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This paper analyzes a block-coding scheme designed to suppress
spectral energy near f = 0 for any binary message sequence. In this
scheme, the polarity of each block is either maintained or reversed, de-
pending on which decision drives the accumulated digit sum toward zero.
The polarity of the block’s last digit informs the decoder as to which deci-
sion was made.

Our objective is to derive the average power spectrum of the coded signal
when the message is a random sequence of +1’s and — 1’s and the block
length (M) is odd. The derivation uses a mixture of theoretical analysis
and computer simulation. The theorelical analysis leads to a spectrum
description in terms of a set of correlation coefficients, {p.}, ¢ = 1, 2, etc.,
with the p,'s functions of M. The computer simulation uses FFT algorithms
to estimate the power spectrum and autocorrelation function of the block-
coded signal. From these results, {p,} 7s estimated for various M. A
mathematical approximation to p, in terms of q and M s then found which
permits a closed-form evaluation of the power spectrum. Comparisons
between the final formula and simulation results indicate an accuracy of
+5 percent (0.2 dB) or betler.

The block-coding scheme treated here is of particular interest because of
its practical simplicity and relative efficiency. The methods wused to
analyze il can be applied to other block-coding schemes as well, some of
which are discussed here for purposes of comparison.

I. INTRODUCTION
1.1 Block coding
In its most general meaning, block coding consists of dividing a
digital sequence into time-contiguous blocks and performing a sepa-
rate coding operation on each block. In actual usage, the term is
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most often applied to cases in which both the original and block-
coded sequences are binary and the coding serves either (7) to enable
error detection and/or correction or (i7) to shape the digital sequence
spectrum.

The most widely used spectrum-shaping codes are those that sup-
press the energy near zero frequency. This suppression enables the use
of transformers and ac-coupled amplifiers in processing the digital sig-
nal and, in modulation applications, provides for a null region near the
carrier frequency to facilitate carrier extraction. Our concern here is
with this kind of block coding.

In particular, we examine a bloeck-coding approach invented (in
analog form) by F. K. Bowers.! The digital version of this scheme has
been treated separately by Carter? and Pierce,® and implemented
recently by Ruthroff and Bodtmann.** The scheme can be used with
blocks of either odd or even length (M), but our attention here is con-
fined to odd M. Our objective is to derive the average power spectrum
of a sequence so coded when the original message sequence is totally
random. This problem has been partially studied by Rice® for the same
block coding with M even (to which case our method of analysis is
equally applicable), and by Slepian’ and Franklin and Pierce® for
other de-suppressing block codes. Results for some of these cases are
given later.

1.2 Description

Unless otherwise specified, the term block coding means the process
we describe here, with the aid of Figs. 1 and 2.

The original sequence of binary digits is divided into blocks of length
(M — 1), and a +1 digit (the so-called code digit) is added to the end
of each block (Fig. 1a). A resettable counter measures the digit sum
A, in each block k, omitting the code digit if M is even and including
that digit if M is odd. In either case, this count can take on only odd
values. It is compared with the sum over all previous output digits,
B, and a decision is made as follows: If A, and B, have the same
polarity, all pulses in block & are inverted; if A, and B have opposite
polarity, the pulses in block % are unaltered ; and if B, = 0, its polarity
is taken to be that of its most recent nonzero value, i.e., Bi_1, or By_a,
ete.* In the decoder, each received block is inverted if the polarity of

* There are other ways to resolve the case By = 0 (e.g., by random decisions,
as suggested by Rice), and the ultimate choice should be dictated by practical
considerations.
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Fig. 1.—Sample input and output digital sequences.

the recovered code digit is negative and is not inverted if that digit is
positive.

