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We consider @ new kind of coding problem, which has applications in a
variety of situations. A message x is to be encoded using a key m to form
an encrypled message y = ®(x, m), which is then supplied to a user G.
G knows m and so can caleulate x. It is desired to choose ®(-,-) so as to
protect G against B, who knows z, y, and ®(-,-) (but not m); B may
substitute a false message y' for y. It is shown that if the key can take K
values, then an optimal strategy for B secures him a probability of an
undetected substitution = K-}, Several encoding functions ®(-,-) are
given, some of which achieve this bound.

I. INTRODUCTION

The gambling casino has often supplied a vivid and concrete setting
for problems in probability theory,' stochastic processes,® hypothesis
testing,® information theory,* and coding theory,® and we shall use it
to deseribe our problem.

There are two main participants, the owner of the casino G (stand-
ing for good guy) and the manager B (the bad guy). B has been re-
porting the daily takings from the slot machines to be less than they
actually are and keeping the difference for himself. To prevent this,
@G proposes to install in each slot machine a key generator of which he
possesses an exact duplicate and an encoder which will encrypt the
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day’s takings 2 using a key m to produce an encrypted message
y = 2(z, m). )]

(See Figs. 1 and 2.) The device will punch y onto a paper tape. At
suitable intervals B will mail the tape to G, who will calculate = from
y and m. From time to time G will visit the casino to change the key
generator. We assume that B knows = and ®(-,-) (but cannot change
them), and y (which he can change), but does not know m. G knows
Yy, m, and ‘I’(';')-

If B attempts to give G a false message y,, there may be no z'
satisfying y, = ®(z/, m), and then G will discover B’s deception. But
if B can solve (1) for m, then he can successfully substitute a false
message =’ by giving @ the correctly encrypted message y' = ®(z', m).
The problem is to design ®(-,-) so as to make it as difficult as possible
for B to deceive G without being caught.

Clearly, the problem is applicable to other situations (vending
machines, cash registers, etc.) and in fact was first presented to us by
G. J. Simmons of Sandia Corporation in connection with monitoring
the production of certain materials in the interests of arms limitation.

The problem resembles the one normally encountered in cryptog-
raphy in that a key m is used to encrypt a clear text z into an encoded
form y = ®(x, m). But there is an important difference. Since B knows
z already, many of the standard cryptographic codes would allow B
to recover the key m.

To prevent B from using (1) to learn the key, G must construct
®(-,-) so that (1) has several solutions m. Then B will probably pick
a wrong key m, and G will discover that B’s encrypted mesage y, is
incompatible with the correct key. As one might expect, to provide
many solutions to (1) G must use a large number K of possible keys.

FALSE MESSAGE x'

a y OR vy, KEY
GENERATOR
r————— 1
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| KEY m | xx', OR | WARNING
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| ]
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Fig. 1—Encoding to detect substitution.
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MESSAGE KEY ENCRYPTED
MESSAGE

Fig. 2—Diagram of a code.

When B tries to substitute a false message, his probability of escap-
ing detection will be called p,. The probability p, for an optimal B
strategy will be called p,. We will show that p, = K1 Although
Section IV will construct a code which is best-possible in the sense of
achieving p, = K}, this equality can be achieved only by severely
restricting the number N of possible messages x. More useful codes
must compromise among three conflicting goals for G: small p,, small
K, and large N. We give two such codes, one random (Section VII)
and one systematic (Section VIII).

Throughout most of this paper we imagine that B has a particular,
but unknown, false message =’ to substitute for x. We assume that z
is equally likely to be any one of the N possibilities and that B picks
z' at random from the remaining N — 1 messages. Then p, is an average
of the probabilities p,(z, y, =') of success when B substitutes a given
z' for given z, knowing y.
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In Section IX, B uses a different strategy. There B is content to
succeed in any deception. Given = and y, B now picks =’ to maximize
the chance of escaping detection. Merely keeping p, small does not
protect @ against this if individual terms p.(z, y, z’) are large. With
proper design, the systematic code of Section VIII still defeats B.

Il. THE AUTHENTICATOR
A convenient special form for the encryption (1) is

y = (r;2), (2)

i.e., y is the clear text z followed by a string z of extra digits or letters.
Here z is some function of z and m. G will use 2z to test the received
message y for authenticity. For this reason z will be called an
authenticator.

Although (2) is a special case of (1), nothing is lost by restricting the
encryption to this special form. Indeed, if some other ®,(z, m) in (1)
provides a good code, one can always create a code of the form (2)
by taking z = ®,(z, y), i.e.,

y = ®(z, m) = [x; (z, m)].

Including z as part of y cannot help B; he knows z already. Giving z
to @ explicitly cannot hinder him in detecting a deception by B. Thus
the new code is at least as good for G as the old one.

