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Experimental data on visual spatio-temporal sine-wave thresholds ob-
tained by Robson and Kelly are considered. In seeking model approxi-
mations to the data it s assumed that the subject's visual threshold to
modulation at different spatial and temporal frequencies gives the image
of his filter function to within a multiplicative constant. It is Surther
assumed that the data can be approximated by a system with a spatially
uniform, isolropic, and temporally invariant response which consists of
the difference between an excitatory and an inhibitory term, and that each
term s separable into a product of a spatial and a temporal function.

I. INTRODUCTION

Tests of vision with sine-wave flicker go back at least fifty years to
H. E. Ives.! He determined flicker fusion frequencies with a number
of wave shapes, including sinusoids. Spatial sinusoid test stimuli are
more recent. The first to use them was probably Schade? in the fifties.
Soon after that Kelly® suggested a stimulus which would simultaneously
test the spatial and the temporal sine-wave response of vision. Such
tests were implemented by Robson,* Kelly,5¢ and others.

The special interest in the sine wave as a test stimulus stems from
the ease with which one can extrapolate from its results. Provided a
system is linear and time-invariant, Fourier analysis can be used to
predict the system response to any input from its response to sinusoidal
inputs. However, the visual system is neither linear nor time-invariant.
Nevertheless, given a sufficiently constant adaptation state and input
variations that result in small output variations,' linear theory can be
used.

1t is often incorrectly stated or implied that, for linearity, the input needs to be
small. But consider the situation where a flickering light appears fused visually. The
in%ut may then swing between zero and many times the average luminance, yet the
behavior is linear,
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Our interest in the visual system is related to visual communications.
When visual messages are transmitted digitally then there are po-
tentially very many different ways—some more advantageous than
others—in which the messages might be coded and still give acceptable
fidelity at the receiver. Clearly, it would be good if the likely subjective
effect of given quantizing procedures could already be predicted at
the computer simulation stage without involving repeated subjective
tests. Such predictions will probably be possible soon.” However, there
is still need for complete specifications both of the linear behavior of
the visual system and of the nonlinear effects of background masking.
We will concern ourselves here only with the linear characteristics. To
this end we will examine several alternative mathematical models to
see whether they could be used to represent published experimental
data on spatio-temporal sine-wave thresholds.

The data that we will use were reported by Kelly® and Robson.*
In both cases threshold values of m were determined in a target
described by

L = L,(1 + m cos 2ru,z-cos 2r f t) , (1)

where L, is the average luminance, u, the spatial frequency, and f, the
temporal frequency.

Kelly’s measurements’ were made at four different values of L.,.
The entire target area, a circular 7-degree CRT face, filled with the
flickering grating, was viewed monocularly through a 2.3-mm artificial
pupil. Robson made all measurements at a single L, value. The target
had a 2.5-degree X 2.5-degree grating in the center of a 10-degree X 10-
degree screen which had a luminance equal to L,, and it was viewed
binocularly without artificial pupils.

In both cases the subject’s threshold was measured by the method
of adjustment. The subject judged whether he could see the signal or
not. He did not attempt to distinguish between seeing flicker and
seeing the bar pattern. During each session of Kelly’s experiment, the
subject made 5 settings at each of 12 frequencies, with the 60 presenta-
tions given to him at random. Robson made his measurements in
orderly sequences. Their results are shown as log-log plots of (1/m)
against frequency in Figs. 1-5.

Kelly’s measurements obtained for vision with an artificial pupil
are converted to equivalent luminances viewed through a natural
pupil. To calculate the equivalent luminance one needs to take into
account changes in the size of the natural pupil and the Stiles-Craws-
ford effect. From data tabulated by LeGrand® it can be inferred that,

t D. H. Kelly kindly supplied a listing of his measurements and standard deviations.
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Fig. 1—Kelly’s data at 62.8 mL. (a) Temporal frequency response. (b) Spatial
frequency response.

given an illuminance I, in trolands, the corresponding luminance I
in mL is

L =1.142 X 102 J1.223, 10 < I < 2000 td. (2)
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Fig. 2—Kelly’s data at 15.2 mL. (a) Temporal frequency response. (b) Spatial
frequency response.
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Fig. 3—Kelly’s data at 3.7 mL. (a) Temporal frequency response. (b) Spatial

frequency response.

We will consider six different, though similar, mathematical models
as possible candidates for representing the data of Figs. 1-5. There is
a similarity between the models in that: (i) they all consist of an
algebraic difference between an excitatory and inhibitory term, (47)
these terms are in all models separable functions of spatial and tem-
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Fig. 4—Kelly's data at 0.91 mL. (a) Temporal frequency response. (b) Spatial

frequency response.



