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This paper describes an equalization procedure for systems using
manually adjustable bump equalizers that is based on a mean-squared
error criterion. We show that, in accordance with a Gauss-Seidel iteration
process, gain adjustment always converges to the optimal value at which
the minimum MSE of the equalized channel is obtained. Both zero
forcing and MSE algorithms based on the Gauss-Seidel iteration method
are dertved, and hardware implementation of these algorithms is dis-
cussed. According to the error reduction analysts, an equalizer composed
of orthogonal networks requires only one iteration fo bring the equalizer
to the optimum state. For the bump equalizers used in the latest L5 Coaxial
Carrier Transmission System whose Bode networks are semi-orthogonal,
two to three iterations are shown to be sufficient to achieve the optimum
gain settings in the mean-squared error sense.

I. INTRODUCTION

In this paper, a manual adjustment of bump equalizers is described
which uses a mean-squared error (MSE) criterion. In the existing L4
Coaxial Transmission System, the bump equalizers (realized with Bode
equalizer networks!) are used for line equalization and adjusted ac-
cording to a zero forcing (ZF) algorithm.? This method results in an
optimum equalization in the MSE sense, but only under certain very
restrictive conditions with respect to the transmission response of the
channel. The latest L5 Coaxial Transmission System, which provides
up to 10,800 toll-grade long-haul message channels on a pair of 0.375-
inch coaxial cables over 4000 miles, also includes bump equalizers for
equalization of the 65-MHz bandwidth channel. The equalization
method used in the L5 Coaxial Carrier Transmission System, however,
minimizes the MSE of the channel deviation. It is found in practice
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that the MSE algorithm has given a better equalization result than
the ZF algorithm.

Since a coaxial cable system shows relatively stable channel charac-
teristic, the bulk of the L5 line equalization is accomplished by
manually adjustable equalizers. Normally, the time-varying channel
deviation in a cable system is mostly the result of seasonal tempera-
ture variation and aging of the components in the system. In such case,
a usage of complex automatic equalizers in the system is not economi-
cally desirable.

In Ref. 3, two MSE methods are discussed for the equalizer adjust-
ment. Both methods are based on the steepest descent algorithm
and could be easily implemented in an automatic equalizer, but not in
a manual equalizer.

In this paper, an MSE algorithm based on the Gauss-Seidel itera-
tion method is described for the gain adjustment of the manual bump
equalizers. Under the specified assumptions, this method guarantees
the convergence of the following iterative process. If a visual display of
the gradient of the MSE with respect to each gain setting is available,
adjust the first gain setting until the gradient becomes zero; next,
adjust the second gain setting until the associated gradient becomes
zero; similarly, adjust the third gain setting and all others up to the
last one, thus completing one iteration. As the number of iterations
increases, the residual error in the channel will be minimized in the
MSE sense.

While the Gauss-Seidel iteration method may seem quite compli-
cated, it has several distinct advantages. First of all, the Gauss-
Seidel iteration method requires only one gradient at a time, which
can simplify the hardware involvement, particularly for manual
equalizers. As is shown in Section III, the number of iterations needed
to bring the equalizers to the optimum state is not large. When the
equalizer is composed of orthogonal networks, a single iteration is
sufficient. Since most of the equalizer networks used in transmission
systems are orthogonal or semi-orthogonal in nature, the number of
iterations will usually be small. For the bump equalizers, which consist
of semi-orthogonal terms, two to three iterations are satisfactory for
the optimal equalization according to the error analysis given in
Section III. This result has been verified experimentally in the field.

Il. MSE ADJUSTING ALGORITHMS FOR BUMP EQUALIZERS

In this section, several assumptions are made before the ZF and
MSE algorithms are presented.
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2.1 Characterization of coaxial channel

The channel assumed in this section is represented by an infinite
sin x/x series on the frequency domain. (Since the transfer function of
the Bode network is symmetric on the log f plane, where f is the
natural frequency in hertz, the frequency used throughout is defined
by w = log f.)