Whether or not to use a code of the form (2) is purely a matter of
convenience. However, the form (2) has a special property which we
can now require without loss for all codes. It is that different clear
text messages 1, ; cannot be encoded into the same y, i.e.,

®(my, 1) #= B(ma, x,) 3)

holds for all m,, ma if 2y # .. Then a typical code has a diagram like
Fig. 2 which portrays clear messages z as points in the left column and
encrypted messages y as points in the right column. The lines directed
from left to right are labeled by the key names 1, - - -, K to show how
these keys encode each z into a . Because of (3) the encrypted mes-
sages y fall into disjoint clusters, each cluster containing all possible
images of a particular .

lll. PROBABILITY OF DECEPTION

B successfully deceives @ with probability p, = K! just by guessing
a key m, at random with all K keys equally likely. Better strategies use
B’s knowledge of z and y to restrict his guess to keys satisfying (1).
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Usually B need not guess m, = m, the correct key. B still succeeds if
®(x', m,) = ®(z', m). (4)

In Fig. 2, B would pick m, to be one of 2, 3, 4, 5, or 6; if m = 2 then
the guesses m, = 2, 4, or 6 all succeed.

An important qualitative feature of a code is the size of the bundle
of lines leading from the message z to the encrypted message y in the
code diagram (Fig. 2). G must make these bundles large enough to
prevent B from guessing m with high probability. But if the bundles
are too large, B will succeed often because many keys m, satisfy (4).
In compromising between the two extreme bundle sizes, G cannot limit
B to a probability p, = 1/K. In fact, we now show that B can always
use a strategy which succeeds with probability

p. = K4 (5)

In order to prove (5) we will have to place some natural restric-
tions on the behavior of G and B.

(a) B does not attempt to deceive G by replacing z by 2’ = z. If
we allowed B that kind of “deception,” B could succeed with
probability p, = 1 and (5) would be a weak result.

(b) All N messages z are equally likely. Although this requirement
could be relaxed, some condition like it must be imposed to
forbid G from using one particular message x; almost exclu-
sively. In that case G could let all keys encrypt z; to the same
y1 but give all other messages &’ K distinct enerypted forms.
B would then have p, < K=t but G would receive little
information from each message.

(¢) Another restriction on G might be that he use the K keys at
random, equally likely and independent of z. We won’t need
this restriction on G to prove (5). If G uses the keys in any
other way he only helps B increase p,.

(d) We will prove that (5) holds even if B picks 2’ at random from
the N — 1 messages different from z, all equally likely. This
only strengthens (5) because there may be better strategies
for B.

Knowing how the message z, 2/, and key m are distributed, we can
compute the joint probability P(z, y, 2’). This probability is the weight
used in averaging p.(z, y, ') to get

po= X Plz,y, 2)p.(z, y, ¥), (6)

EXY ' FES
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as mentioned in Section I. The probability p,(z, ¥, '), that B succeeds
in substituting z’, knowing = and y, depends on how B uses z, y, 2’
to determine a false encrypted message y,. B knows the function
®(-,-) and the key distribution. From these, he can compute the
conditional probability distribution P(y’ |z, y, 2') of the correctly en-
crypted false message y’ = ®(z’, m). B maximizes his chance of suec-
cess by using a false message y, which maximizes P(y’'|z, y, '). Then
B achieves

pa(zy Y, 1") = N{ﬁ‘*x P(y'l% Y, J’J’) (7)

and maximizes p, in (6). Since (7) is optimal for B we give the corre-
sponding p, value a special name p,.

As a preliminary to (5) we now relate p, to the average uncertainty
U which B has about the correctly encrypted false message 3. U is a
conditional entropy

U= H(y’lz: Yy z')
= - Z P(IJ Y, :rfr y’) log P(yw:";l Y, ‘E’)' (8)

z,y.z" .y
Lemma: If B chooses vy, to make (7) hold, then
P = P; ; 2-U, (9)

Equality holds in (9) if and only if all the possible encrypted messages y'
for each (z, y, «') having P(z, y, ) # 0 are equally likely and there are
exactly 2V such y'.

The proof does not require restrictions (a), (b), (¢), or (d). Use (7)
to write P(y'|z, ¥, 2') < po(z, ¥, 2') in (8). Sum on 3’ and use the
convexity of the function —log p to get

Uz - X Pz, y, ') log pa(z, y, 2')

EN

2 —log 2 P(z,y, 2')p.(z, y, 2').

Z,¥.T

Now (9) follows from (6).

The derivation used two inequalities. Both must become equalities
if equality holdsin (9). P(y' |z, y, 2') = p.(z, y, 2’) requires all possible
y' to be equally likely for given z, y, &’. In the convexity argument,
equality requires all —log p.(z, y, =) terms to be equal to U.