Figure 2 depicts the logical process just described and is a simplified
diagram of how block coding is actually implemented. The identifica-
tion of the code digit in the decoder is accomplished with the help of
framing, which is not depicted (or treated) here. The penalties in this
form of block coding are a 100/M-percent reduction in information
rate and twofold increase in the random error rate.
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INVERT IF A,C, <0
al NOT IF A,C, >0 By |
INPUT

z""" BLOCK [== CUMULATIVE

ui COUNT 12 COUNT

o 5]
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Fig. 2—Coding process.
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1.3 Scope of the paper

It is easy to see that the accumulated sum of the output digits at the
end of any block is limited in magnitude to M (i.e., |Bi| = M), and
that the magnitude of this sum at any instant in time is limited by
B8M — 1)/2 if M is odd and 3M /2 if M is even. For this reason, the
output sequence has no spectral energy—either discrete or con-
tinuous—at f = 0. At the same time, the total sequence “power” is
unchanged by the coding, since every digit has the same “energy,”
regardless of polarity.® Obviously, then, the suppressed energy near
f = 0 is redistributed over the rest of the frequency range, and it is
of more than passing interest to know how.

The answer, of course, depends on the nature of the message se-
quence being encoded. In this study, we assume a totally random se-
quence (all digits independent, with equally likely polarities) and
derive the block-coded signal spectrum for odd values of M. The
derivation uses a mixture of theoretical analysis and computer simula-
tion and leads to a closed-form expression for the spectrum which com-
pares quite favorably with simulation data. Section II gives the purely
theoretical part of the derivation, Section III describes the simulation
study, and Section IV gives the final result and some examples.

1. ANALYSIS
2.1 General form of the spectrum

We represent the uncoded message sequence as a binary stream of
pulses at a rate 1/T,

s() = 3 awp(t — ), )
where
a» = +1 or —1 with equal probabilities,
lifn = m
Gulm =10 if m 5 m, )

and p(f) is a pulse centered on [0, 7] of arbitrary shape, area T, and
Fourier transform P(f). The first step in the coding consists of opening
up a one-pulse slot after every M — 1 message pulses and injecting a
positive pulse, +p(f). The new sequence, with positive code pulses

* In the ensuing analysis, the digital sequence of Fig. 1 is replaced by a pulse stream
at a rate 1/7, with each pulse having an area of magnitude 7.
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every M time slots, is then block coded to produce an output signal

8o() = % bap(t — nT). (3)

n=—ow0

It is the average power spectrum of s,() that we wish to evaluate.
We define the autocorrelation function of the coded signal to be

R(») = lim ‘z% A TT s (D)5t + 7)dt @)

and the average power spectrum to be the Fourier transform of E(7),
5(f) = F{R(7)) :f R(r) exp (— juwr)dr. (5)

To simplify the derivation of S(f), it is convenient to express s.(?),
eq. (3), as the convolution

) =1 > b,.&(t—nT)}*p(t), (6)

n=—w
N

su(t; T)

where 8(¢) is the unit impulse function. It is now obvious that S(f) is
the product
S(f) = 8.(f; TP (7)

where 8.(f; T) is the average power spectrum of s, (t; T) in (6), and
P(f) is the Fourier transform of p(t).

We can obtain S.(f; T) by applying (4) and (5) to s.(t; 7). In so
doing, we make use of the fact that the convolution between two unit
impulse functions separated by mT seconds is a unit impulse function
8(t — mT). It is then easy to show that

m=—w | N—ow n=-N

1 &= . 1 N —
Su(f;T)~€F{T > [hmm > b,.b,,.,_,,,]&(r—mT)], (8)

Ru(r; T)

where Dnba.sn is an average over the sequence ensemble and the
bracketed term is the further averaging over the time position of b..
Because R.(r; T) is a sequence of uniformly spaced impulses, S (f; )
is periodic in frequency with a repetition interval 1 /T. The shaping of
this spectrum by the nonperiodic pulse spectrum function |[P(f)|?
leads to the overall spectral characteristic of the block-coded signal.
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2.2 Analysis of Ru(7; T)
This analysis is aimed at simplifying R.(7; T), eq. (8), by finding a

description for b,b, . and its average over n. To do this, we make two
important observations about the block-coded binary sequence {b.}:

(z2) The 2™ possible digital sequences within each code block of
{b.} are equiprobable, even though the last digit is a code digit.

(72) The correlation between b, and b, depends only on the num-
ber of blocks separating these two digits, i.e., on the number (g)
of code digits in the interval [n, n + m).