SPATIO-TEMPORAL MODELS OF VISUAL FILTERING 1647

500

(a) (b)

1/m

A AT 0.5c PER DEGREE A AT 1Hz
0O AT4cPER DEGREE O AT6Hz
ﬂ_ ® AT16cPER DEGREE | ® AT16Hz \
O AT 22c PER DEGREE O AT22Hz
1L [ [ R | [ L 1 |
05 1 2 5 10 20 05 1 2 5 10 20
FREQUENCY IN HERTZ SPATIAL FREQUENCY CYCLES PER DEGREE

Fig. 5—Robson’s data at 6.3 mL. (a) Temporal frequency response. (b) Spatial
frequency response.

poral frequencies, and (#7Z) in each model there will be six undeter-
mined parameters. We find values for the parameters by digitally
searching for the smallest weighted mean-square deviation of experi-
mental points from the models. The fit of none of the models is com-
pellingly good, but in several cases the degree of fit is useful. We find
the best all-round fit with a model with diffusion-like temporal response
of excitation, a Gaussian function for the temporal response of in-
hibition, and Cauchy functions for the spatial response. From the
point of view of economy in computer simulation, a model with simple
exponential time responses and Gaussian spatial responses would be
preferable. However, the mean-square departure from the model is
somewhat larger than the best.

II. THE MODELS
2.1 The Framework

By the nature of things, the retinal image is a somewhat blurred
version of the light distribution in object space. Over isoplanatic
patches,® or areas A which are large compared to the size of a blurred
point and small compared to inhomogeneities of the image-forming
properties of the eye, we can model the formation of the image by a
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convolution integral with a fixed point-spread function:

1@y = [[ W~ &y - DL Ddedn, ®)

where W is the point spread function and L and I are the object and
image distributions.

There is virtually no time lag in forming the retinal image. If L
were switched on at some instant of time then the retinal image
I(z, y) would be formed at that instant.

The object-space to image-plane spatial frequency response of the
given isoplanatic patch, or its modulation transfer function, is the
Fourier transform of W:

H(u,v) = [ j W (z, y)etmitetondz dy , (4)

where u and v are the spatial frequencies in the = and the y directions.
Point spread in the space domain becomes filtering when transformed
into the frequency domain. The point spread function W is necessarily
positive and, with a normal pupillary aperture, has a maximum at the
center and decreases monotonically.® Consequently H (u, v) is a low-
pass function.

It is natural to think of perception being based on an “image” at
some deeper location beyond the retina. This “image’ is physiologically
mediated and must suffer appreciable time lags. Hence, the response
at the deeper location will be time-dependent. There will also be
further spatial filtering as a result of lateral physiological interactions.!

Say we designate the resulting point response function by R(z, y, t)
and the internal “image” distribution by C(z, y, f). At least for a re-
stricted class of object-space luminance functions, L(z, ¥, t), C can be
obtained by superposition, so that

ey = [ [[ Re—ty—ni= DLy drdnde ()

The three-dimensional Fourier transform of R is the spatio-temporal
frequency response function

S(u, v, f) = f f f R(z, y, )e-2ritstart 10z dy dL. (6)

The integration is over all z, y, and . f is the temporal frequency.
We may assume that the response function B is even in 2 and v,
e, R(z, y, 1) = R(—=z, y, t) = R(z, —v, t) = R(—=, —v, t). This
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means that S is even in u and o, ie, S(u, v, f) = S(—u,v, f) =
S(—u, —v, f). No symmetry can be assumed for R in ¢, and hence,
for 8 in f. Indeed, R(z, y,?) = 0 for ¢ < 0, and hence, S(u, v, — f) =
S(u, v, f).
If the input to the system is the L of eq. (1), then the internal
“Image’ is
Clz,y,t) = 8(0,0,0)L, + |S(us, 0, fo) | Lym cos (2ru,z)
Xeos 2rft +¢), (7)
where
[S(u,, 0, fn)l = {S(uo, 0, fo)-8*(u,, 0, foli
and
¢ = tan~'{Im[S(u,, 0, f.) J/Re[S(u,, 0, f.)]} ,

The * designates the complex conjugate and Im and Re the imaginary
and real parts.

