(r, m) + ¢.(r — 1, m). (50)

In (50), ga(r, m) is the noise added to the charge on drain during the
cycle of interest, and q,(r — 1, m) is the noise added to the charge
remaining on the source during the preceding cycle and picked up by
the charge packet coming by on the next cycle. [The expression in
(49), as well as our treatment of collecting, is valid whether or not the
statistics of the individual g¢s's and ¢,’s must be calculated using a
nonlinear approach.] From eq. (49) we can calculate nearly all com-
pounding effects of interest, a few of which we now consider in some
detail.

For digital purposes, the most important quantity of interest is
{((AQ)*), the mean-square fluctuation in the size of the output charge
packet. This quantity can be calculated from (49) keeping in mind
that the only nonzero, cross-correlation function that enters is
{ga(r, m)q.(r, m)) for all r and m. The result is

((AQY)*) = ((¢a + ¢.)*)Hse(p, N) + 2(—q.qa)Hre(p, N), (51a)

where gq and ¢, are noise added to the charge in the drain and source,
respectively, during a single transfer cycle, the statistics of which we
calculated in Section V and Section VI, Hsp is the collecting factor
for storage-process noise ¢, = 0, and Hrp is that for transfer-process
noise (—¢q, = ga). The analytical expressions for Hsp and Hrp,
ignoring an unimportant factor of (1 — ¢)?, are

r+N—m

r

N o 2
mMWFpZU-JW”Z( )érmm
m=1 r=0

and
N
Hrp(p,N) =1p E=1 (1 — e2w—m

o (T+N—m)2£2r(l_er+1+N—-m)' (510)

r=0 r r+1

These can be evaluated exactly (Appendix C) as well as approximately
(Appendix D). [The latter is necessary because the former, although
exact, is difficult to evaluate for the large N and small ¢ of greatest
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interest. These calculations are nontrivial. For example, except when
Ne « 1, attempting to calculate (51b) or (51c) using Stirling’s formula
to approximate the factorials is doomed to failure.] One may note at
the outset that for e = 0, Hgp = Hrp = pN = n the number of
transfers, as expected. This result is also approximately valid for
Ne = na < 1.

The approximate results obtained from evaluating the sums in
(51b, ¢),

Hse(p, N) = pXy(e) = p(N + 3)i'e [1.(b) + Ii(b)] —
and

Hre(p, N) = pen(e)
=p{(1 — ¢+ '(x+ )M Xnv-1(e) + 1 — Xn(e)]}, (52b)

(52a)

[

where
(11—
t = aTF o (52¢)
b=2(N+ 3)e(l — €72, (52d)
and
_ (1 + 'Y) _ 2

_(1___7); Y = €, (523)
are quite interesting. (Xy and ¢ are given in Appendix D.) For
Ne< 1, where we expect incomplete transfer to play a very minor
role in the compounding of noise, indeed we find that Hsp and Hrp
are nearly equal to pN = n, the total number of transfers experienced
by each packet in the device. This is just what one expects: The
cumulative, mean-square noise charge after » independent transfers is
just n times the mean-square noise charge following a single transfer.
[The factor of two in the TP term of (51a) arises because, as explained
in Section VII, for each + ¢ noise contribution there is a — g contribu-
tion. Thus for each transfer, two noise terms are produced.] As N
increases (e is fixed), however, incomplete transfer plays a more
significant role, altering the noise in two important ways. First, of
course, the noise is incompletely transferred along with the signal.
For Ne>> 1, Hgp increases only as n!, reflecting this attenuation of
the noise. Second, and even more important, for TP noise, incomplete
transfer enables each + g, — ¢ pair created during each transfer of each
packet to mix and, hence, null out or suppress the total noise. Thus,
for Ne>> 1, Hrp approaches constant value, (2«)~), independent of N.
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In other words, for Ne = na >> 1, the collecting saturates and further
collecting is totally suppressed (see Fig 6).7 Of course, the signal is
greatly distorted by the incomplete transfer if Ne 3> 1. Nonetheless, a
CTD has maximum storage capacity®® for 1 < Ne¢ < 4, and by using
dynamic detection or optimum linear filtering (transversal filtering),
one can greatly suppress signal distortion from incomplete transfer.!?
Thus, calculating the compounding factors, Hsp and Hrp, for Ne
other than Ne << 1 is not an academic exercise.