The first observation is easily proved : The first M — 1 digits of each
block at the coder input, which are assumed to be totally random, form
one of 2¥1 equiprobable sequences. With the addition of the +1 code
digit, there are still only 2¥~! realizable sequences per block. The
possible inversion of the block by the coder, however, produces another
2M-1 realizable sequences (the original 2#-! sequences with — 1 instead
of +1 for the last digit), leading to a total of 2™, Further, since the
probability of a block inversion is % for a random input sequence, the
2¥ realizable output sequences are equiprobable. The significance of
this is that {b.} is statistically the same as if all M digits in each input
block were derived by random selection.

The second observation depends on the first. For in the absence of
block inversions and with all input digits randomly derived, there
would be no correlation between any two digits of the digital stream.
Any correlations in the block-coded sequence, therefore, are due solely

to the inversions. It follows that b.b.,» depends, at most, on the num-
ber of possible block inversions (or code digits, ¢) between b, and b.ym.

We conclude that R.(r; T) can be expressed in terms of a set of
numbers {p,}, p, being the correlation between any two digits having
g code digits between them.* To reduce (8) to such a representation, we
first observe that, if |m| = IM + p, where 1 < p < M, then ¢ is
either [ or [ + 1, depending on the position of b, within the block con-
taining it. By letting n vary from the first to the last block position, we
can see that ¢ = [ for a fraction [ (M — p)/M ] of all possible positions,
and ¢ = [ 4+ 1 for a fraction (p/M) of all possible positions. We can
therefore express the bracketed quantity in (8) as

1 X M—-0p

[ﬂﬁﬂ;s:_”b,.b,.w]=( 7 )p,+(%)pm, (9)

* It is obvious that po = 0, because any two digits in the same input block are
taken to be uncorrelated, and this fact is not altered by the coding.

1108  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974



Rim; M)
1l

1

P N U v LI S S

) )
1‘2 12

Fig. 3—Representation of B (m; M).

where

I £ greatest integer in %,i : (10)

Since p = |m| — IM, the right side of (9) can be re-expressed as

DM — — M
R(m; M) = ¢+ )M [m] p + |m|M Pryws (11)

with [ related to m and M by (10).

It is clear from the statistical symmetry of the s in (9) that
R(—m; M) = R(m; M), and (11) reflects this fact. It is also clear
from (9) that R(0; M) = 1. We can thus express R.(r; T') in (8) as
Ru(f; T)

= %[6(7) + Hil R(m; M)(8(r +mT) 4+ 8(r — mT)} ] (12)

Although the mathematical deseription for R(m; M), eq. (11), seems
complicated, it has the very simple graphical interpretation shown in
Fig. 3. The value of R(m; M) for ¢ complete block separations (ie.,
m = qM) is just p,," and the variation between m = ¢M and m
= (g + 1)M is a linear progression from p, to p,41. This result can
now be used to derive S,(f; T').

* The one exception to this is the singular case ¢ = 0, where R(m = 0; M) = po+ 1,
With po = 0.
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2.3 Expression for S.(f; T)

If the lines in Fig. 3 are envisioned as impulses of area 1/T separated
by T seconds, then S.(f; T') can be found as the Fourier transform of
this sequence. The algebra is straightforward but somewhat tedious,
and so we give just the final result:

. s -

Su(f; T) = %[1 + ZM(%%) X b cos mMT]. (13)
The periodicity of this function, with repetition interval 1/7T, is easy
to see. The p,’s are functions of M so that a complete description of
Su(f; T), and thus of S(f) as given by (7), reduces to knowing the
array of functions {p,(M)}. Unfortunately, there is no apparent way
to determine these functions from purely theoretical considerations.
One useful bit of information, however, is that S,(0; T) = 0 by virtue
of the block coding.* This being the case, we see from (13) that

e 1
X pa(M) = — sy (14)

Beyond (7), (13), and (14), we have little information about the
block-coded signal spectrum on theoretical grounds. Using the methods
of computer simulation, however, it is possible to estimate the p,’s
for various M, and to seek functional descriptions for them that permit
a closed-form evaluation of (13). This task constitutes the remainder
of the development.