Now we ask: What size must m be before the flickering grating is
seen with a given level of certainty? We assume thresholds correspond
to fixed differences, i.e., the flickering grating is seen with probability
p if

|8(u, 0, f)|Lom = T(p), (8)
where 7' is a monotonically increasing function of p, but is independent
of all other variables. We may assume that subjects adjusted m so
that it always resulted in the same probability of seeing. Therefore,
the values of 1/m, as plotted in Figs. 1-5, are regarded as experi-
mental determinations of [S(w, 0, f)| [to within the multiplier
T(p)/L, which is a constant when the criterion T and the average
luminance L, are fixed].

If the visual system were truly linear it would have the same re-
sponse functions irrespective of luminance level L,. But all evidence,
including that contained in Figs. 1-4, shows that the system adapts.
It does so somewhat ponderously, much faster with rising L, than
in reverse, but still quite effectively, changing gain, spatial spread,
and temporal lag. There is just one aspect of S which Kelly* found
unchanging over more than four decades of luminance, L,. In large-
area flicker threshold determinations, using an artificial pupil, he
found that at different L, values plots of (1/mL,) approached a
common asymptote for large values of f. However, in other parts of the
functional domain, different S functions hold for different adaptation
luminances.

In searching for suitable mathematical expressions for R or S it
would be convenient if these functions were isotropic, and even more
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so, if they were also separable into spatial and temporal factors.
Isotropism would mean that the space variables z and y would reduce
to a single distance p and the frequencies u and » to a direction-
independent spatial frequency ». Then

S, ) =8u=y0,f=800v=yw1]

- [ [ re, 02rad (2rp)dp [e-mertdt, ()

where J, is the Bessel function of order zero.

Man’s vision is not isotropie. It is astigmatic, having better resolu-
tion in the horizontal and vertical directions than at other angles.
But, to a first order of approximation, we may assume isotropism.

Separability of R would mean that we could write it as

R(p, t) = U(P V() (10)
and then S would also be separable:
S, f) = GWMH(]), (11)
where
GG = [ UG)2mpl o(2mer)dp (12)
and
H(f) = L "V (@)e-erids- (13)

Moreover, because U(p) is symmetrical, and hence G(v) is a real-
valued function, it would follow that

18, Nl = GWI[H]- (14)

However, even a superficial look at the families of experimental
curves in Figs. 1-5 will convince one that |S(», f)| is not separable.
If it were, then curves of |S(», f)|, as functions of f at different values
of », would differ from each other only by constant multipliers. Plotted
against a logarithmic ordinate this would result in fixed vertical shifts.
The same result would hold for plots of |S(v, f)| versus » at different
values of f. But neither of these outcomes are found to be true. This is
particularly evident when looking at Figs. 5a and b. The curves at
high values of » or f are low-pass in shape, while for low values of the
parameters they are bandpass. Figure 6 shows a linearly scaled per-
spective view of a surface’® to which the measured values of Fig. 5
approximate. Measurements apply only to positive frequencies, while



SPATIO-TEMPORAL MODELS OF VISUAL FILTERING 1651

17

AN
i
/i
il
1} []]

75

]
SSS

Fig. 6—Perspective view of spatio-temporal frequency response.

the surface has been drawn over all four quadrants making use of
symmetry. It suggests a volcano with a deep central crater.

It is customary” to think of the response as being brought about by
an interplay of excitation and inhibition, with inhibition responsible for
the crater. Looked at in this way the measurements suggest, at least to
a first approximation, that excitatory and inhibitory responses in
themselves may be separable and that the effects of inhibition simply
subtract from the effects of excitation. These assumptions will be
made. The response functions can then be formally broken down:

R(p, t) = R,(p, t) - Ri(pj t)

= Uulp)Ve(t) — Uilp)Vi(t) (15)
S(V: f) = Se(, f - Si(v, f)
= G()H.(f) — Gi(»)H(f) (16)

with
Go(v) = f U o(p)27pJ o(2mpv)dp,

H.(f) = j; “ Ve,

and similarly for the inhibitory functions.
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2.2 Chotee of Functions

To satisfy physical considerations, all the component functions
should be low-pass in character. Of the immense number of possibilities
we consider just several. The Gaussian function comes readily to mind
particularly for spatial spreads.

If

U.(p) e rizet, (17)

= 2ra
then of course the Fourier transform is also Gaussian:
G.(v) = g2, (18)

The function has another property which can be especially useful in
computations, namely that as a function of two variables z and y, i.e.,
p? = at + y?, it is separable:

1 1

0 = () (o). o
(@ 9) V2ra? \2ra? (19)

None of the other functions of interest to us has this property.