We now bound p, in terms of the uncertainty H (m) associated with
the choice of key.
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Theorem 1: Suppose (7) and restrictions (a), (b), (d) all hold. Then
Po = p: = Q—H (m) (10)

First note that 3’ is determined by 3’ = ®(m, z’) if m, 2’ are known.
Then 3’ contains less information than (m, 2'):

U=HG |z, y t') = Hm, 2|z, y, ') = Hm|z,y, ). (11)

But the conditional probability for m given z, y, ' depends only on
z, ¥, so (11) becomes

U< H(mlz, y). (12)
Also

1

H(m) = H(m|z) = H(m, y|z) = H(y|z) + H(m|z, y)

so (12) provides
U £ H(im) — H(y|x). (13)
But
U=HQy 2,y ) < HY|2).

Because of constraint (d), 2’ is equally likely to be any one of the
N messages. Then, by (b), = and z’ have the same distribution,
H(y'|z") = H(y|z), and finally

U < H(y|x). (14)

Now compare (13) and (14). If H(y|z) £ $H (m), then U = +H (m)
follows from (14). If H(y|z) = 3H (m), then U £ 3H (m) follows from
(13). In either case, (10) follows from the lemma.

Remark: The bound (10) implies (5), and in fact reduces to (5) when
restriction (c) holds.

IV. PROJECTIVE PLANE CODES

Since p, is the largest probability of success obtainable by B, a
code for which equality holds in (10) guarantees G the minimum p,
against optimal behavior by B. This section designs such a code. We
now assume that G behaves according to (¢) of Section III, for that
will make

po = K71

If equality is to hold in (10), all the inequalities used in proving
Theorem 1 must become equalities. We now review these inequalities
to obtain requirements on the code.
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The requirements are most easily stated in terms of the bundles of
keys in the code diagram, Fig. 2.

(z) Every pair of bundles, from x, to y1 and z, to y,, with x, > z,
have exactly one key in common.
(#7) Every bundle contains K keys.
(#772) There are K! bundles at each .

To prove (7), (i7), (¢iz), begin with (11) and write H (y'|zx, y, z')
= H(m, z'|z, y, ). If, for some z, y, &', more than one key m satisfied
y' = ®(m, z') then there would be more conditional uncertainty about
the pair (m, ') than about y’. Thus equality in (11) requires

(") Every pair of bundles, from z, to ¥, and z, to yi, =2 # 7,
have at most one key in ecommon.

Equality in (9) requires that the keys in any bundle from z to y
be distributed equally over 2V = 2i#(m) = K} images y’ of any .
Each of these keys leads from z’ to a different 3’ [by (¢)]. Then the
bundle = to y has K* keys, which proves (i7). Now (:27) follows from
(#7) because there are only K keys. Requirements (72) and (#7) also
guarantee H(y|z) = § log K = $H (m), which is needed for equality
in (13) and (14).

To strengthen (z') to (z) consider the K* bundles leaving x and the
K*} bundles leaving z’. There are K- K} = K pairs of bundles. (+')
permits each pair to have at most one key in common. But each key
is common to some pair. Since there are K keys, (z) must hold.

One can find trivial codes which satisfy (z), (¢7), (7Z) but which
have only a few messages z. For instance, the K keys might be arranged
in a K' X K* square matrix and each row (or column) be designated
as the bundle for a distinet encrypted form of z, (or ;). Since this code
has N = 2 it is not very useful. In order to force N to be large we need
another requirement.

Since (#) requires a pair (my, m.) of different keys to belong to at
most one bundle, the number of pairs of keys having a common bundle
is N (¥*). This number must be no greater than the unrestricted number
of pairs of keys (§), so that

iNKWKY — 1) = 3K(K — 1)
N = Kt + 1. (15)
The condition for equality in (15) is

(iv) Every pair (mi, m;) of different keys belongs to exactly one
common bundle.
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We now add requirement (iv) in order to have a code with the largest
possible N. Note that even for this code (15) indicates only about
half as many message bits as key bits.

A code satisfying (), (%), (¢44), (iv) can be constructed from any
finite projective plane. Recall that a projective plane is a set of points
and lines in which:

(v) Each pair of different lines has a unique point in common, and
(vi) Each pair of different points belongs to a unique line.

The most easily visualized projective plane is an infinite one based on
the surface of a sphere. The lines and points of this projective plane
are the great circles and pairs of diametrically opposite points on the
sphere. A well-known technique (see Refs. 6, 7) uses a Galois field
GF (q), where g is a prime power, to construct a projective plane having
¢ + q + 1 points and ¢* + ¢ + 1 lines.