Let M(w, t) represent the time-varying channel misalignment
which is a real valued function of frequency in decibels. From the
practical point of view, however, the channel can be assumed to be
simply M (w) since the time variation is negligible during the equali-
zation interval. Further, assume that the Fourier transform of the
channel is limited in the time domain by a certain positive constant.
(It should be noted that the Fourier transform of the channel does
not result in an impulse response of the channel because the channel
is measured in dB. However, there is an implicit dual relationship
between the channel studied in this paper and that involving a time-
domain equalizer, e.g., a transversal equalizer, in which a frequency
band limitation of the channel is implied.) Hence, the channel can be
characterized on the frequency domain by the following series:

sin[ 2rp(w — w,) ]
2rp(w — wa)

M(w) = % C. (dB), (1)

where C,, p, and w, are real numbers and
1
Wap1 — Wy = % foralln =0,1, ---.

Note that w, is equally spaced.
Equation (1) can also be written in the following way.

M(w) = 1 mo C.cos[2rp(w — w,)x ]dx
0 n=
= fl [ f: C., cos(2rpw,x) cos (2rpwz)
0 n=0
+ }Eﬂ C, sin(2rpw,z) sin(2rpwz) }dx
1
= ./; {F(x) cos(2rpwz) + H(x) sin(27pwz) }dz, (2)
where

F(z) = i C.cos(2rpw,z) and H(x) = i C, sin(2rpw,z).
n=0 n=10

MSE EQUALIZATION 849



Since 0 < z = 1, eq. (2) implies that the shortest frequency domain
ripple period found in the channel M (w) is 1/p.

2.2 Representation of bump equalizers
The bump equalizer considered in this paper is a linear combination

of adjustable-loss Bode networks. The input-output transfer function
of an equalizer composed of N Bode networks can be represented by

EQL@w) = ¥ guBu(w)  (dB), 3)

where N is the number of networks and g: and B; represent the gain
and response respectively of the kth Bode network.

A typical Bode network is shown in Fig. 1a, where the loss is con-
trolled by the resistor R. The transfer function, Bi(w), can be analyti-
cally derived and, with a suitable flat gain amplifier, it can be expressed
by the following equation:

[E:(1 + Ei) + D ]* — Di (dB), @)

Bk(W) = [(1 + EA-,)Z + Dk:P

where

g Bo

Be= R

e - (w/w)H,

T [(w/we)? — 1%
_ G

Hk = fk:

and

1
we =108 5 70

Since eq. (4) shows Bi(w) to be a quite complicated function of w,
one of the following assumptions is used while analyzing the equalizer
in detail.

Assumption 1: Let Bi(w) be approximated by

sinc[ T w — wy) ] _ sinlw(w — wo)/Aw] 4y (5)

Aw m(w — wi)/Aw

Since there are N Bode networks in the equalizer, which for the
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Fig. 1—Adjustable Bode network.

present analysis are spaced equally on the w-axis with interval Aw
(see Fig. 2), then the transfer function of equalizer can be expressed by

N m
EQL(w) = kgl gk sinc[ m(w — Wk) ] (dB). (6)
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Fig. 2—Manual equalization of L5 coaxial system.

To permit a comparison between Bi(w), as represented by eqs. (4)
and (5), the two equations are plotted in Fig. 1b. The maximum dif-
ferences between the two best matched curves are 0.165 and 0.183
dB when |w — wi| £ Aw and |w — we| > Aw, respectively.

Assumption 2: Let Bx(w) be approximated by

sin[r(w — wi)/Aw]
1r(w - ’LU;‘)/A'HJ
_cos[w(w — we)/Aw (7)
1 — 4[(w — wy)/Aw]?

Under the same conditions listed in Assumption 1, the transfer func-
tion of equalizer can be expressed by

cosine| — (w — wg) ] =
Aw *

N
EQLw) = ¥ o cosinc[ T (0 — w,,)] @B).  (®)
E=1 Aw
Expression (7) is also plotted in Fig. 1b, and it can be seen that cosinc

[r(w — wi)/Aw] approximates quite well the actual transfer function
of the Bode network as expressed by eq. (4). The maximum differ-
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ence between the two best-matched curves is 0.0327 dB when [w — w;
< Aw and 0.0404 dB for |w — w| > Aw.