Another possible candidate for point spreads is the exponential
Uelp) = e?%r;  p>0 (20)
and then

C) = 5t (21)

2r (B2 + 2)F

At high values of », »>>b, the function decreases as (1/»)* which
corresponds to a fall-off of 18 dB/octave.

On the other hand, if the spatial frequency response function were an
exponential then there would be no straight-line asymptote on a log-log
plot, but rather a response which would be

Udlp) = '2;(6,2—:_*;2)—; (22)

with
G.(v) = elvl, (23)

This is often called the Cauchy response.

Since the temporal frequency responses are similar to the spatial
frequency responses similar functions can be used to model these. The
important differences are that the function V() is one-sided and that
eq. (13), instead of (12), is used to obtain the Fourier transform.
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The Gaussian function can be used in an approximate way by shift-

ing it a distance ¢, to the right along ¢ and deleting it leftward of ¢t = 0:
1

277

Vo(t) =

e—U—lu)’IZr"‘; i g 0

=0; t < 0. (24)

When t,/7 is greater than three, say, then there is negligible error in
assuming that V,(¢) is the Gaussian function for all ¢, ¢ < 0 included.
Then

Hg(f) — 6—211 r!fi—,!rfla_ (25)

In computer simulation a simple exponential time response, often
known as the Poissonian, would be the easiest because it can be effected
by recursion. That function and its transform are

Ve(®) = (I/m)e '™y t20 (26)
H.(f) = I—-l-tjl—%rfn (27)

A function in which there is theoretical interest!24 is one that occurs
in diffusion processes. Kelly' found that the high-frequency asymptote
for large-area flicker responses could be fitted well with a frequency
function which one would find in diffusion that had no losses in the
diffusing substance, namely with

H,(f) = Cie—l2rsoid), (28)
If the Laplace transform is taken as
H.(s) = Cie~@en} (29)
then the time function is 2.1
T.Ee—n'ﬂ
= - >
V.(t) @ni t=0. (30)

The six models which were compared with the experimental data are:
(2) Gaussian temporal/Cauchy spatial (G/C)

[S(v, f)| = Ae2=* 7 ri(g=roe — kg2 1 rig—vey) (31)
(¢7) Poissonian temporal/Cauchy spatial (P/C)

IS( f)' _ A[[B—?ﬂ(l + 41r2f21-§) — k_e—n‘-jz + (27rf‘r2ke_”"i)2!l
v, - ) (I + 4‘]1'21'21'%)(1 -+ 4“.23('21,%)5

, (32)
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(44) Diffusion-Gaussian temporal/Cauchy spatial (D-G/C)
[S(y, )| = A(eUrtemrao — ke 2m S rig™7d), (33)

and three further models in which the Gaussian is substituted for the
Cauchy response giving G/G, P/G, and D-G/G.

Note that in four of the models, G/C, P/C, G/G, and P/G, one
time-lag stage is common to excitation and inhibition (Fig. 7a). The
remaining two models, involving diffusion, have distinet paths for the
two effects (Fig. 7b).

Each of the models differs from the others in its exact functional
shapes but they are all similar in their form. Figure 8 illustrates the
evolution of the point spread as given by the P/G model. The point
spread function is shown at the instant of occurrence of the point
impulse and at two subsequent time instants thereafter. In this, as in
all the other models, the excitatory effect is confined to a smaller
region and has a faster time course than the inhibitory effect.

III. SELECTION OF PARAMETERS

Each of the models chosen for comparison with the experimental
data has six undetermined parameters: the gain A, time constants 7
and 72, space constants ¢, and oy, and the per unit inhibition k. The

Ue (x,y)
+
Cix,y, 1)
Lix,y.t f
vt Ve (1
Vi (t) Ui lx,y)
(a)
Ve 1) Ue (x,v)
+
L (x,y.t) Clx,y.1)
Vi {1 Ui {x,y)
(b)

Fig. 7—System block diagram: (a) for P/G, G/G, P/C, and G/C models; (b) for
D-G/G and D-G/C models.
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parameters have to be given values to produce as close a fit as possible
between model and data.

The following performance index may be used as an appropriate
measure for the closeness of fit:

P = % ([m— 118G, £ Ved?, (34)

where 1 is the measured threshold modulation at the spatial frequency
»; and temporal frequency f; and e; is the estimated ( standard) error
of that measurement. The summation is over all N points measured at
a given luminance L,.