The code will be obtained by using certain points and lines of a pro-
jective plane as the names of messages, keys, and bundles. First
pick any line S to serve a special role. Using the sphere as a model,
we call S the equator. Points on the equator will represent messages .
Points not on the equator will represent keys m. Lines other than the
equator represent encrypted messages y (bundles). Each z and m
determines a unique line (not S because it contains m) which we use
as the name of y in (1).

Figure 3 shows the projective plane constructed from GF (2). It
has 22 + 2 + 1 = 7 points. Six of the seven lines are shown as straight
lines and the seventh, which we may take as the equator S, is a circle.

m X3

Fig. 3—A projective plane.
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The three points on S are the messages and the remaining four are
keys. The six straight lines are bundles, containing two keys each.
One can easily verify (¢) and (év) using (») and (v7). Moreover, in
the projective plane based on GF(g), ¢ + 1 lines pass through each
point and ¢ + 1 points lie on each line. Each line different from S con-
tains one message r and q keys.
Each z lies on S and on ¢ other lines. Then (77) and (s72) hold if

g = K% (16)

The equator contains N = 1 + ¢ = 1 4+ K? points, as we expect from
(15), and (iv) holds. When G uses this code, B will know that m is
one of g keys on the line y. For any 2’ # z, these keys lie on ¢ different
lines through z’ and B has p, = 1/g = K%

A Galois field GF(q) exists if and only if ¢ is a power of a prime,
g = p™. Then (16) requires K to be an even power of a prime: K = p?n
in this design.

V. IMPLEMENTATION

This section simplifies the code of Section IV into a form that is
easily realized by a logic circuit.

The usual construction for a projective plane begins by defining the
points as vectors, having three components taken from GI(g). Two
vectors vy, Ve are regarded as two names for the same point if they
differ only by a scalar multiple, i.e., if v, = av; for some & € GF(q).
The zero vector (0, 0, 0) is not used as a point. Lines are sets of points
satisfying a linear homogeneous constraint. A line L can then be
described by a nonzero vector L = (a, b, ¢) with the understanding that
the points on L are the vectors v = (r, s, t) satisfying

Lv=ar+bs+c=0.

Take the equator to be the line specified by the vector § = (0, 0, 1).
Then messages z are points having third coordinate zero. By applying
appropriate scalar multipliers, each z can be written either as (0, 1, 0)
or as (1, s, 0) with s € GF(g). The remaining points, which can be
written in the standard form (¢, j, 1), are the ¢? keys.

To make the logic circuit as simple as possible we agree not to use
(0, 1, 0) as a message. There remain N = ¢ = K* messages, all of the
form (1, s, 0). The ¢ lines through (1, s, 0) all have vectors (—s, 1, ¢)
where

8 — j=c¢ (17)

holds for all keys (¢, j, 1) on the line.
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Only a single element s of GF(q) need be transmitted to specify
the vector (1, s, 0) and hence z. Likewise, the key input in Fig. 1
requires only the pair (7, j). The encrypted message y [a line with
vector (—s, 1, ¢)] can be transmitted just as a pair (s, ¢). That amounts
to using ¢ as an authenticator z. The encoder is a computer which uses
(17) to produce the authenticator value ¢ from the inputs s, ¢, j. G
uses a similar computer to test that his received s, ¢ and known 1, j
satisfy (17).

For example, the code obtained from the projective plane of Fig. 3
is:

message key encrypted message
0 00 or 01 00
10 or 11 01
1 00 or 11 10
01 or 10 11

Again the code obtained from the projective plane with 13 points
based on GF(3) = {0, 1, 2} is:

message key encrypted message
0 00, 01, 02 00
10, 11, 12 01
20, 21, 22 02
1 00, 12, 21 10
01, 10, 22 11
02, 11, 20 12
2 00, 11, 22 20
02, 10, 21 21
01, 12, 20 22

Tables for constructing larger Galois fields will be found in Refs. 8,
9, 10, and circuits for doing arithmetic in these fields in Refs. 10, 11,
12. A field GF(2Y) is convenient if the message originates in binary
form. Then z and z each consist of b binary digits while 2b digits (b
for ¢ and b for j) are required for the key.

VL. BLOCK DESIGNS

Projective planes are special cases of more complicated structures
called balanced incomplete block designs (BIBD). The technique used
in Section IV generalizes directly to produce new codes based on
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BIBD’s. The new codes do not achieve p, = K=} but they provide
good solutions for some new values of K not of the form p*~.

A (b, v, 7, k, \) BIBD is another system of points and sets of points.
The sets are now called blocks instead of lines. There are » points in
total and each block contains exactly k& points. Each point belongs to
r blocks and each pair of points is a subset of A blocks. These condi-
tions determine the number & of blocks. For bk = vr and r(k — 1)
= A(v — 1) must hold in a BIBD (Ref. 6, p. 96; Ref. 7, p. 100).

