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In trunking theory, peakedness is defined conventionally as the variance-
to-mean ratio of a traffic load when carried on an infinite trunk group.
For analysis of switching machine delays, it has proven useful to define
a peakedness measure associated with the Carried Arrival Process (CAP),
the stream of call arrivals carried on an incoming trunk group. The peaked-
ness of the CAP s defined to be the conventional peakedness of a fictitious
traffic-load process generated by associating with each carried arrival an
independent exponentially distributed holding time with mean equal to
the mean of calls actually carried on the trunk group.

The problem considered is the effect of trunk group congesiion on the
peakedness of the CAP for traffic consisting of renewal inputs offered on
a blocked-calls-cleared basts to a finile trunk group with exponential hold-
ing times. The CAP is characterized as a semi-Markov process. This
model leads to the determination of the peakedness of the CAP. Numerical
results illustrate the reduction of peakedness, or smoothing, introduced
by the congestion.

I. INTRODUCTION

This paper is concerned with characterizing the traffic offered to a
switching machine, taking into account both the alternate routing
that the traffic may have undergone and the smoothing of the traffic
resulting from congestion on the trunk group incoming to the machine.
In trunking theory, peakedness is defined conventionally as the
variance-to-mean ratio of a traffic load carried on an infinite trunk
group. It is well known that trunk group blocking of peaked traffic,
such as overflow traffic, can be substantially larger than the blocking
seen by Poisson traffic with the same intensity. Similarly, switching
machine* delay and capacity can be quite sensitive to the peakedness

* Throughout this paper, when we refer to a switching machine we mean the com-
mon control devices in a switching machine.
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of the incoming traffic.! To determine the peakedness of the traffic
offered to a switching machine, we must take into account the smooth-
ing effect of the incoming trunk groups. To this end, we consider the
process of arrivals offered to a trunk group which are carried by that
trunk group. Wo call this process the Carried Arrival Process, or CAP.

To illustrate the CAP, consider the alternate routing network
shown in Fig. 1. Here traffic overflowing trunk group AB is then
offered to trunk group AC [Fig. 1(c)]. Those calls finding free circuits
on AC then appear at node C as requests for service. The CAP is
illustrated in Fig. 1(d).

The basic model used in the analysis is shown in Fig. 2 where a re-
newal process is offered to a group of N trunks on a blocked-calls-
cleared (BCC) basis. The renewal input allows us to consider overflow
traffic offered to an incoming trunk group. The holding times on the
trunks are assumed to be independent, identically distributed, ex-
ponential random variables with service rate u.

For analysis of machine performance it has proven useful to define
a measure of peakedness for the CAP, z,, equal to the variance-to-
mean ratio of the traffic load carried (number of trunks occupied) on
an infinite trunk group to which the Carried Arrival Process has been
offered. By definition, the holding times on the infinite trunk group
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Fig. 1—Carried Arrival Process.
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Fig. 2—Carried arrival model.

are independent, identically distributed, exponential random variables
(with service rate u) which are independent of the holding times on the
incoming trunks.*

The peakedness of the CAP should be distinguished from the
variance-to-mean ratio of busy trunks on the incoming group, a
quantity which is discussed, for example, in Section 8.4 of Reference 2
for the case of Poisson input. This distinction can be made clear by
considering an example of Poisson traffic of intensity A(calls/second)
offered to N trunks. As \ approaches zero, the two measures approach
one. Clearly, as ) gets large, the variance of busy circuits in the trunk
group goes to zero and the mean goes to N, giving a variance-to-mean
ratio of zero. On the other hand, as A gets large, the time differences
between successive carried calls approach independent, exponential
random variables with rate Nu (i.e., a Poisson stream) and the peaked-
ness z, approaches unity. This is illustrated graphically in Fig. 3
which plots z. and (v/m)p.s. (variance-to-mean ratio of busy servers
on the N trunks) as a function of offered load for N = 10. The example
is a special case of the general results derived in this paper for arbitrary
renewal input to the trunk group.