This will be called the aggregate-square fractional error, or ASFE,
index. The ASFE index is perhaps the most defendable in light of the
experimental procedure. However, if the aim is to obtain the best
representation of data plotted as (1/m) along a logarithmic scale
(Figs. 1-5), then a better index is

P = ; {log [|S(vi, £2) | /mi]}2, (35)

which can be called the aggregate-square log error, or ASLE, index.

Irrespective of index, the array of six parameter values can be looked
upon as a vector T and the performance index as a real-valued function
of it. Our object is then to find that location T,, in six-space at which
P(T) assumes its smallest value. However, there is no way of recogniz-
ing a global minimum and it is therefore impractical to insist on finding
it. The object is rather to find as good a value for T as possible, while
keeping computer expenditures within reasonable bounds.

Of the many possible parameter search routines we tried a gradient-
dependent algorithm, random search, and a combination of the two.
Random search proved the more successful, almost as good on its own
as in combination with gradient techniques.

The gradient in question is

6
vP =3 % a,, (36)

n=1

where a, is the unit vector along the nth coordinate axis and T, is

the scalar (T-a,). The components of the gradient were evaluated in
one of two ways:

(z) approximate differentiation :

8P . P(T + AT.a,) — P(T)
aT, AT, !

(37)
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(b)

Fig. S—Evolution of the point spread function in the Poissonian/Gaussian model.
Inhibitory effect has been exaggerated. (a) at ¢ = 0, (b) at ¢ = 45 ms, (c) at ¢t = 160
ms.
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{c)
Fig. 8 (continued).

(%) evaluation of exact expressions which, given (34), are

7. = Z 2(0me — 1/180s, 101 Ve
X [1/6:lS (s, 19121 2500 1] (3

Using (37), care had to be taken in choosing the size of AT,.
Given the gradient at the vector location T}, the next location with
a lower value of P should be at

Tj1=T; — KVP|r.1, (39)

This will prove to be so, provided K is small enough. Improved con-
vergence rates are possible by making K variable,!® increasing its value
with repeated improvements in P, and decreasing it with failures. The
next location to be tested is then not given by (38) but by

Tip1=Ty — K,‘VPlT_T“ (40)

where T; is the location at which the last lowest value of P was calcu-
lated and K; has been determined from a starting value K, by multipli-
cation with either (0 < & < 1) or ¥(1 < ), depending on outcomes
of the j iterations thus far.
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A difficulty with gradient-dependent search is that it may end at a
local minimum which is far above the global, and that often proved to
be so. A way around this is to alternate between the gradient-dependent
search mode and random search. In random search the next location
to be tested would be

[
Timn=Te+ K Zl G.R;(n)as, (41)

where Ty is again the last best location, K is a constant that scales the
size of the search volume, G,’s are further scaling factors designed to
make the search about equally sensitive along the different coordinates,
and R;(n) is a Gaussian variate obtained from a (pseudo)-random
number routine taking a fresh value for each component and each
iteration.

Typically, a computational cycle would consist of gradient-depen-
dent search to within a convergence test specification, taking some 20
to 100 iterations, followed by 100 iterations of random search. The
number of cycles depended on progress and could be as many as 50.

Most of the performance improvements were found to come from
the random search phases of the computational eycles. For that reason
the gradient-dependent phase was dispensed with in many calculations,
and then K of (40) became a variable similar to K; of eq. (39). The
calculation was still done in cycles, starting each cycle with a large
value of K.

IV. RESULTS

Although there is no guarantee that the performance indexes finally
arrived at are the lowest possible, in each case the chances are small
that there would be anything substantially lower. Hence, Table I can
be taken as a good guide for comparing the effectiveness of the different
models in fitting the data. The table gives rms deviations D, which are
calculated from P in accordance with

D = [P/(N — 6)]. (42)

Division is by (N — 6), because the parameters provide six degrees
of freedom. For Table I, P was as defined by eq. (34), i.e., the ASFE
criterion.

From the last column of Table I it can be seen that the best of the
six models is the Diffusion-Gaussian/Cauchy and the worst the
Gaussian/Cauchy. The Poissonian/Gaussian is somewhat worse than
the average over the group. A comparison of the models by order of
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TaBLE I—RMS DEvIATIONS
Summary of rms deviations, D, derived from ASFE performance index
[eq. (34)]. In computation, experimenter’s estimates of experimental
errors were used with Kelly’s data and assumed errors with Robson’s
data.