Ezamples:

(1) The projective plane formed from GF(q) (see Section IV):
b=v=¢g4+qg+1l,r=k=q+1,A=1

(2) The affine plane formed from GF (q) (Ref. 7, p. 176): b = ¢* + ¢,
v=g¢,r=q+1,k=q\=1

(3) Many other examples are known: see, for example, Refs. 6, 7,
13, 14, and recent volumes of the journals Sankhya, Annals of Mathe-
matical Statistics, and the Journal of Combinatorial Theory.

Given any BIBD with A = 1, we may form a code as follows. Pro-
ceeding as in Section IV, we select a particular block S to serve as the
“equator.” Points on S will represent messages x. Points not on S
will represent keys m. Blocks other than the equator represent
encrypted messages ¥ (bundles). Each « and m determines a unique
block different from S which we use as the name of the y in (1).

There are N =k messages, K = v — k keys, b — 1 encrypted
messages, and & — 1 keys per bundle. Since A = 1, the & — 1 keys in
the bundle from = to y belong to distinct bundles leaving z’. Then
po=1/(k—1) =1/(N - 1).

When the BIBD is a projective plane these formulas become again
K=¢ N=1+ K} and p, = K—%. For affine planes K = ¢* — g,
N=¢g<1+ K} andp, = 1/(g — 1) > K-} Thus, for given K, the
affine plane has both smaller N and larger p, than one would expect
from the projective plane. The larger p, should be expected since (77),
(747) fail.

To have (i7), (#%) hold, r and & should be as close as possible. In
most known BIBD’s other than the projective and affine planes, r
and k are considerably different. For example, consider the BIBD
with parameters b = 195, v = 91, r = 15, k = 7, A = 1 (number 111
in Hall’s list”). The code obtained from this design has K = 84 keys,
N = 7 messages, and p, = . For comparison, the projective plane
code based on GF(9) is superior on all counts, having K = 81, N = 10,
and p, = 1.
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Vil. RANDOM CODES

The projective plane code in Section IV obtains p, = K1, the
smallest possible value, but it has only N = 1 + K* messages. Codes
mth N > K have more interest. To see how large the corresponding
p, might be, this section examines a code constructed at random. Now
N can be made as large as desired. The main result will be that p;
still need not exceed K} by a large factor.

The random code will have one free parameter 4. Each z is allowed
A possible encoded forms y. For each of the K keys the y in (1) is
chosen at random from the A possibilities, all equally likely. The K
choices are made independently. It may well happen that one of the
A possibilities is never chosen in the K trials. In that case the code
dlagram Fig. 2, will show fewer than A bundles from z. The code has a
p, which depends on the random choices. We will look for the expected
value E(p;). Specific codes, with the given N and K and having D,
less than this expectation, surely exist.

All the data about ®(-,-) that B needs when substituting 2’ for =
are contained in a table showing how the encrypted messages y, 3’
depend on the key m. Figure 4 shows a convenient table as an 4 X A
array of cells, each cell containing a list of all keys which determine a
(y, ') pair. Figure 4 corresponds to the pair of messages labeled z, z’
in Fig. 2. Let »(y, ') be the number of keys in the (y, y') cell.

Knowing y, B examines the corresponding column in Fig. 4. Since
the K keys are equally likely,

P(y'lﬂ:, Y, ;E’) = V(!h y’)/ yz V(yr yl) (18)

The optimal strategy, by which B achieves (7), is to pick Yo to maxi-
mize »(y, ¥'). In Fig. 4 the row y, intersects the y column in a cell
with the largest number of keys. There may be k > 1 such cells in
the y column, in which case B may as well pick one of the & rows
equally likely, at random.

E(p;) can now be described as the solution to a distribution problem.
Imagine that the correct key is key # 1 and that it occupies the cell in
column 1 and row 1. Distribute the K — 1 remaining keys at random

35 7

v 246

1 8

Fig. 4—Table of keys.
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over the A? cells. Let p. : be the probability that the (1, 1) cell con-
tains »(1, 1) = n keys, that ¥ — 1 other cells in column 1 contains n
keys, and that moreover all of the A — k remaining cells in column 1
contain fewer than n keys. Then

E(ps) = 2 kpn (19)

is the probability that B picks the first row for y,.

The exact formula for p,, i is cumbersome. It is not hard to simulate
the distribution experiment on a computer in order to estimate E(p,)
when K is less than a few hundred. This has been done, but only as a
check on the simpler approximate caleulation which follows.