For analog purposes it is necessary to calculate the autocorrelation
function (AQYAQ) using (49) and (50), from which the current (or
voltage) spectral density of the noise can be obtained as in Section
VII. We shall pursue this no further than to point out that since
¢. = —gq must be transferred one more time than g, the effect of in-
complete transfer on each g, g, pair will be slightly different, and this
will reduce their mutual correlation at the output. Thus, total sup-
pression at zero frequency is no longer expected.

Incomplete charge transfer will also affect fluctuations at the
output caused by modulation noise. In Section VIII we found that
modulation noise was so highly correlated that, in the absence of
incomplete transfer, the largest portion of modulation noise was not
compounded. Introducing incomplete transfer, however, will destroy

4
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Fi%. 6—Suppressed, collecting factors Hgp(n) and Hrp(n) plotted versus =, the
number of transfers, for « = 1073,
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the exact correlation which led to this cancellation. Again, if desired,
the effect of the collecting of incomplete charge transfer on the modula-
tion noise for digital or analog applications can be calculated using
(49) and (50).

Noise present in the input signal can clearly be treated simply as
part of the signal with respect to incomplete-transfer effects. A some-
what different situation arises, however, when the signal enters the
CTD all along its extent, as is the case in imaging applications. Here
full (photon) shot noise results in a signal-dependent contribution to
the mean-square, input noise of each packet equal to eQ., where
Q°.. is the average size of the packet injected at site m during cycle s.
However, in this case, the input packets undergo different numbers of
transfers, p(N — m), between the cell in which they are injected and
the CTD output. Thus, the influence of incomplete transfer affects
the signal and noise originating at each different cell differently. As
with the other compounding effects, the collecting of this shot noise
in the presence of incomplete transfer can be calculated if desired
using (49) and (50).

X. CALCULATIONS

In the foregoing we have discussed a number of sources of noise in
CTD’s and their effect on the output signal in the absence and presence
of incomplete charge transfer. In most cases, inserting the appropriate
physical parameters for the noiseless operation of the device of interest
suffices to calculate (¢?), the mean-square fluctuation in size of a
given charge packet acquired on a given transfer. Then, using (51),
the influence of this fluctuation on the output signal can be determined.
Such ealculations are, in general, difficult, owing to the necessity of
evaluating integrals such as those in (27b). However, realistic approxi-
mations can be made as indicated to obtain useful results.

It is of interest, however, to determine the minimum amount of
noise expected to be present in CTD’s assuming one can minimize
clock-voltage fluctuations, surface states, incomplete transfer, etc.,
and operate each device so as to avoid emission-limited currents, etc.
In this ideal situation, one is left only with thermal noise, or with
thermal noise plus shot noise on the input signal, and incomplete
transfer (intrinsic and modulation in the sense of Refs. 10 and 11).
The signal-to-noise ratio (S/N) was calculated for two characteristic
coefficients of incomplete transfer (=103, 10~*) and four characteristic
capacitances (C = 1, 0.1, 0.01, 0.001 pF) as a function of the number
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of transfers n from input to output:

(¢) Using eq. (14a) for the thermal noise acquired per transfer.
(¢7) Using eq. (51a) for the influence of this noise on the output.
(¢4é) Taking the thermal noise to be purely TP, including shot

noise at the input when present.
(#v) Including incomplete transfer effects on both the signal and
the noise.

The results are plotted in Figs. 7 and 8. The ratio @,/C designates the
maximum signal level (10 volts), and one-half this amount (5 volts)
is the minimum signal level. Since the square of the signal charge is
proportional to C?, while the mean-square of the noise charge is
proportional to € for both thermal and input shot noise, the S/N
decreases proportionately with smaller € (small CTD cells). As the
number of charge transfers is increased, the contribution of device
noise to the total noise soon dominates that of the input noise. (From
S/N one can also calculate the maximum information storage capacity
of the CTD as a function of n, @, and C.) In general, other noise
sources are present which reduce S/N from the ideal results shown
here. While valid in general for BB-mode transfers, in the case of
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Fig. 7—Signal-to-noise ratio for CTD (a« = 107%) with storage capacitance of
1 pF, 0.1 pF, 0.01 pF, 0.001 pF.
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Fig. 8—Signal-to-noise ratio for CTD (a = 107%) with storage capacitance of 1
pF, 0.1 pF, 0.01 pF, 0.001 pF.