Luminance ) Robson’s
N (mL) Kelly’s Data Data Mo;an D
M. or
°de\ Model
~ 62.8 15.2 3.7 0.91 6.3
Poissonian/Gaussian 7.0 4.3 3.9 7.6 3.7 5.3
Poissonian/Cauchy 7.2 44 4.0 7.9 3.4 5.4
Gaussian/Gaussian 4,0 46 4.7 8.8 2.9 5.0
Gaussian/Cauchy 6.1 6.2 5.6 9.8 4.2 6.4
Diff-Gauss/Gaussian 4.0 3.6 4.3 4.4 3.9 4.0
Diff-Gauss/Cauchy 3.4 3.7 4.5 4.5 2.8 3.8

rank within each set, and then over the sets, shows the two Diffusion-
Gaussian models fit best, closely followed by the Poissonian/Gaussian
model.

Except with Robson’s data, where assumed error values were used,
the actual magnitude of D in Table I has significance. With P by eq.
(34) being measured relative to experimental errors one would expect
with a perfect model fit a D value of unity. (D — 1) is then the in-
crease in relative error due to the model, and D can be thought of as
error gain. In this sense all the models, including the best, give only
poor fits.

The D-G/C model is shown fitted to Robson’s data in Figs. 9a and b.
According to Table I this ought to be about the best fit, but obviously
is only fair. The same data is fitted by the P/G model in Figs. 10a and
b. The P/G model is shown fitted to Kelly’s data at 62.8 mL in Figs.
11a and b. According to Table I the P/G model represents nearly the
worst fit.

Parameter values for the P/G model are given in Table ITA. These
were determined using the relative error criterion. Table IIB gives
parameter values for the same model but determined by the log
departure criterion. The final mean log departures are shown in the
bottom row. There are noticeable differences between the parameter
values in Table ITA and Table IIB but, given the rather poor fit
between model and data, agreement is good. Consistent trends are
apparent in both sets: with decreasing luminance the gain (A) of the
system decreases accompanied by a decrease in fractional inhibition
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Fig. 9—Diffusion-Gaussian/Cauchy model applied to Robson’s data. (a) Temporal
frequency response, parameters as in Fig. 5a. (b) Spatial frequency response, parame-
ters as in Fig. 5b.
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Fig. 10—Poissonian/Gaussian model applied to Robson's data. (a) Temporal
frequency response, parameters as in Fig. 5a. (b) Spatial frequency response, parame-
ters as in Fig. 5b.
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Fig. 11—Poissonian/Gaussian model applied to Kelly’s data at 62.8 mL. (a)
Temporal frequency response, parameters as in Fig. la. (b) Spatial frequency re-
sponse, parameters as in Fig. 1b,

(k). The time constants tend to inerease with lower luminance while
the space constants remain unchanged. The parameter values for the
D-G/C model obtained using the log of departure criterion are given
in Table III. With this different model, parameter values are naturally
very different, but the variations with luminance are similar to those
with the P/G model and, indeed, with the remaining models.

TaBLE IIA—PARAMETER VALUES IN PoIssoNIAN/GAUssIAN MoODEL
DeTERMINED WiTH ASFE PERFORMANCE INDEX

. R b 1,
Lm;:luiance Kelly’s Data (])):’g: 8
Parameter
62.8 15.2 3.7 0.91 6.3

1 A 298 236 145 116 219
2 71 (ms) 39 32 32 61 45
3 7 (ms) 63 43 70 102 52
4 o, (min arc) 1.48 1.55 1.49 1.49 1.01
5 o (min arc) 9.82 4.72 10.1 6.19 5.62
6 k 0.9976 0.9831 0.9579 0.8150 0.9554
7 D 7.0 4.3 3.9 7.6 3.7
8 A/L, 4.82 15.5 40.3 127.2 34.8
9 11—k 0.0024 0.0169 0.0421 0.1850 0.0446
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TaBLE IIB—PARAMETER VALUES IN PorssoNiaN/GAussiaN MobDEL

DeTeERMINED WITH ASLE Criterion [Eq. (35)]

Luminance s D Robson’s
(ml) Kelly’s Data Data
Parameter
~. 62.8 15.2 3.7 0.91 6.3
1 A 234 168 134 93 198
2 71 (ms) 29 37 53 79 56
3 72 (ms) 34 58 80 101 55
4 oo (min are) 1.52 1.40 1.37 1.34 1.01
5 o; (min arc) 9.68 8.30 10.51 10.28 5.58
6 0.990 0.971 0.911 0.740 0.996
7 D (log units) 0.48 0.56 0.63 0.73 0.49
8 A/L, 3.72 11.05 36.2 102 31.4
9 (1 -k 0.010 0.029 0.089 0.260 0.004

V. DISCUSSION

Both the D-G/C and the P/G models will be useful in practice,
particularly the latter when simplicity of computation is a major con-
sideration. However, the fact that none of the models fits the data
well enough to satisly any fundamental inquiry prompts us to look

again at the assumptions of Section 2.1.