When A is large, each key has a small probability A—2 of belonging
to the cell (y, ¥'). After a large number K — 1 of independent trials,
the number »(y, ¥') of keys in the cell will have approximately a Poisson
distribution with mean

A= (K — 1)/42 (20)

Accordingly, we treat numbers »(y, ') as independent Poisson random
variables with mean A. The number »(1, 1) is special because we started
the distribution by placing key #1 in cell (1, 1); »(1, 1) — 1 is the
Poisson variable for this cell. Poisson approximation has the dis-
advantage that the total number of keys >, v(y, ¥') is itself a
random variable. However, the mean number of keys is K and there
is high probability that there will be close to K keys if K is large.
The effect of this approximation should be worse for small K than for
large K. The Poisson approximation and the simulation do give the
same E(p,) to within a few percent even for K = 25.

Table | — E(py) for random designs

A= & 1 1 4 16 K-

K =25 0.47 0.44 0.54 0.2
64 0.46 0.34 0.32 0.38 0.57 0.125

100 0.40 0.29 0.27 0.32 0.46 0.1
2566 0.27 0.21 0.19 0.22 0.32 0.06
400 0.23 0.17 0.16 0.18 0.26 0.05
1,024 0.15 0.12 0.11 0.12 0.03
4,096 0.087 0.069 0.062 0.068 0.092 0.015
10,000 0.062 0.047 0.042 0.046 0.061 0.01
40,000 0.036 0.026 0.023 0.024 0.032 0.005
100,000 0.025 0.018 0.015 0.016 0.021 0.003
1,045,576 0.0084¢ | 0.0063 | 0.0054 | 0.0055 | 0.0069 0.001
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To simplify writing an expression for pa.i, let b, and B, denote the
probabilities that a Poisson random variable has value exactly n or
at most n.

b, = Aven/n!
B, = b0+b1++ b
Then
Pk = bbETIBAZE (R, (21)

In (21), b,_1 is the probability that cell (1, 1) contains n keys,
bi=1 BAZF is the probability that a particular set of & — 1 other cells
have n keys but all A — k others have n — 1 keys or less, and the
binomial coefficient counts the different sets of k& — 1 cells. Now
insert (21) into (19) and sum on k to get

E(p) = "21 (n/NA){B — Bi-i}. (22)

Table I gives values of E(p,), computed from (22). For fixed K,
a broad minimum of E(p;) occurs near A = 1. Then (20) shows that the
minimum occurs when A = K}, approximately. Thus, even when G
designs his code by random means, he should pick A to make (z7) and
(137) of Section IV hold as nearly as possible.

Although (22) is only an approximate solution to the problem, it is
also a generating function for the exact solution. Let e(K) denote the
exact expected value of p; when the number of keys is K. Instead of
e(K), eq. (22) provides

2y K—1
5 el exp (-MDe(K),

i.e., a sum of terms e(K) weighted by the probability that the Poisson
experiment produces K — 1 keys in addition to key # 1. In principle,
one could multiply the sum in (22) by exp (A?), expand the result
into a series in powers of A, and identify the coefficient of AE~! as
A2E—0g(K)/(K — 1) !. The result for e(K) is unpleasant and (22) is
accurate enough. In an experiment to estimate e(64), 2000 trials were
made for each of A = 1, 1, 4. The fractions of trials in which B suec-
ceeded were 0.31, 0.30, 0.37.

VIll. SYSTEMATIC CODES

This section constructs a systematic code with large N by means of
another generalization of the projective plane code of Section IV.

CODES WHICH DETECT DECEPTION 419



7

X
/mwl s)

o \o(mm M-1)

Fig. 5—Code designed from projective space of dimension M.

Unlike the random code, which had N as a free parameter, this code
will specify a particular N. That disadvantage is offset by a smaller
value of E(p;) and by a more important advantage discussed in
Section IX.

Figure 5 will illustrate the code design. Given a field GF(q), one
can construct a projective space PG(M, ¢) of dimension M in which
points are again equivalence classes of nonzero vectors, now having
M + 1 components. M = 3 in Fig. 5. The number of points is

JM) = (" —=1)/(g—1) =1+ q+---+ g™ (23)

Each set of points satisfying a system of M — D independent linear
homogeneous equations is a D-dimensional subspace PG(D, q) con-
taining f(D) of the points of PG (M, q). The number of D-dimensional
subspaces of PG (M, q) is's

J(M)f(M —1)---f(M — D)
JD)f(D = 1)---f(0)

(QM'H - 1) (Q‘M — ]_) . (qM-Hv—D _ 1)
@ — D@ -1 (g -1 (24)

Proceeding as in Sections IV and VI, we again select a particular
subspace S of dimension M — 1 to serve as the “‘equator.” In Fig. 5,
S is a projective plane. We again identify messages z with subspaces
of S. But now S has subspaces of dimension 0, 1, ---, M — 2 and so
we can specify the dimension s of the messages as another parameter of
the design. In Fig. 5, s = 0; another code might use s = 1. Given
M, s, the number of distinct messages is

N=g(s,M—1). (25)

g(D, M) =
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Again, the points not in S will be keys. There are

K= fM)— f(M—1) =g (26)
keys.