CCD-mode transfers, if the rms thermal noise becomes comparable
to the free charge incompletely transferred on a single transfer, then
the noise predicted by our linear approach will overestimate the
true noise.

XI. CONCLUSIONS

In the foregoing we have calculated the influence of several im-
portant sources of noise on the output of a CTD in a manner which
includes all important relaxation, suppression, and correlation effects.
In so doing, we encountered interesting effects, such as nonstationary
noise, and we uncovered a number of unexpected results, such as the
nearly total suppression of the spectral density of transfer-process
noise at low frequencies and the total suppression of the collecting of
transfer-process noise after many transfers of a charge packet. Because
of the novelty of these and other effects, they were treated in con-
siderable detail in a manner which did not presuppose considerable
prior experience with formal treatments of device noise. In noting the
results, the proportionate decrease of the S/N with decreasing storage
capacitance was illustrated. This unavoidable feature will ultimately
limit the practical size of CTD’s.
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Several of our results, despite the relatively complicated manner in
which they were obtained, are remarkably simple, e.g., thermal noise,
(¢*) = kTC, surface-state noise, {g?) « ekTN,A, etc. One wonders
whether there exists a general approach which ecircumvents the
necessity of paying such careful attention to the detailed processes
that accompany the transfer of charge through a CTD. We feel that
there does not exist such an approach. Nonetheless, in Appendix E
we outline a very rough method which ignores nearly all details of the
charge transfer event. We find the intuitively appealing result that
the mean-square noise acquired per transfer is to within a factor of
the order of unity equal to full shot noise on the (total and not differ-
ential) incompletely transferred portion of the charge. Although
providing a rough rule of thumb, since the approach is not totally
reliable for calculating incomplete transfer, its accuracy for treating
noise is not guaranteed. By contrast, the methods used in the bulk
of this paper should be applicable in many types of integrated-circuit,
dynamic devices of which CTD’s are the first examples.

There are several interesting noise problems that we did not con-
sider here. For example, in discussing modulation noise we indicated
the possibility of nonuniformity in the physical parameters of each
cell coupling to clock-voltage fluctuations to produce a collecting
source of noise. Such cell nonuniformities also, of course, will result
in a distribution of a's, the coefficients of incomplete charge transfer.
This will, in turn, result in an additional effect on the nature of the
compounding of the noise acquired in each transfer. The results are
expected to be no less surprising than the effect such a distribution of
a’s has on the signal. A distribution of o’s about their mean «, leads
to less signal distortion than if all the o’s were a,.1%?6 (This is actually
not too significant for application purposes, since usually all deviations
from the desired @ = a4 will be to larger «, thereby increasing «, and
enhancing distortion.)

A second problem worthy of attention is how to treat the noise
in cases where the clock-voltage waveform does not turn off the flow
of transferring charge abruptly.® In such cases, the nonlinear terms in
the noise fluctuations are not small relative to the linear terms. The
noise problem is then nonlinear and much more complicated.

A third problem, straightforward but tedious, is to calculate the
S/N’s, error rates, and device storage capacities for devices including
regenerators, optimum linear filtering, and/or dynamic detection.3:¢
Considering the many new features that have arisen in the present
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study, as well as the many types of noise that enter in such different
ways, we feel such problems will not prove unrewarding.
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APPENDIX A
Noise Introduced During a Single, Two-Step, Transfer Cycle

The purpose of this appendix is to calculate the noise fluctuations
induced in the transferred charge during a single, two-step, transfer
cycle. The procedure followed is the same as that in Section IV of
the text for a single-step process. Here we shall merely outline the
essential steps leading to the desired result.