Ill. SIMULATION STUDY
3.1 Computer programs

The computer programs used to derive {p,(M)} empirically are
depicted in Fig. 4. The routine called BLOCK generates random se-
quences {a.} having the properties described by (2) and, for specified
M, converts them into block-coded sequences {b.} by emulating the
logic in Fig. 2. These coded sequences are supplied on demand to the
main program, labelled SIMULATION.

The SIMULATION program operates in the following manner: In
each of Ny trials, it accepts an N-term sequence from BLOCK and
performs an N-point discrete Fourier transform (DFT®), producing
complex spectral samples at f = k/NT, kt = 0, N — 1. The squared
magnitude of the kth sample (normalized by N) represents a one-trial

* This is so because the long-time integration of the coded sequence is bounded in
magnitude (specifically, by 3M/2).
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estimate of TS.(f = k/NT; T). These estimates for the Nr trials are
averaged to produce the array {S:}, ¥ = 0, N — 1. This procedure is
made efficient by implementing the DFT’s with fast Fourier transform
(FFT) algorithms.' To maximize efficiency, N is constrained in all
simulations to be an integral power of 2.

The full benefit of the multitrial averaging is obtained by enforcing
statistical independence among the N 7 sequences supplied by BLOCK,
and also by effectively randomizing the time phase of the sequences
analyzed. The latter is accomplished by means of the function labelled
“SELECT SUBSEQUENCE . . .” (Fig. 4), which causes the starting
time of the analyzed sequences to vary uniformly among the M possible
positions within a block. To accommodate this feature, the independent
sequences supplied by BLOCK have a total length N + Nr — 1 or
greater.

There are three output arrays produced in the SIMULATION pro-
gram. One is {S;}, which approximates T'S.(f; T) at the N frequencies
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k/NT,k = 0, N — 1. This array is applied to the PLOT routine, Fig.
4, where it is plotted on the same graph as the mathematical function
given by (28). This function is derived using numerical parameters
extracted from {R,}, the inverse DFT of {S:}, which is the second
output array, Fig. 4. The elements of this array represent estimates of
R(m; M),ie., R, = R(m; M), and they are applied to the COMPUTE
routine to produce estimates of p,, i.e., the array {s,}. These are the
quantities used to derive (28) from (13). To evaluate the accuracy of
these estimates, the COMPUTE routine also produces the array {¢,},
where ¢, is the approximate rms error in ,. The computation of {é,}
involves the array {R\®}, the inverse DFT of {S%}, which is the third
output of the SIMULATION program. The formulas relating {R.},

{Bq}, [Rf?}, and {d,} are presented in Section 3.3.

3.2 Choices of N and N:

The difference between the computer-derived spectral sample Si
and the quantity it approximates, T'S,(k/NT; T), contains two dis-
tinct components, (7) a deterministic error due to the finiteness (N) of
the sample length and (77) a random error due to the finiteness (Nr)
of the number of independent simulations. Similar remarks apply to
the difference between R, and E(m; M). We now apply these considera-
tions to the choices of N and Nr.

Because N is finite, the normalized spectrum estimated by the com-
puter program is not TS.(f; T), but the convolution between
TS.(f; T) and the function

sin 7V f T )z'

POy = No( 2 (15)

Thus, Si is an estimate of the quantity
Sk ® k
TS.,(N—T, T) = [ 78,055 T)F(f - W)df. (16)

Since the area of F(f) is unity, the approximation of TS.(k/NT; T)
by TS.(k/NT; T) is very good if TS.(f; T) changes negligibly over
the main lobe of F(f — k/NT). The difference is the deterministic
error in Si; the inverse DFT of the k-sequence of these errors gives
the deterministic errors in the estimates of R(m; M).

By considering the interference between the peak of TS.(f; T)
(which occurs near f = 1/4MT) and the sidelobes of F(f) (which
decrease as 1/?), we have determined a rule of thumb for which worst-
case deterministic errors are negligibly small. The rule constrains N
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to the region
N = 100 M, (17)
a constraint we have used throughout this study.