The key m (a point) and message x (of dimension s) determine a
unique (s + 1)-dimensional space which will represent y. Since y
has f(s + 1) points and f(s) of them belong to S, y contains f(s + 1)
— f(s) = q**' keys. Now (i7), (i17) of Section IV need not hold.
Instead, for each z, the ¢ keys fall into

A = g1 (27)
bundles of
K/A = ¢

keys each. In Fig. 5, 4 = ¢*, K/A = q.

To find p, consider the matrix, Fig. 4, corresponding to a particular
pair z, 2'. The ¢** keys in a given column y need not be distributed one
to a row [as in (i) of Section IV]. Each cell in the matrix contains
all the keys belonging to an intersection between (s + 1)-dimensional
spaces through z and «’. If z and 2’ themselves intersect in an r-dimen-
sional space = () 2’ then the cell contains the ¢"*' keys of an (r 4+ 1)-
dimensional space through z () z’. B must choose one of ¢**/g™"!
= ¢* equally likely rows; his probability of correctly guessing y' is

pa(z, y, ') = ¢"7". (28)
Now (6) and (28) provide
Pa = 2 hir)g—, (29)

where h(r) is the probability that a randomly chosen 2’ intersects a
specific z in a space of dimension r. In (29), the range of summation is
2s+1— M <r<s—1provided2s + 1 = M. Butif 2s +1 < M,
as in Fig. 5, then = () 2’ can be empty. In that case the summation
(29) extends over —1 £ r = 5 — 1.

We now show

h(r) = ¢ (s —r — 1, M — s — 2)g(r, 5)/

fg(s, M — 1) — 1}, (30)
which together with (24) and (29) gives p,. The factor g(r, s) in (30)
is the number of different r-dimensional subspaces of x; it suffices to
show that the remaining terms of (30) give the probability that a
randomly chosen 2’ intersects = in a particular subspace H of dimen-
sion r. Given z, and a subspace H, we can find M basis vectors eq, ey,
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-, e.span H, and ey, e1, - - -, e, span z.

- - -, ey for S such that e, e, - -
-, €,. The re-

Each 2’ contains H and so has a basis containing e, - -
maining s — r basis vectors of 2" can have the form

M

v; = 2 ke,

j=r+1

i=7r4+1 - s

in which ey, e, - - -, e, do not appear. In determining §{; ; one must not
allow 2’ to intersect x in a space of dimension larger than r. This
requirement is equivalent to a condition that the partial sums

M .
vy = i€, 4 :T+11 Tty &
j=s+1
of »; be linearly independent. Then the v span an (s — r — 1)-di-
mensional subspace 2° of the (M — s — 2)-dimensional subspace S8°
spanned by e..1, ---, ey. The factor g(r —s —1, M — s — 2) in
(30) is the number of ways of choosing z°. Having chosen H and z°
(and hence &; for j = s+ 1, ---, M), the (s — r)? numbers

EI.J; ’a‘::?'+1,"',8; j:?'-l-l,---,s

can be chosen in ¢*="* ways to specify 2’ completely. Now the numer-
ator in (30) is the number of ways of picking an x’ to have an r-dimen-
sional intersection with = and the denominator is the number N — 1
of messages (different from z) from which B chooses 2'.

Now g, M, and s determine N, K, A, p,. Table IT gives some of the
better designs obtained by taking ¢ = 2. These all have M = 2s + 2,
s0 that K/A* = 1 follows from (26) and (27). For given K, the least

Table Il — Designs with g =2

Dimensions Keys Inputs Prob (B; wins)
M 8 K N Po
2 0 4 3 0.6666
4 1 16 35 0.400
6 2 64 1,395 0.2222
8 3 256 200,787 0.1176
10 4 1,024 1.09 X 10¢ 0.0606
12 5 4,096 2.3 X 10v 0.0308
14 6 16,384 2 X 10 0.0155
16 7 65,536 6 X 101 0.0078
18 8 262,144 8 X 10% 0.0039
20 9 1,048,576 4 X 103 0.00195
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Table IlIl — Design with g=2, M =12, s=5

r = dim (z N z') h(r) Po(z, ¥, ')
-1 0.3979 0.015625
0 0.5773 0.03125
1 0.1204 0.0625
2 0.00432 0.125
3 2.9 X 1073 0.25
4 3.4 X 107 0.5

p, was always obtained when K/A? = 1; a similar phenomenon was
encountered with random designs having A = 1 [ef. egs. (20)]. The
table contains codes having N much larger than K. At the same time,
p, is approximately 2/K?} which compares well with the projective
plane code.