2.3 Mean-squared error algorithms (Gauss-Seidel iteration method)

The definition of optimal equalization used in this paper is the mini-
mization of the MSE of the equalized channel as a result of adjusting
the gain parameters, g;.

On a decibel scale, the equalized error will be

N
E@) = 3 g:Bu(w) — M(w). ®
Then the MSE can be represented in the frequency domain by
MSE = f * | E(w) | %dw. (10)

—o0

Theorem 1: If the equalizer described by eq. (3) is composed of linearly
independent networks, then there exists a unique sel of gi's which nulls
all the gradients Gy; 1.e.,

_ OMSE

G, = =0 forallk=1,2 ---, N, (11)
ag,,

where MSE is defined in eq. (10), and the corresponding set of gi's
results in minimum MSE.

The proof is given in Appendix A.

The bump equalizers considered in this paper belong to the class
of the equalizers defined in Theorem 1.

As derived in eq. (25) of Appendix A, the gradient vector is given by

G = Bg — M, (12)

where B, g, and M are the system matrix, gain vector, and correlation
vector, respectively, and are defined as follows. Defining an inner
product

(A, B) = [ * A(w)B(w)dw,
G = [:Gl, G2, Tty GN]TI
where T indicates the transpose,

g = [:glx g2, "y gN:ITs
M = 2[(By(w), M (w)), (Ba(w), M(w)), - - -, (Bx(w), M(w))]7,
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and

<B1) Bl)x (Blj Bz), e (Bh BN)
B =2 <B2! Bl)! (13-2: Bz)’ e (Bﬂi BN>
(BN! Bl): <£.;Ns Bi’-): <BN1 BN’)

Now the gain vector is
g =BG+ M), (13)

provided that B! exists. The optimum gain, g* which results in the
minimum MSE is obtained by solving eq. (13) with G = 0. The
MSE algorithm given in Ref. 3 solves (13) with G = 0 by the steepest
descent method, which can be readily implemented in an automatic
equalizer control circuit. For manually adjusted equalizers, however,
the steepest descent algorithm cannot be easily implemented because
the algorithm requires simultaneous adjustment of all the gain settings.
A manual equalizer adjustment algorithm should have the following
properties:

(i) The several gain settings can be adjusted one at a time, within
a specified sequence.
(73) Repeating step (), g approaches g*.
The converging rate of the initial g to the final g* depends on the type
of algorithm used and the system matrix B. For the bump equalizer,
this question is discussed in Section 3.2.

Theorem 2 (Gauss-Seidel iteration algorithm): If the system matriz
B in (12) has dominant diagonal elements such that

(B B > £ |(B, B)| (14)

forallk=1,2 --- N,

where Y indicates the summation of all terms excluding the case j = k,
then every g converges to the optimum gain g* = B~'M by the following
iteration process:

Iteration 1: Lel gii indicate the kth gain al the ith iteration; thus, the
initial gain settings are gy, g2c0), - * -, N0y Adjust gicoy until its corre-
sponding gradient G, = 0 and designate the resultant gain g1). The gain
settings are then Jiay, Gy, ", GN(D)- AdJuSt J2(0) until the gmdz’em
Gz = 0, Tesulting in the gam settings Jicryy, Gz2q1y; Gsy, "ty GN(0)-
Repeating the operation for each setting results in g1y, gz, sy, *
gny, and completes the first iteration.
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Iteration 2: Adjust g1qy until Gi = 0, resulting in the gain settings g1(a),
J2(1), Jacy), -~y gN)- Obtain J2¢2y, Jac2), ~ " ", AN(2) by similar opemtz'on,
completing the second iteration. Similarly, iterations 3, 4, ---, n can be
carried out as required.

The proof is given in Appendix B.