We begin by linearizing the dynamic equations (4a, b, ¢) to obtain

s 611 aIl 61’1 8—11_ .
g1 = (317; Vs -I- vy + 7. U ve + Vo ’U..,.,l) iay, (53a)
s (53b)
. 612 6_[2 31'2 612 '

qa = ( aV v + 6V [ + ¢+ m 'f)gsz) + %na. (53c)

The constraint equations (3a—e), when linearized and when terms of
the order of the incomplete transfer are dropped, yield the following
relations among the fluctuating quantities:

% = Oy — Cilu, (54a)
g5 = Cwp — Citpo, (54b)
ga = Cava — Civao, (54c)
Ges1 = Costtssr — Cintis, (54d)
Goa2 = CaatVaaz — Claiez. (54e)

In addition, by the same reasoning that led to egs. (7a, b) in the text,
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we find that
_ anv _ oV, C,
VUso = avc C—BV Cn Ve
EBV\»,O :_ﬂ&VbC'r,-__ Cbr
he =9y, T v g Tl (55b)
v 6Vduv _ aVy Cd — (—1 )Cdv
“©T V. T av. s Ci ™

= (+1) (55a)

(65¢)

where ¢ = dV,/0V,. [For a two-step process, transfer cells whose
second step is characterized by a CCD-type of charge transfer, ¢ = —1
and v, = v,. For such cells whose second step is BB-like, the value of
a and v, will depend on the details of the device. For example, for the
C4D, a = 0; for the tetrode BB, a = 1 and », = vy, is the voltage on
the tetrode bias line. Thus, for purposes of generality we must use
the form given in (55b).] Also v3; and v%2 can be set equal to zero,
as discussed in the text.

The next step is to solve eqs. (54a—e) for v, vs, ete. and insert the
results into (53a—c). The result of this substitution is

- a
ql = — g(I.!El q1 (gml + Il)

+ (gml % - aIl ) Usg1 — 7:!1.1; (569-)

C.r.- aVﬂ'al
gz = —¢qa — qu (56b)
R ., 0l
fa='on @ + gmeav. + . b
Caaz 612 .
+ (gm2 'C‘_b - GV,,,g) Ugs2 + Ln2y (560)

in which we have assumed that the forward conductances
gmi = 01,/9V, and gn: = 01:/0Vs
greatly exceed the reverse conductances
g =—20I1/0Vy and g =—0al/dV,.

It is now straightforward to solve (56a) for ¢;(t), insert into (56b) to
obtain ¢:(t), and then solve (56¢) for ¢q(¢). The result is

2(t) = [ at' exp [“ﬂ da"/m(z")][g’”( g + (gmga - %z)v

' C.u2 612 .
+ gmea(ve — vo) — (Q’mz T Vo ) Use2 + %2] . (57a)
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where

—q(t) = Lt' dt’’ exp [— [:’ dt”’/[n(g'")]] [(gml + :_;:) "

Cul aIl .
- (gﬂﬂ ‘E‘ - aV;;l) Yaet + an] t“, (57b)
1/71 = gm1/Cs and 1/73 = gma/Cs. (57¢)
If we define the two suppression factors according to
Syt 1) = exp (— f dt”/-n(t”)) (58a)
o
and
Sa(t, ') = exp (—f dt”/’rz(t”)), (58b)
o
let
t t
n(t, ") =[ dt”exp(—] [1/72(2"") — l/n(t’“)]dt’”)/-rz(t”),
¢ 'y
(58¢c)

insert (57b) into (57a), and regroup terms, we obtain

qa(t) = ﬁ "t {s,(t, (L, )ina (1) + Sa(t, )ina(t))

_ ’ 1] Oul _ aIl ) !

Si(t, tn(t, t) ( T Vi /e van1 (')
’ Cu2 _ 612 ’

— Sa(t, b ) ( - GV,.z) o ”u2(t )

+ [s16 0n ) (4 + 37)

'f
+ 5304, ) (gua + )| ] 0e®)

+ Sa(t, t') [ gmealv; — v,)]i..] - (59)

Although it is most convenient to keep the S;n product as two terms,
their combination is of interest:

'll‘
Sy(t, tn(t, ') = f " dt exp (— f " ()
t’ t

[ dtmm(m) / ra(l").  (60)
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It is clear that to calculate (g3), it is necessary to know (in1(t1)7a1(f2)),
(iﬂ(tl)iﬂ(h)): (Vas1(81)vs01(E2) ), (Veea(t1)vssa(t2)), (ve(tr)ve(ta)), (v;(tl)v;{t2)):
and {(v.(t;)v.(tz) ). These are discussed in the text.