One can scarcely doubt the interplay of excitation and inhibition
in the visual mechanism, and that inhibition spreads over a wider

TaBLE III—PARAMETER VALUBS IN DirrusioN-Gaussian/CAucHY

MopEL DETERMINED WITH ASLE PERFORMANCE

InpeEx [Eq. (35)]

i ; Robson’s
Lﬁ_lﬂ?nce Kelly’s Data Data
Parameter

™~ 62.8 15.2 3.7 0.91 6.3
1 A 1596 943 810 372 853
2 71 (ms) 472 489 649 656 496
3 72 (ms) 74 75 74 111 98
4 o, (min arc) 9.33 8.01 6.47 7.43 8.59
5 o; (min arc) 12.38 11.45 6.50 8.27 324
6 0.517 0.479 0.351 0.236 0.677
7 D (log units) 0.45 0.48 0.50 0.61 0.33
8 A/L, 25.4 62 219 409 135
9 (1—-k) 0.483 0.521 0.649 0.764 0.323
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area and persists longer than the excitation, i.e., is confined to lower
spatial and temporal frequencies. However, it is probably untrue that
inhibition simply subtracts from the excitation. It is more likely!? that
it acts as a shunt, or a reduction in through-put gain, for which simple
subtraction is only a first approximation. One could also expect a more
precise characterization of inhibitory action to explain part of the
adaptive changes. However, the model would be nonlinear and more
complicated.

Apart from linearity, it is very probable that more separability of
functions has been assumed than is warranted. The statement that
excitation (or inhibition) is separable into space and time functions
purports that, given a point flash, the form of the spatial response is
independent of time, or that the shape of the time function is inde-
pendent of distance from the stimulus point. This is probably true of
the spread which is due to optical smearing of the retinal image. But
it is probably untrue of the lateral spread of neural interactions. Since
neural interactions predominate in the wider inhibitory spread, separa-
bility should be expected to be a poorer assumption for inhibition than
for excitation. This seems to be borne out by the data.

The assumption of uniformity raises another question. To speak of
isoplanatic patches is, of course, no more than a simplification. Even
the central fovea varies substantially in receptor packing density
within the space of less than a degree. It is therefore difficult to main-
tain the assumption of uniformity with data obtained for spatial
frequencies of one cycle/degree or lower. To justify convolution in the
presence of nonuniformity we only need to be sure that the spatial
spread is small compared to the size of the “uniform’ patch. However,
we need uniformity over much more than (1/f.) in order to justify a
Fourier transform to within f. of the frequency origin. If this condition
is not met, then with a sinusoidal input the output may, in the extreme,
be nonsinusoidal even over only a part of a cycle. But our assumption
of threshold is that a criterion value be exceeded by the peak-to-peak
output and this then will not be related to the calculated transfer
function.

The concept of detection needs to be examined, not only where
lack of retinal uniformity is critical. It is unlikely that detection is
based on a comparison of just two values, a maximum and a minimum
in the output, and that this comparison is independent of how far
apart in space and time these two values actually are. It is more likely
that there should be a pooling of evidence and that there should be a
decline in detectability, the further apart the relevant events.
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However, it need not follow that, given a more complicated detection
mechanism, the modeling done here would be invalidated. The detector
with variable weighting of evidence could, in fact, be equivalent to a
spatial/temporal filter in its own right, followed by the kind of decision
stage assumed here. If this were so, then it would only mean that not
all the filtering evident from threshold data can be attributed to
peripheral processes, but that some of it is due to central neural
activity. This is an important distinetion where comparisons are made
between the filtering evident in stimulus detection and in, say, percep-
tion of brightness. Inconsistencies of this nature have already been
noted in the literature,'® but have not been satisfactorily explained.

Higher-level filtering might also be responsible for the frequency-
selective fatiguing discovered by Blakemore and Campbell.*® It seems
improbable that spatial filtering by optical and retinal spread con-
stitutes spatial frequency channels which may be independently
adapted, but higher-level filtering could, in fact, occur after a Fourier-
like signal transformation. But again, the presence of any transforma-
tions like these would not affect the present modeling. They might
however, affect adaptation effects.