If equalizer networks satisfy the inequality (14), they are called,

in this paper, semi-orthogonal terms. The bump equalizers defined in
this paper satisfy the inequality (14), and hence Theorem 2 can be
used as a manual-equalizer adjusting algorithm. To implement this
algorithm, a visual display of each gradient is required before the cor-
responding gain is adjusted. The following two theorems provide
simple ways of determining the gradient.
Theorem 3 (ZF algorithm): Let the channel be represented by eq. (1) and
the equalizer satisfy assumption 1. If the interval Aw between two adjacent
Bode networks is no greater than half the shortest ripple period ( = 1/p)
found in the channel, i.e.,

Aw

A

1
then the optimum gain selling is obtained by repeating the Gauss-Seidel
teration process defined itn Theorem 2 with the gradient given by

Gy = 2E(wy), (16)

where k = 1, 2, -+, N and E(w:) s the frequency domain error value
measured at frequency w, the center frequency of the kth Bode network.

The proof is given in Appendix C.

Thus, if signals are transmitted at a set of frequencies equal to the
center frequencies, w:, of the Bode networks, and if the errors are
measured at these frequencies at the receiving station, the gradients,
G, can be obtained directly. Then each gain, gi, would be adjusted
until its gradient, G, reduced to zero. This is the well-known ‘“‘zero-
forcing” technique used in Ref. 2; it also achieves the optimum equal-
ized channel in the MSE sense, if the stipulated assumptions apply.

Theorem 4 (MSE algorithm): Let the bump equaltzer in this case satisfy
assumption 2 and assume that the interval, Aw, between adjacent Bode
networks 1s no greater than the shortest frequency domain ripple period in
the channel, 1.e.,

Aw = —. (17)

S

Then the optimum gain selting is obtained by repeating the Gauss-Seidel
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iteration process with the gradient in this inslance given by

Gp = %E( Wy — %ﬂ)-f- E(w:) + %E( wr + A?w) (18)
k=12, <+, N,

where E(wy) 5 the frequency domain error at the center frequency of
the kth Bode network, and E[w, — (Aw/2)] and E[w, + (A/2)] are the
frequency domain errors measured at lower and upper frequencies midway
between adjacent Bode networks. Equation (18) s derived in Ref. 3.

Proof: In this case,
(By, By) = 0.75

and

N

> 1By B))| = 025
for all k, thus satisfying the inequality (14). Hence, the Gauss-Seidel
iteration process converges to the optimum gain settings.

To implement the MSE algorithm, a measure of the error at 2N — 1
points in the frequency domain is required (see Fig. 2). In practice,
the MSE technique results in better equalization than that obtained
by the ZF method. Note that assumption 2 for the MSE algorithm
approximates the actual equalizer more precisely than assumption 1
does. Moreover, inequality (15) for the ZF algorithm derived in this
section is a conservative assumption. The channel ripple period allowed
by the MSE algorithm can be half the period assumed by the ZF
algorithm.

lll. CONTROL OF MANUAL BUMP EQUALIZERS

In this section, the Gauss-Seidel iteration process derived in the
previous section is applied to the manual equalizer for optimum gain
control. The number of iterations required to obtain acceptable gain
settings is reflected in inequality (14). The larger the diagonal com-
ponents [left-hand side of (14)] compared to the off-diagonal com-
ponents [right-hand side of (14)], the fewer the iterations needed. The
rate of convergence of the iteration is described in Section 3.2 based on
an error-reduction analysis. It is shown that one iteration is sufficient
to obtain the optimum gain settings for the ZF Gauss-Seidel iteration
algorithm derived in Theorem 3. When, in the more general case, the
channel is initially equalized by the ZF algorithm, one or two more
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iterations are usually sufficient to achieve a practically optimum
equalized channel for the MSE algorithm.

3.1 Hardware realization of Gauss-Seidel iteration process

For the L5 line equalization, an equalizer adjustment system has
been developed for the adjustment of bump equalizers by the Gauss-
Seidel iteration process. It is composed of a precision transmission
measuring set, 90G oscillator—90H detector—digital control unit
(Ref. 4), and a hardwired, special-purpose computer which contains
a programmed memory and an arithmetic unit called an equalizer
adjustment unit (EAU) (see Fig. 3). Referring to Fig. 2, we assume
that the equalizers in the receiving station are to be adjusted by the
MBSE algorithm. By selecting the particular Bode network to be
adjusted, the EAU in the transmitting station causes the 90G oscillator
to generate sequentially an appropriate set of three frequencies (fii,
Jre, and fis). The EAU in the receiving station measures the channel
error at the same three frequencies and computes the gradient, G4,

Fig. 3—FEqualizer adjustment unit.
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by the following relationship:
G = BuE(fu) + BuE(fi2) + BrsE(fis).