It is of interest to calculate the contribution to (g3} that results
from thermal noise. From (59) and (13b) (H, = 2), we obtain

(@sr = 275 [ LS, 0120, Dgm(® + SEt, 0920 (61

Now ordinarily a two-step device is constructed so that
gml/C.l = 'rl_l < 7'2_1 = ng/Cb-

Let us assume that the decay current is such that r1(H)b = 371(1),
where b can be taken independent of time (b > 1). Then we can
perform the integrals in (61), obtaining

(q2) | xr = 3kTCy + 3£TC,(1 + b71)7! (62)

for the thermal contribution to the noise acquired during a single,
two-step transfer. The first term is expected from our result (14a)
for an individual, single-step transfer. However, the second term
includes a suppression factor whose presence one certainly would not
have expected @ prior: using arguments assuming stationarity.

APPENDIX B
Outline and Modification of the Impedance-Field Method

As originally presented,? the impedance-field method (IFM) con-
sists of dividing the problem of calculating device noise into two
simpler problems. First, it was recognized that a given fluctuation
in the velocity of a charge carrier at a given location induces a calcu-
lable fluctuation in the open-circuit voltage. Second, it was shown
how, from a knowledge of the spectral density of the velocity fluctua-
tions of the individual charge carriers, the spectral density of the
open-circuit voltage fluctuations could be calculated. The first problem
requires only an understanding of the operation of the device of
interest under noiseless conditions, while the second can be deduced
from the microscopic behavior of charge carriers in a small region of
the device.’® Thus, as long as the microscopic noise is simple, which it
nearly always is, the device-noise problem is reduced to integrating
the microscopic noise sources over the device, weighted by the in-
fluence of a unit fluctuation in each volume element on the output
noise.
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Let us now outline the IFM in more detail.® If u, is the time-de-
pendent fluctuation of carrier velocity v, from its mean v,,,

u = vy — Vo

then the dipole current 5P, in a small volume element AV, produced
by the carriers in this volume is given by

iPa =g uy, (63)

where the j-sum is over all carriers in AV,. To calculate the effect
of 6P, on the open-circuit voltage of the device, we note that if 6/,
is injected into the device at r, (and if the device is grounded at
r = 0), the voltage induced at the contact labeled N, 6V, is given by

B-VN = ZNuaItx- (64)

If Zye is evaluated for all «, one maps out the “impedance field.” If
now one injects 61, at r, + ér and removes 4/, at r,, linear super-
position of small signals implies that

8Vy = [Zna(ta + 1) — Zna(ra) 1ola (65a)
= (VZ:). 00814 = VZy..oP. (65b)

The last equality follows because the dipole current iP. equals 81,6r
if 81, is chosen appropriately. Since we can relate 5P, to 6V, from
a knowledge of the statistics of the former, we can calculate those of
the latter. In particular, from (63) and (65b) we can immediately
write down the spectral density Syy(f) of 6V in terms of that of ua:

SVN(f) = Z (ViZNa)(VJ'ZNG)*qznﬂSﬂuiﬂj(f)r (66)

@, 1,

where 7, j each run over z, y, 2, and n, is the number of carriers in
AV .. Since in the text we work in the time domain, we work directly
with (65).

In calculating CTD noise, it is most convenient to work with
short-circuit current fluctuations rather than with open-circuit voltage
fluctuations. One may redo the above, calculating the short-circuit
current fluctuation 87y induced by 8I.. The result is that

aIN = BNaaIm (678')
where
Bye = Zyao/Zn, (67b)

and where Zy is the impedance of the device between contact N and
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ground. In terms of dipole currents, one obtains
6IN = vBNr'éraIa = VBNr'BPa- (68)
For an IGFET, )
vBy. = L7, (69)
where L is the channel length and [ is a unit vector along the channel.??
In complete analogy to (66) one finds that

Sry(f) = X2 (ViBwa) (ViBa)* @ e au; (). (70)

a,t,d

In arriving at (66) and (70), we have taken into account the inde-
pendence between spontaneous fluctuations which occur in separate
regions AV,. Thus, the expression for (w;(f1)u;(fz)) for the IFM,
which corresponds to (12) in the text, is that for thermal noise

2T
(ui(t)u;(te)) = irs uo(ty — 2)dij, (71)

which lacks the spatial delta function. The equivalence between the
Langevin method used in the text and the IFM outlined there is dis-
cussed in some detail in Refs. 27 and 28.