500

A/L, OR {1-k) IN ARBITRARY UNITS

100

ADAPTATION LUMINANCE IN mL

Fig. 12—Adaptation of gain parameters A/L, (line I) and (1 — k) (line IT)
against luminance as obtained in fitting Poissonian/Gaussian model to Kelly’s and
Robson’s data.
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Of the adaptive changes which are evident from the present model-
ing, the variation in gain requires comment. The fact that the gain
constant A was seen to decrease with decreasing adaptive luminance
might be taken to mean that the system becomes less sensitive in the
dark. As is well known, visual sensitivity goes up markedly with
darkness and the present results do not, in fact, contradict this. By
eq. (8), (1/m) equals |S(u, 0, f)| only to within the multiplicative
constant T (p)/L,. Assuming that the threshold does not change, then
to make the gain values at different luminances L, comparable to each
other they have to be divided by L,. A/L, does in fact go up with
decreasing luminance as can be seen in row 8 of Table ITA and else-
where. The actual A/L, values are different across the models but the
trend is always the same.

As the adaptation luminance decreases there is an additional increase
in sensitivity restricted to low frequencies. This occurs because of
the decline in fractional inhibition k. The zero-point value of |S| is
with all models A (1 — k)/L,. The net excitation (1 — k) is given in
row 9 of Tables IIA, IIB, and III. A/L, and (1 — k) have also been
plotted for the P/G model in Fig. 12. From the plot one can infer that
for the P/G model and in the range 1.0 < L, < 100 mL

A/L, = consty X L; %8, (43)
(1 — k) = conste X L;103, (44)

so that
|8(0,0,0)| = consty X L; 18, (45)

The increase in low-frequency sensitivity with decreasing luminance
is at the expense of bandwidth.

VI. CONCLUSION

Six spatio-temporal models of human visual filtering were tested
against published experimental data on visual spatio-temporal sine-
wave thresholds. These models arose as specific examples from a
definite theoretical framework. It was assumed that thresholds could
be related to a fixed peak-to-peak difference in a visually filtered version
of the input stimulus, and that the filtering could be taken as time-
invariant and spatially uniform and isotropic. Particular attention
was directed to the question of whether the response was separable
into functions of time and space. We showed that the total response is
not so separable in this way. However, it was assumed that if the
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response is expressed as an algebraic difference of two terms, excitation
and inhibition, the individual terms would be separable.

Component functions which were tried were exponential, Gaussian,
and diffusion-like functions of time, and Gaussian and Cauchy funec-
tions of space. The best fit was obtained with a model which has a
diffusion-like time function for excitation, a Gaussian time function
for inhibition, and Cauchy space functions for both. The diffusion
function, as a model of the time course of excitation, has previously
been advocated by Ives Kelly,* and others. The degree of fit
obtained in the present study, involving both time and space, was
however only moderate and no strong argument can be brought
forward in favor of any of the functions, not even the best-fitting. In
the best case the average departure from the model was three times
larger than the average estimated experimental error. The present
results do not exclude any of the functions either, for the fit was
probably affected more by the restrictions of the framework than the
choice of function.

In each of the models six parameter values had to be determined.
These were gain, fractional inhibition, two time constants, and two
space constants. Parameter searches consisted of up to 50 passes of
gradient-dependent convergence and evolutionary random search.
Random search was invariably found to be the more productive phase
in all the computational passes.

With adaptation luminance between 1 and 60 mL, the time constants
were found to be slightly larger at the low luminances than at the high,
the space constants were almost nonvarying, and the gain and frac-
tional inhibition decreased with decreasing luminance. As expected,
the sensitivity, measured as gain divided by luminance, was found to
go up with decreasing luminance. The reduction in fractional inhibition
was shown to give a further increase in sensitivity with decreasing
luminance, but only at low frequencies. With one model (P/G) the
sensitivity at zero frequency was found to vary inversely as the 1.84
power of luminance, 0.81 of this being due to variation in overall
sensitivity and the remainder due to changes in inhibition.

The major purpose of the present model fitting was to find a filter
function for use in a program for predicting the subjective quality of
visual signal coding schemes. Of the six models the most economical
computational procedures are provided by the Poissonian/Gaussian
model. The Poissonian, or negative exponential, time functions can be
implemented recursively, using a delay of only one or two picture
frames, and the Gaussian space functions, being themselves separable
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into products of functions of x and y, can be implemented by two
successive, modest transverse filter operations, instead of requiring one
very large operation. This model was found to fit the data nearly as
well as the best. Considering its computational advantages, it will no
doubt be the one to find most use.
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