The random errors in estimating R(m; M) also decrease with in-
creasing N, as we shall see in Section 3.3. This consideration, added to
(17) and the requirement that N be an integral power of 2, has helped to
shape the final choices of N for different values of M. Typically, we
have used N = 512 for M = 3, N = 2048 for M = 9, and N = 4096
for M = 17.

We shall also see in Section 3.3 that the random errors in estimating
Su(f; T) and R(m; M) decrease with increasing N r. For example, the

fractional rms error in S is accurately given by 1/VNr. In deriving
estimates for R(m; M), we have used 400 trials to achieve the ac-
curacies desired, while, to obtain precise spectral estimates for com-
parison with the final formula, we have used 1600 trials (corresponding
to +2.5 percent accuracy).

3.3 Analysis ot computer results

The simulation estimates of R(m; M) form > 0 and M = 3, 9, and
17 are given by the points in Figs. 5, 6, and 7. The existence of straight-
line variations between m = ¢M and m = (g + 1)M for ¢ = 0, 1, 2,
ete., as predicted by the analysis of Seetion II, is evidenced here. The
deviations of the points from straight lines are due to statistical flue-
tuations in the finite simulation, and the straight lines shown are
derived from the points by least-squares techniques. The pertinent
error analyses and estimation procedures used to obtain these straight
lines and further data reductions are now summarized. We assume
from here on that deterministic errors are made negligible by the
choice of N, i.e., that all errors in S and R, are random errors due to
finite N r. Table I lists the symbols to be used.

3.3.1 Error correlations

We now establish the error correlations 8:8; and eme, with the aid of
the definitions in Table I. As N becomes very large, the real and
imaginary parts of ux become more and more like independent gaussian
variates (central limit theorem!), and we assume this to be the case
here. The importance of this assumption is that the definitions of &y,
Sk, and S in Table I can then be used to obtain

— _ |wan?
861 = N;‘N‘T- (18)
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Fig. 6—Simulation results for M = 9 (N = 2048, Ny = 400 trials).
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Fig. 7—Simulation results for M = 17 (N = 4096, N7 = 400 trials).

Clearly, 52 = (S:)?/Nr, i.e., the rms error in estimating Sj is Si/ VN 7.
Unfortunately, 8:8; for I # k is not zero for the block-coded signal
under study. Nevertheless, these correlations are found to be suffi-
ciently weak (particularly as |k — [| increases) that we can ignore
them without any first-order effects on the results. The benefit of this
is a considerable simplification in the mathematics. Accordingly, we
shall assume that

— Se)/Nr; 1=k
50y = | SN (19)
0; [ #Ek.
Table | — Symbols used in error analysis
Symbol Meaning
{us}, k =0, N — 1 |DFT of {ba}, n =0, N — 1 .
Su(f; T) Average power spectrum of infinitely long block-coded signal
Sk Simulation estimate of Su.(f = kT/N; T): Sk = Ave(lmf’/N)
Nt
Sk Limiting value of Sk as N7 — w: S = [ux[*/N
8k Random error in Si: 8 = Sk — Sk
R(m; M) Coefficient, at separation m, of autocorrelation function of
block coded signal
R Simulation estimate of R(m; M): {Rm} = IDFT (S}
€m Random error in Bum: ém = Rm — R(m; M) = IDFT{é)
pay Py Exact, estimated values of BE(m = ¢M ; M)
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To establish énep, we begin with the fact that {e.) is the inverse
DFT of {8:}. Using (19) and a modest amount of manipulation, we can
then show that

€mep = [IDFT{ (Sw)?} | msp + IDFT{ {80} im—p ] (20)
R:(:% R|(!2:')l o dl
In the SIMULATION program (see Fig. 4), the array {R!®} is esti-

mated by computing the inverse DFT of {Si}, and is then used to
determine the rms errors in the estimates for p,(M).

3.3.2 Estimations of p,(M)

Given the simulation estimates {R..}, an obvious way to estimate
po(= R(m = gM ; M)) is by p, = Rm_qu. However, the values of K,
for m=qM — 1, gM — 2, ---qgM — (M — 1) can be included to
yield more accurate estimates of p,, as the following analysis shows.