APPENDIX C
Exact Calculation of Hsy and Hrp*
In this appendix, we shall evaluate the following sums exactly:

X (€) = z:z[u—mweU+N‘mﬂ”

m=1r=0 T

v = % 5 [@—agrre (TEN M)

m=1r=0 r

.(1 _ E’Mﬂ) (72)

r+1
As the first step, set n = N — m, v = ¢, and perform the sum on 7.
This yields
_ (1 —_ E)2n dn .Yn
wo = 2 S 5 () (@s2)

_ —1 (1 —_ 6)2" dn ,Yn
on(9 = | = o (=)
CoE (e
Gy (Tl yym) )

* Derivation due to N. S. Thornber.
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The second step involves taking the n derivatives with respect to v
using the relation®

d" _ n n dj‘ dn—ng

d_y" (fg) - .ED( S) dy‘ dy"_n

and recognizing that the resulting sum on s is to within certain
simple factors equal to a Legendre polynomial,® P,(x), where
= (1 + v)/(1 — v). This yields

Xn(e) = (1 — ) Nf t"Po(x) (74a)

on(e) = (1— 7)-1[0 — 9+ T o) — PP (x)], (74b)

where { = (1 — €)/(1 + ¢€). In (74b), if we note that®
Pu(z)/n = [2Pa(z) — Paa(2)]/(2* — 1),

then all that remains is to evaluate 3 ."P,(z).

Before proceeding, we should call attention to a potential source
of trouble. Since 0 <y = & < 1, it follows that 2 > 1 and ¢ < 1.
While Legendre polynomials for |z| > 1 are well-defined, their
properties are not nearly so simple as they are for z in the usual region
of interest, |z| =< 1. Thus, for fixed ¢ (and v), if n becomes large,
evaluating P.(z) for z only slightly larger than 1 is quite tricky. This
provides motivation for the approach adopted in Appendix D.

Returning to the remaining sum in (74), we take the generating
function® for Legendre polynomials, valid for |{|] < 1 and |y| <1,

$ eP(y) = (1 — 2yt + )4,
8=0

multiply both sides by P.(y), and integrate on y from —1 to +1.
Using the orthogonality of these polynomials, we obtain

2m+ 1

i = j dyPm(y) (1 — 2yt + £)~*, (75)

Using the summation formula® for Legendre’s polynomials, it follows
that

N=1 1 N/2
n — —_ N—-¢ /7
T tPa(@) f_1 dy(1 — 2yt + )4 =L

[Pn(z)Prx-1(y) — Py(y)Pr-a(2)].  (76)

To perform the final integral over ¥ we make use of (75), noting that
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2tz = 1 + #, and hence that
(1 — 2yt + &)z — y) = 24z — y)ith
Thus, since
1 d 1
[Lave =) = =27 [ dy@— ) Paw)
-1 X J-1
and since from (75)
1
2m@m + 17 = [ @yl — )TPal),
-1
it follows after some algebra that
N1 2N
L ("Pa(z) = 7= [Pr(@)t — Pyoa(z)v+] (77)

Using (77) for the sums present in (55a, b) yields exact expressions
for Xy and ¢y in terms of two or three Legendre polynomials, respec-
tively. The difficulties encountered in evaluating these expressions
for N >>1 and z 2 1 made it clear that another form of the result
was needed, one in which N and e enter on an equal footing, preferably
as a product. Such a result is derived in Appendix D.

APPENDIX D
Approximate Calculation of Hsr and Hqp

In this appendix, we evaluate the sum
N—1
yn-1(e) = Eo t"Pn(x), (78)

where, as in AppendixC,t = (1 — €)/(1 +€),z= (1 4+ v)/(1 — v),
and v = €. The form we obtain will be a good approximation for N >> 1
and will be very easy to evaluate numerically.

If we define y_; = 0, then we can write

Yn — Ya1 = 1"Pa(x) (79)
and evaluate the z-transform ¢, of ¢, defined by
Vo= 3 g (80)
n=0

Thus, from (79) we obtain

Vom = % (5‘)"10,,@) = [1 — 2+ (5)2]_'- (81)
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Solving for ., we obtain, using 2zt = 1 4 #,

=(1—21)31— )4 (82)
Thus,

Vn =5 f V2" ldz, (83a)

where the closed contour in the complex plane includes z = 0. Letting
z = ¢°, (83a) becomes (¢ = 0%)
1 g+im .
Yn = el dsemrs(l — en)~H(1 — {2e—2)~} (83b)
an exact expression for yx(e) if n = N.