Normally, Bxy = Bis = 3 and Bis = 1. The resultant is displayed in
a digital readout of the EAU and the operator subsequently adjusts
g: until G4 = 0. Then the next Bode network is selected and the trans-
mitting EAU causes the generation of the required set of three fre-
quencies, and the receiving EAU processes the received error signals
and displays the calculated gradient. Again, the corresponding gain
adjustment is made. When the ZF algorithm is selected, the gradient
displayed is simply the error at the center frequency of the Bode
network. Hence, as far as the operator is concerned, the adjustment
procedure for the ZF and MSE algorithms is identical.

In practice, it is found that the equalizer should be initially adjusted
by the ZF algorithm to bring the system near the optimum state. In
this way, any large initial gain deviations from the optimum value are
quickly reduced to within about 0.5 dB. Then the MSE algorithm is
used for the ‘““fine tuning’” of the gain adjustments. Usually, one or
two iterations with the MSE algorithm will be sufficient for the equal-
izer to reach the optimum MSE state when starting from the ZF
state. According to inequality (23) derived in the following section, and
given initial gain settings within +0.5 dB of the optimum value, the
gain settings after two iterations are within 40.036 dB of the ideal
values in the worst case. The actual deviation from optimum in most
cases will be smaller than 0.036 dB and in any case will be less than
the inherent accuracy limitations of the 90-type transmission measuring
sets to be used.

3.2 Error analysis

The Gauss-Seidel iteration provides fast convergence of initial gain
settings to the optimum values for the bump equalizers. As derived in
Appendix B, the Gauss-Seidel iteration can be expressed by

gu+ny = — L7'U0gw + LM, (19)

where L is the lower triangular portion of the system matrix B in-
cluding the diagonal and U is the upper triangular portion of B not
including the diagonal.

Defining an error vector after the ith iteration to be

es = g¥ — gun (20)
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where g* is the optimum value, then

ey =g* — Butn
=g*+ L7'Ugw — LM
= — L_IUE("). (21)

To derive (21), the equality, L-'M = g* 4+ L-1Ug*, was used. Hence,
the magnitude of the eigenvalues of L~'U determines the speed of
convergence.

If the equalizer belongs to the class defined in assumption 1, Bis
a positive definite diagonal matrix and L—'U is a null matrix. Hence,
e+ = Oforalli = 0,1,2, - - -. In other words, we obtain the optimum
gain settings by the ZF Gauss-Seidel iteration algorithm in one iter-
ation. The same result can be obtained from eq. (19), since L='U is a
null matrix and L-! = B,

If the equalizer satisfies assumption 2, the MSE Gauss-Seidel
iteration algorithm can be used. Now the system matrix is

bu, b, b, -, by
B =2 bz:l, bos, bas, -, bay ,
byi, bws, bws, -+, buw
where
b.'_,‘ = 0.75 if i= j
b,‘j = 0.125 if |'L - jl =]
and
by =0 if [i—jl=z2
forall4, j = 1,2, ---, N. Splitting B into two parts, L and U, which
are defined above, and performing some algebra,
0, 6, 0, 0, ---, 0
0, —67% 64 0, ---, 0
LU =40, 673 —6-% 67, ..., 0
(-), {_ 1) N+16—-:\', (_ 1)‘\"6—(1\[—1)’ . 6—3, _6—-2

Hence, one can calculate the new error vector by eq. (21). After one
iteration, the upper bound on the maximum residual error becomes

leray | max = $(671 4+ 672 4+ 6= + -+ -) |&j(0) | max
= 0.26667 I €5(0) | max (22)

forall j, k=1, 2, ---, N. Similarly, after the second iteration,
Iem] | max é 0.26667 |6_,'(1) | max é 0.07111 |€.’(o) | max (23)
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forall4, j, k= 1,2, ---, N. The equality in eqgs. (22) and (23) will
be obtained if and only if

€1(0) = — €a(0) = €3(n) = — €40) = """ = |ek(0)|m=x-

This in general will not be the case, and the maximum setting error
after the second iteration usually will be less than 0.07111 times the
maximum setting error prior to the first iteration. Consequently, if
the gain settings are within 0.5 dB of optimum at the start (which a
single ZF iteration will establish), the deviation from optimum settings
in the MSE sense is within a few hundredths of a decibel after two
additional iterations.