Using Table I and Fig. 3, we can express K. in the general form

Bo = por + 2257 I — (g = DM]+ en; (g = DM <m < gM

q = 1, 2, etc. (21)

Now suppose that we estimate p, as a linearly weighted sum of R,
over [(g — 1)M + 1, ¢M]. Using the substitution m’ = m + (¢ — 1)M,
this sum can be written as

Z Wnllm = pg—1 Z Wm

m=1

+ Pa T P “M"“ z mwm + z Wmem.  (22)

This estimate is made unbiased by choosing {w.} so that

Arbitrary, ¢ =1

M M
m>:;"1 Wa = 1, ¢>1 and mz=1 mwn, = M. (23)

(For the singular case ¢ = 1, there is no constraint on >_w. because po
is known to be zero.) To see how to choose {w.} (m = 1, M) within
these constraints, we combine (20), (22), and (23) and obtain the
following mean-square error for p,:

M 2 M
>: 2 wnitymey =y 3 z wawo[RD4y + Ry (24)

m=1p

To a first approximation, the dominant component of ¢% is 2R{? (3 wn)/
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Table || — Estimates of py(M)

M 3 | 5 9 13 17
0N (0=3.1X1079) (o= 18X 10| (0 =1.0X107%)! (o= 6.1 10~4)| (r =5.3X 10-4)
1| —006321 | —0.04787 | —0.03098 | —0.02271 | —0.00172
2| —014363 | —006625 | —002870 | 001751 | —0.00128
3| —001754 | —000832 | —0.00168 | —0.00140 | —0.00081
1] 007654 0.02712 0.00659 0.00398 0.00212
5| 001431 0.00515 | —0.00018 0.00024 0.00066
6| —004212 | —001120 | —000198 | —0.00077 | —0.00091
7| —001074 | —0.00200 | —0.00075 0.00075 | —0.00041
8| 002653 0.00701 0.0 0.00002 0.00103
o| 000546 | —0.00018 0.00069 0.00039 0.00088
10| —001244 | —000483 | —0.00026 0.00069 0.00020
11| —000600 | 000040 | —0.00016 | —0.00009 | —0.00050
12| 001124 0.00185 | —0.00103 0.00017 0.00061
13| 000275 0.00143 0.00183 0.00024 | —0.00031
14| —000471 | —0.00096 0.00009 0.00032 | —0.00017
15 | —0.00062 0.00022 | —0.00008 0.00003 0.00018
16| 000038 0.00200 | —0.00062 0.00061 0.00027
17| 000171 0.00016 0.00013 | —0.00023 0.00017
18| 000027 | —000407 | —000087 | —0.00050 0.00004
19| 000254 | —0.00134 0.00039 0.00047 | —0.00019
20| 0.00024 0.00201 0.00057 0.00051 0.00024

NN, because |R{?| tends to be small for n # 0. Using this fact, an
approximate least-squares approach is to derive the sequence {w.} for
which > w? is a minimum within the constraints of (23). Using Lagran-
gian multipliers, it is straightforward to show that the solution is

_ 2 n 6m Ca> 1
MTyamrn ¢

= (25)
Om

Wm =
(rrz=1,“1')l(i’hr + 1)(2111 + 1) ; g = 1.

We assume that, for practical purposes, (25) represents the least-
squares coefficient array for the error given by (24). It was used in the
COMPUTE routine of Fig. 4 to obtain {5,} [based on (22) and the
estimates { R} ] and to estimate {s,} [based on (24) and the estimates
of {RP1].

The results are shown in Table II for several values of M and for
g = 1, 20. It is found that ¢, is fairly constant with ¢, except for oy,
which tends to be lower by 10 to 30 percent. The quantity ¢ in each
column heading of Table II is the average of the computed ¢,'s from
g =2 to g = 20." These rms errors are lower than those obtained

* Note that, for all M, , is in the simulation “noise” (i.e., |p,| = o) for ¢ = 20.
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by estimating p, as Rm—qar [which is equivalent to using {wn.]
= (0,0, ---,1)], the improvement factor increasing with M and
having a value near 2.5 for M = 17.