An exact integration of (83b) would recover (77). However, a very
useful approximation for large n can be obtained at once if we note
that under such circumstances most of the contribution to the integral
comes in the vicinity of s = 0. Thus, expanding exp (—s) & 1 — sand
then, taking the limits of integration to be from (¢ — 7% ) to (¢ + 7)),
vields

1 a+in
Vo5 f " dsems s + (0 - DI (84a)
This inverse Laplace transform can be found in the tables.®® The
result is
Yn & tne [ 1, (b) + I1(b)], (84b)
where
b=n{t?—1)/2 = 2ne(l — ¢)~% (84c)

We can match this result, valid for n 3> 1, to the n < 1 limit to obtain
an approximate result good for all n. At this point, however, it must
be stressed that the major difficulty in approximating ¢, for large »
arises from the necessity to cancel exactly any exponential dependence
of ¢, on n. Clearly, physically compounding can increase with n no
more rapidly than linearly. This delicate cancellation is in fact achieved
in (84b) since Io(b) and I;(b) go as exp (b)/(2xb)~? for b >> 1. There
are other ways of arriving at (84), but this is one of the simplest.

To determine the form of ¥, for n sufficiently small (ne < 1), that
is, such that an expansion of ¢, in powers of ne rapidly converges in
a few terms we note from (71), (73a), and (78) that we have the relation

yv1= (1 — ) Z_l > [(1 - 6)"6'(T -I; n)]z (85a)

n=0 r=0

N[1 — ¢(N — 1) + 0(N2e%)]. (85b)

I
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On the other hand, expanding (84b) to similar order yields
Va2 n(l + 2¢ — en). (86)

Since (84b) and consequently (86) can be expected to be valid only
for ne >> 1, we are not required to set n = N — 1 in (84b). [ Nonethe-
less, it is encouraging to note that even for me<< 1, if we do
set n = N — 1in (86), then (85b) and (86) agree as to the coefficients
of N and N?, the two largest terms.] Even further improvement can
be obtained if we replace ¥, by ¥. + 61 and n by N — 1 + 8., where
6, and &; are of the order of unity. This alteration clearly does not
alter significantly our result valid for large n (ne >> 1), and it improves
the result for ne << 1. After a little algebra, one obtains §; = — 31 and
82 = 2, which ensure that terms of order unity and Ne match. We
conclude that Xy (e) is given quite well by

Xn(e) = (N + 3)t7te*[Lo(b) + I(b)] — 3, (87a)
where

b=2(N+3e(l —e? and t= (1 —¢€/(14+¢), (87b)

in which we have ignored the (1 — )™ factor in (73a). (Recall that
vy = &~ 107%) The expression (87a) enables us to calculate the
compounding factor for storage-process noise for arbitrary N and e
with relative ease.

The compounding factor for transfer-process noise is obtained from
on(e€), which can be expressed in terms of Xx(e) in the form

en(e) = (1 — ¢ + [Xn(e) — 1]
— ey Mz + D7 a[xn(e) — 1] — tXn-1(e)} (88a)
=1 —=e+ 'z + DM Xxvale) + 1 — Xn(e)], (88b)
where we have used (73) and ignored the prefactor of (1 — ). Since
v = ¢, the prefactor of the last term of (88) is approximately (2¢)~.
Nonetheless, this term is well-behaved even where our approximate
result (87) is used in (88) to obtain an approximate ox(e).

It is of interest to calculate Xy and ¢x in the limit of Ne >> 1. The
former limit is just N in both cases. In the latter limit

Xy(e) = (N/me)t = pi(n/ma)l, Ne>1 (89a)
and
on(e) = (26)7 = 2pa)™!, Ne> 1. (89b)

The second limit is most easily obtained by noting that z(z 4 1)~!
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=0+7)/2@@E+D)7"=0101-9/2 a1+ —t1-v]/2=1,
and (Xy—1 + 1 — Xy) = 1 + O(N—¥), Ne>> 1.