IV. CONCLUSION

This paper shows that a manual equalization process which can be
described by a Gauss-Seidel iteration method provides optimal con-
trol for bump equalizers in the MSE sense. Compared to the steepest
descent method discussed in Ref. 3, the Gauss-Seidel iteration method
can be more economically implemented for manual equalization such as
in the L5 system. The Gauss-Seidel iteration process requires knowl-
edge of the gradient of the MSE with respect to the gain setting for
each Bode network to be adjusted. The ZF algorithm derived in this
paper requires just one Gauss-Seidel iteration, but in practice the ZF
equalized channel is not optimum and can be further improved by the
MSE algorithm. This is because the gradient obtained by the MSE
algorithm is more accurate than the one obtained by the ZF algorithm
for realizable equalizer shapes. It should be noted that three tones are
required to determine the gradient of the MSE with respect to the
gain setting of each Bode network for the MSE algorithm, while only
one tone is used to obtain the gradient for the ZF algorithm. The
number of iterations that are necessary to bring the equalizer to the
optimum state depends on how close the initial settings are to optimum.
When the channel is initially ZF-equalized, only one or two more
iterations are needed to optimize the channel with the MSE algo-
rithm. This result agrees completely with experiments conducted in
the L5 field trial.

APPENDIX A
Proot of Theorem 1
Substituting egs. (9) and (10) into eq. (11), we obtain

" N
=2 [ Bw { £ 0B(w) — M) du. (24)
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Defining an inner product
(4,B) = [ 4B,
G =[Gy, (;; o, Gy,
where T indicates the transpose,

g = [91, g2, ", gN:IT
M = 2[(Bi(w), M(w)), (Bz(w), M(w)), - --, (Bn(w), M(w))]"

and

(Bl.v Bl): (Bls BZ‘): tt Yy (Bl) BN)
B=2 (BZ: Bl): (BEJ B'&’)s ] (B2J BN)
(BN: Bl): (BN: BZ): T (BNr BN)

a simultaneous equation of the type of eq. (24) for all k from 1 to N
can be written as

G=Bg— M
or

Bg = G + M. (25)

Since eq. (25) is a nonhomogeneous system of N equations and G + M
is a vector with N real-numbered components in the case considered,
for the given G, the unknown g is uniquely obtained by

g =BG+ M), (26)

provided that B is a nonsingular matrix.
However, if B were a singular matrix, then a linear combination of
the columns could be made zero, i.e.,

N
:gl hi(Bx, B;) = 0

for each 7 = 1, 2, -+, N where h; are real nonzero numbers.
In addition, the following relationship could also hold:

N N
L-Zl hahi(By, B1) + :;Z: hohi{By, B2) + - -+

N
+ rc;i hxhie{Bi, By) = 0. (27)

But (27) can also be written as

ff { kil thk('w)}2dw = 0. (28)
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Equation (28) contradicts the assumption that Bi(w)’s are linearly
independent. Hence, B is indeed a nonsingular matrix and there exists
but one set of g.’s for which G = 0 in eq. (26). It is yet necessary to
prove that this stationary point is the global minimum of the MSE
defined in eq. (10), which is established if the following relationship
can be proved:

o0 N N 2
[_ {Mf(w) - akgl geBr(w) — 8 k};} g?Bk(w)} dw
<a f ’ ‘M(w) _ ﬁ] g:Bk(w)}zdw

o N 2
+8 f [M(w) -5 ng;,(w)] dw, (29)
—oa k=1
where

N N
kgl giBr(w) and kgl g Bi(w)

indicate distinct equalizer settings, « + 8 = 1 and «,8 > 0, then
MSE is a strict convex function of gain settings g«’s and has a global
minimum.