3.4 Reduction to mathematical descriptions

From the data of Table II, a useful and valid description for ,(M)
can be shown to be
B,

M2? (26)

A
pald) = 41 +
where A, and B, are functions solely of ¢. For each g, raw estimates of
A, and B, are derivable from the 3, values at any two values of M. To
satisfy (14) for all M, however, it is necessary that these estimates be

A
q
ol 2 3 a4 s 1 , 8 9o ¢ 12 13 _
1 6 7 L ® 100 un & °®
~0.1f
a?
A, = ~03225 —0.1710.2) ?
—02f a=1 g EVEN
q—6 q-7
q_8 0.05 —
o3l +0.05(—2/3) 2 + == (=2/3) 2
’ q>6, EVEN q>6,0DD

D.BL

06—

0.2—

+0.44

Q=2
a!
+0.30(-2/3) 2

q
2

+1.8(-2/3)

q EVEN qODD

Fig. 8—Possible solutions for {4,} and (B,}.
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refined to satisfy
@ 1 =

EIAQ = = 5 q;l B, =0. (27)
Moreover, these refined estimates should express A, and B, in mathe-
matical forms that will permit a closed-form evaluation of (13). One
possible solution that satisfies all these requirements is Fig. 8. Using
these results in (26) and comparing with the values in Table 11, agree-
ment is found to be quite good: Nearly all the new estimates of 3,
obtained in this way lie within a standard deviation (==¢) of the tab-
ulated values; also, the values of 3, for ¢ > 20 lie within +¢ about
zero, decaying in magnitude with ¢ as expected from physical reasoning.

IV. FINAL RESULT AND EXAMPLES
4.1 Expression for S.(f; T)
Combining Fig. 8 with (26) and (13), it is possible to obtain a

closed-form expression for S.(f; 7). Once again, the algebra is tedious
but straightforward, so we merely state the result:

sin (MwT/2) \?
18,1 7) = 1 = (Yncrrg ) POl M), (28w)
where
0.88
F(wT; M) = 0.645 cos (MuT) — %= cos (2MwT)
— 0.85 % 2MeT) — 0.2 1

cos 2MwT) — 2.6 13 + 12 cos (2MwT)

X [ﬂ—‘rj, [—7.2 + 6.4 cos (MwT) — 10.8 cos (2MwT)

+ 0.6 cos (BMwT)] + 0.05[12 cos (4MwT) + 2 cos (5MweT)

+ 18 cos (6MwT) + 3 cos (7MmT)]]; Modd. (28hb)

Rather than do an error analysis of this result (e.g., based on the o’s
in Table II), we have compared this formula with fresh simulation
results for {Si} based on 1600 trials {+2.5 percent rms error). The
PLOT routine shown in Fig. 4 plots the simulation data as points and
plots the formula as a solid line. Figures 9 through 13 give the results
for M = 3, 5, 9, 13, and 17, Given the rms errors of the simulations
and the scatter about the solid curves, we estimate from these com-
parisons that the formula is accurate to within 45 percent (0.2 dB)
or better for all M and w. The accuracy is especially good in the all-
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important rising portions near f = 0, where the simulation points are
seen to lie very close to—or within the line thickness of—the solid
curves.

4.2 Comparison with even-M block code

It is tempting to extrapolate the new formula to the case of even M,
although Fig. 2 warns us that the coding schemes for odd and even M
are qualitatively different. Figure 14 shows simulation points, along
with a solid curve derived from the new formula, for M = 4. Figures
15 and 16 do the same for M = 8 and 16. Although N and Nr are
lower in these simulations, the consequent increases in the deterministic
and random errors do not account for the observed diserepancies. It
is concluded that the new formula is not accurate for low even values of
M, but that its accuracy improves as M increases to large even values.

2.8
2.4
2.0
2 os
=
2
1.2
0.8
el SIMULATION RESULTS
—— FORMULA
0.4
0 L : I L
o 0.1 0.2 03 o4 o

T

Fig. 9—Comparison of formula with simulation results for M =3 (Nr = 1600).
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0.8

"+ SIMULATION RESULTS
FORMULA

0.4

0 | | | |
0 01 0.2 0.3 0.4 0.5
fT

Fig. 10—Comparison of formula with simulation results for M = 5 (N = 1600),

16
M=9

1.2
-': . : =
= 08
=
@

E:. SIMULATION RESULTS
04 FORMULA
a | i | |
0 0.1 0.2 03 0.4 0.5
T

Fig. 11—Comparison of formula with simulation results for M = 9 (N = 1600).
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Fig. 12—Comparison of formula with simulation results for M = 13 (Nr = 1600).