APPENDIX E
Another Approach to CTD Noise

Throughout our treatment we have paid careful attention to the
details of the transfer and storage of charge in CTD’s in order to
calculate the noise induced by the device. We have noted, however,
that by making reasonable approximations, we can often reduce
rather complicated, exact results to much simpler, approximate
results adequate for most purposes. One cannot help but wonder,
therefore, if there does not exist an approximate but adequate short
cut for calculating CTD noise. One clue is to compare Tompsett’s
results’’ for incompletely transferred charge Q; with his results for
mean-square noise charge induced by interface states (g?). If we
ignore factors of the order unity we find that

(@) = eQ, (90)

where
Q: = ekTN,,. (91)

In other words, the noise induced by interface states is just the shot
noise associated with the incompletely transferred portion of the
interface charge.®® While one will never recover thermal noise from
such arguments, one expects not to do too badly in estimating the
influence on the output of those noise sources, such as interface states
or emission-limited (barrier-limited) currents, which are closely tied
to incomplete charge transfer. Anyway, the basic idea, that of shot
noise on incompletely transferred charge, is appealing, however ap-
proximate and/or incomplete it may in fact actually be.

We can derive such a result as follows. We make the assumption
that we can approximate the current / which flows from one storage
region to the next during a single transfer as 7(Q), where @ is the
charge to be transferred at any given time during the transfer phase.
(If this assumption had been made in calculating the coefficient of
incomplete charge transfer,®! then certain of the results obtained
would have been erroneous. Nonetheless, without this assumption,
details of the charge transfer enter, which we wish to avoid.) As in the
text we also assume that we can linearize the equations governing the
noise. Thus, writing @ = Q° + ¢, the equation of motion

Q=-1(Q) (92)
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becomes

Q=—1Q)=-1 (93a)

for the noiseless transfer, and for the noise
i =— 450+ o), (93b)

where d,(f) is the naturally arising statistical driving term. Since [
depends only on @, the derivative appearing in (93b) is total and is
evaluated using Q°(¢) from (93a). Solving for ¢(f) is straightforward:

q(t) = fo " ard, (') exp (— f‘ ' (dI/on),..dz") (94a)

) ')

- [ ara, (”(Io(t')) (94b)
in which we have used (93a) in going from (94a) to (94b). The
[1(¢)/I(t')] factor suppresses the shot-like noise associated with the
transfer.

The statistics of ¢ follow from those of d, using eq. (94b). The
statisties of d, are such that

{dq(t1)dy(tz)) = eI[Q°(t:1) 15 (t1 — t2). (95)

(This is not an additional assumption, but rather (95) follows from
our initial assumption that I depends only on €.) It follows that at
the end of the transfer cycle

@) = ¢ [Jarr@/r@2, (96)

where @, is the initial charge @°(0) to be transferred, and @, is the
mean charge @°(¢;) left behind at the end of the transfer. [We note
that in the absence of the expression factor, (¢®) = e(Qo — Q1) = eQq,
full shot noise.]

To proceed, we must know I(@"). If, toward the end of the transfer
cycle, @ — @, >> Qq, where (g is the charge packet size above which
the primary force driving the transfer current arises from the packet
itself, then 7(@) will be proportional to @? and, using (97),
{¢*) A2 eQ,/3. If, on the other hand, toward the end of the transfer
cycle, @ — @, < Qq, so that the primary force driving the transfer
current is diffusion or fringing fields, the /(@) will be proportional to
@, and, using (96), (¢*) &~ eQ):. Taking a more specific example, let
us set CV = @ in eq. (8) of Ref. 11, as a realistic approximation. It
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follows that
2
Qi (Ql + 2—’:2 C)
o
¢(e+%tc)

Equation (97) can be integrated exactly. For our purposes, it
suffices to consider two limiting cases: @, > 2kTC/e, in which case
(¢?) =~ eQ1/3, and Q; K 2kT'C/e, in which case (¢*) & eQ,. Thus, we
find in fact that (g?) can be viewed roughly as the shot noise on the
incompletely transferred charge. However, it should be noted that @,
is the total, and not the much smaller differential (a@Q,), charge in-
completely transferred. While the results of this appendix are appealing
as a short cut, the reader is strongly advised to keep the basic assump-
tion [I = I(Q)] firmly in mind and to use extreme caution in generaliz-
ing this approach to other problems.

@ =e [ (97)
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