Subtracting the left-hand side from the right-hand side of inequality
(29), we obtain the following:

— 28 f_i {[é g:Bk(w)T + [é g?B,c(w)T} dw.  (30)

Since Bi(w)’s are linearly independent and at least one equalizer
setting,

N N
kf..l giBi(w) or El gr Br(w),

is not zero, (30) is negative. Hence, inequality (29) is correct, and the
proof of Theorem 1 is complete.

APPENDIX B
Proot of Theorem 2

The gradient of MSE with respect to the gain settings is represented
by the following equation:

G =Bg — M, (31)
where B, g, and M are defined in (24). Splitting the B matrix as follows
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where L is the lower triangular portion of B including the diagonal and
U is the remainder of B,

G=1Lg+Ug— M. (33)

According to the iterative procedure described in the theorem, g1,
is obtained from g, by setting G = 0. With the aid of eq. (33), this
procedure can be expressed by

0= Lguwy +Ugwy — M
or

gu+n = — L~Ug + L~IM. (34)

By successive calculation, eq. (34) can be modified by
guny = [—L1U]Hg, + ;f\_;o [-L7UJL~M, (35)

where g is the initial value.
If
[-L-'UJ—[0] as i— w,

S [—L-UJL~ — [L + U]~ = B,

k=0

Hence, eq. (35) becomes
gury = 0+ B1M,

which is the desired result.

Hence, the theorem is proved if L='U is a convergent matrix, i.e.,
eigenvalues of the matrix L—'U are all less than one in absolute value.
However, if condition (14) is satisfied, L—'U is a convergent matrix
and [—L-WU])' — [0] as i — = (see Theorems 3.3 and 3.4 in Ref. 5).

Note: The iteration process defined by (34) is known as the Gauss-
Seidel or, simply, the Seidel iteration.

APPENDIX C
Proof of Theorem 3

When assumption 1 is satisfied,
<Bk1 BJ) = 1: k = J
=0, k=*j
for all j and k.
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Hence, Theorem 2 is satisfied and we have to prove now

Gy = 2E(ws). (36)
From eq. (24),

G = 2 f_ : B,,(w){jizrl 0:B(w) — M(w)]dw

=9 f_: sinc[ ﬁ(w—wk) ],g:l g;B;(w)dw

-2 sinc[ Kwa(“’ - w,,)]M(w)dw. (37)

—o0

Slnce
3 1 k 3 w 2 1 J

and
=1 if k=yj
the first integration in (37) is simply 2g..
Substituting M (w) of (2) into (37), the second integration of (37)
becomes

2 f_m sinc [ ﬁ(w — wk)] j;l [F(x) cos(2rpwz)
+ H(z) sin (2rpwz) } dxdw
= f:: sine [ {Tu(w - w:;)] fnl { f(z) cos[2rp(w — wi)x]

+ h(z) sin [2ap(w — wi)z]}dzdw, (38)

where

f(z) = F(z) cos (2rpwiz) + H(z) sin (2rpwix)
and

h(z) = H(z) cos (2rpwsz) — F(z) sin (2mpwiz).
Since

1 L]
f f h(z) sinc [J—(w — wk)] sin [2rp(w — wi)z Jdwdz = 0,
0 -0 Aw
Eq. (38) becomes
] 1
2 f sine [ ﬁ(w — wk)] f {f(z) cos [2rp(w — wi)z]}dedw. (39)
— 0
Replacing w = « + w, and changing the “cos” into “exponential”’
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form, (39) becomes

f ” sinc (A—T;-Uu) fo 1 [ f(z)[exp(i2xpuz) + exp (—22rpux)]}drdu

1 = T .
= .[o f(x) f_m smc(mu) fexp(i2rpux)
+ exp(—i2wpux) }dudr, (40)
where 72 = — 1. Since 0 £ z = 1 and 2p £ 1/Aw by assumption,

integration of (40) is simply

2 fﬂ ' f()da.

Note that the inner integration in (40) is the Fourier transformation of
the sine function.
Combining the results, G in (37) becomes

Gr = 2% — 2 L ' ) da, (41)

However,
M(wy) = L ' f)dr and EQL(ws) = ge

Hence, (41) becomes

Gr = 2[EQL(wy) — M (ws)]
28 (wy).

This proves the theorem.
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