IX. CHOICE OF x’

Until now B had no control over the choice of . We treated z’
as a random variable which B accepts as given. But suppose that B
has no particular 2’ in mind; he merely wants to mislead G' by sub-
stituting any convenient wrong message x’. An optimal strategy for B
must again achieve (7) but B will select =’ to maximize p,(z, y, x') for
each given 2, y.

A code with small p,, for randomly chosen z’, may now be a poor one.
Table TII shows more detail about the code with ¢ = 2, M = 12,
s = 5 in Table II. This ecode had p, = 0.0308, as computed from (29).
But some false messages x’ intersect x in spaces of dimension r = 4;
if B substitutes one of these, his chance of success is 0.5 [eq. (28)].

Table IV — Effect of changing field, keeping key size
approximately fixed

. . . Prob (B wins)
Field | Dimensions | Key bits | /42 Msg bits
q M s logs K loga N ]
ifr=s8—1| averaged
256 2 0 16 1 8.01 0.0039 0.0039
41 3 1 16.08 41 10.7 0.0244 0.0250
16 4 1 16 1 16.1 0.0625 0.0078
9 5 2 15.9 9 19.2 0.1111 0.0137
7 6 2 16.86 1 25.5 0.1429 0.0058
5 7 3 16.24 5 28.3 0.2000 0.0096
4 8 3 16 1 32,5 0.2500 0.0078
3 10 4 15.9 1 40.56 0.3333 0.0082
2 16 7 16 1 65.9 0.5000 0.0078
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The code is good for randomly chosen z’ only because B usually has a
message ¢’ with r = — 1 or 0.

A good code for G must now have p,(z, y, =) small uniformly, not
just on the average. The code of Section VIII achieves this if ¢ is
large. For (28) shows p.(z, y, ') £ 1/¢. Unfortunately for @, in-
creasing ¢ has the effect of decreasing N. Then G must compromise,
picking ¢ small enough to obtain large N but large enough so that
B’s chance of success, 1/¢, is tolerably small. Table IV shows a typical
tradeoff between N and 1/¢. The designs in Table IV all have approxi-
mately the same key size K = 216 Table IV shows both probabilities
of success for B, 1/q if B makes r = s — 1 and the averaged value
(29) if B picks ' at random. If one ignores the designs with K/A4? # 1,
the averaged probability doesn’t change much. To reduce 1/¢ from
0.5 to 0.1 reduces the message size, log N, by a factor of 3.

REFERENCES

1. W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1,
2nd edition, New York: Wiley, 1957.

2. L. E. Dubins and L. J. Savage, How to Gamble if You Must—Inequalities for
Stochastic Processes, New York: McGraw-Hill, 1965.

3. T. M. Cover and M. E. Hellman, “The Two-Armed-Bandit Problem with
Time-Invariant Finite Memory,” IEEE Trans. Info. Theory, IT-16, No. 2
(March 1970), pp. 185-195.

J. L. Kelly, Jr., “A New Interpretation of Information Rate,”’ B.S.T.J., 34,
No. 4(July 1956), pp. 917-926.

8. W. Golomb, “Run-Length Encodings,” IEEE Trans. Info. Theory, IT-182,
No. 3 (July, 1966), pp. 399-401.

H. J. Ryser, Combinatorial Mathematics, Carus Math. Monograph 14, Math.
Assoc. America, distributed by Wiley, N. Y., 1963.

. M. Hall, Jr., Combinatorial Theory, Waltham, Mass. : Blaisdell, 1967.

E. J. Watson, “Primitive Polynomials (Mod 2),”” Math. Comp., 4I, No. 79
(July 1962), pp. 368-370.

. J. D. Alanen and D. E. Knuth, “Tables of Finite Fields,”” Sankhya, 26, 1964,

pp. 305-328.

10. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2nd edition,
Cambridge, Mass.: M.I.T. Press, 1972.

11. T. C. Bartee and D. I. Schneider, “‘Computation with Finite Fields,” Informa-
tion and Control, 6, No. 1 (January 1963), pp. 79-98.

12. E. R. Berlekamp, Algebraic Coding Theory, New York: MeGraw-Hill, 1968.

13. S. Vajda, Patterns and Configurations in Finite Spaces, Griffin’s Statistical Mono-
graph 22, New York: Hafner, 1967.

14. 8. Vajda, The Mathematics of Experimental Design, Griffin’s Statistical Mono-
graph 23, New York: Hafner, 1967.

15. R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, reprinted
by Dover, N. Y., 1956.

© wN o2 o e

424 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974