4.3 Comparison with zero-disparity code

A different kind of block-coding scheme is one in which M is even
and each block is constrained to have an equal number of positive and
negative digits.? For a given M, this so-called zero-disparity code is
less efficient in information rate than the one studied here (see Franklin
and Pierce?), but has superior spectral properties, as we now show.

For the zero-disparity code, Franklin and Pierce show that T'S.(f; T)
is M/ (M — 1) times the function (28a), with F(«T'; M) replaced by 1.

o
£ 08
£
w
=
SIMULATION RESULTS
04 FORMULA
0 | | | I
0 0.05 0.10 0.15 0.20 0.25

fT

Fig. 13—Comparison of formula with simulation results for M = 17 (Nr = 1600).
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Fig. 14—Comparison of formula with simulation results for M = 4 (Nr = 400).

2.0

16

1.2
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:j
(%) .
= -
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== SIMULATION RESULTS
FORMULA
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0 1 | | 1
0 0.1 0.2 0.3 0.4 0.5
iT

Fig. 15—Comparison of formula with simulation results for M = 8 (Nr = 400).
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Fig. 16—Comparison of formula with simulation results for M = 16 (Nr = 400).

For f < 1/2T and M = 4, this result can be represented to within 0.3

dB as follows:

M1 o (sin (MoT/2)\?
s =1 (MMwT/Q )

(29)

This function is shown (dashed curve) in Fig. 17 and compared with

2.0
1.6 _~=M=5
~M=9
P
= 12 . ~M=17
= \ 7~ ZERO-DISPARITY CODE
U'.\! JE— —
e — — e ——
T
== o8 ~
e
/
7
04 V4
/
/S
Ve
0 - | | 1
0 0.5 1.0 1.5 20
MT

Fig. 17—Comparisons with zero-disparity block code.
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Fig. 18—Block-coded signal spectrum for various pulse shapes (M = 9).

some corresponding results for the block code studied here. The latter
results, based on the new formula, are for M = 5, 9, and 17. The
suppressed energy near f = 0 is seen to be redistributed to higher fre-
quencies (and in a more uniform way) by the zero-disparity code,
permitting more relaxed requirements on ac-coupled processing stages
for a given M. If the quantity held fixed is information rate, however,
the zero-disparity code must use a larger value of M for which its
spectral superiority all but vanishes.

4.4 Effects of pulse shape

The overall spectrum of the block-coded signal must take into ac-
count the spectrum of the pulse shape p(t). Figure 18 gives some results
for S(f), (7), for the case M = 9. The relative differences due to pulse
shape are identical to those that oceur without block coding. The effect
of the block coding is to force spectral nulls near f = »n/T, (n = 0,1, 2,
ete.) and “bumps’ within +1/4M 7T of each null.

V. CONCLUSION

The general analysis of Section II leading to (7) and (13) applies to
a wide class of block-coding schemes aside from the one treated here.
The simulation/analysis procedures described in Section III can like-
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wise be applied to these schemes to find the p,’s. Unfortunately, the
computer costs involved in accurately estimating the p,’s and com-
paring the resulting formula with simulation data can be quite high.

Agide from computer cost considerations, a strictly theoretical solu-
tion to this kind of problem would be more accurate and provide more
insight into the correlation factors influencing this kind of random
process. Although qualitative explanations can be given for the os-
cillating behavior of p, with ¢ (Table II), the approach described here
requires and offers little insight into such phenomena.

In strictly practical terms, however, the result of this study provides
a spectrum description which is quite accurate and fairly simple to
use. For studies involving the passage of block-coded signals through
ac-coupled amplifiers, or carrier extraction from signals modulated
with block-coded sequences, such descriptions are highly useful.
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