By modeling the CAP as a semi-Markov process (SMP), it becomes
possible to calculate peakedness z. as a function of the peakedness of
the traffic offered to the incoming trunk group and of the congestion
encountered on the group. The resulting z. may then be used in the
determination of machine performance.! Numerical results illustrate
the reduction in peakedness, or smoothing, introduced by the trunk
group congestion. In the course of determining the peakedness, the
transform of the distribution of the time between carried calls is
derived.

. That is, although carried arrivals are accepted simultaneously on the finite and
infinite trunk groups, the departure times are different.
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Fig. 3—Distinction between peakedness and variance-to-mean ratio of busy
servers.

II. OUTLINE OF RESULTS

In this section, we give an informal overview of the results. In
particular, we give the key equations that a user can employ to deter-
mine the peakedness, z., of a Carried Arrival Process. The equation
numbers are the same as will be used in the derivation. Stationarity
is assumed throughout. In all that follows, we assume unity holding
time (or the time unit is the mean holding time).

First of all,

z==M+——%, (11)

where M+ is the mean number of calls up on the infinite trunk just
after the time that a call is accepted onto the finite (and infinite)
trunk group. (1/8) is the mean number of carried calls (on both the
finite and infinite trunk group).*

M+ is determined from the following equation:

o s £ 1)
N oRE el e ] B

where ¢(s) is the Laplace-Stieltjes transform of the interarrival time

1‘ Note that, since we are assuming unity holding time, M* and (1/8) are in
erlangs.
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distribution. M;" is the mean number of calls up on the infinite trunk
group immediately after arrival of a carried call, given j calls in progress
on the finite trunk group immediately following the arrival of the
carried call. P; (j =0, 1, ---, N) is the probability that an arrival
finds j trunks busy on the finite access group, and

P;_
Pj{. = 1 —Jl;N

(24)"

is the probability of j calls up on the finite trunk group immediately
following a carried call arrival.

The only quantity left to be determined in (32) is M7 which is
calculated by solving the linear equations

N
[M?jl- - 1]P7;II- =l=max(;m-1) Cili-l_s m = 11 2: T Nt (33)
where
I—m+1 z_ 1
Con=PF(, L) B (T (o m
m—1=21=N -1,
1=m=N, (34)t
N N-m+l f N — 1
PE(, ) 5 (VT ot
Crrm = 2= ? (35)1

I-9¢(N+1)

A simple method of solving (33) is discussed at the end of Section VI.

[n the course of deriving the expressions which ultimately determine

the peakedness of the CAP, the Laplace-Stieltjes transform of the

distribution of time between carried call arrivals is obtained. This is

riven by

(1 —¢(s)Je(s + N) .
Ty @

Note that the CAP is not completely characterized by (23), since it is
not generally a renewal process.
Examples are given in Section VII.

¢c(s) = ¢{S) -

* One method of computing P; is via the equations given on p. 179 of Reference 3.
Alternate methods which may avoid some of the numerical difficulties inherent in
his approach will be discussed in Appendix C.

T Alternate expressions for special cases, more suitable for computation, are given
n Appendix C.
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Fig. 4—Peakedness of the Carried Arrival Process.

III, CHARACTERIZATION OF THE CARRIED ARRIVAL PROCESS AS A SEMI-
MARKOV PROCESS

Consider a renewal process, with a nonlattice interarrival time dis-
tribution F(f), as an input to N trunks with mutually independent
exponential holding times each with mean unity (or the time unit is
the mean holding time). F'(0+) is assumed to be zero. Blocked calls are
cleared. Such a system is analyzed in Chapter 4 of Reference 3.

Let {7, % = 1, 2, ---} denote the sequence of times at which calls
are accepted by the N servers (this is, of course, a subset of the times
at which calls are offered). Let j(¢) be the number of servers busy at
time £. Then j(7;") is the number of servers busy just after the nth carry
(nth carried call). Note that P{j(rf) = 0} = 0. It is clear that the
j(t) process held fixed at j(rF) for 7o <t < rny1 is an SMP.* The
transition probabilities for the embedded Markov chain are derived
as follows.

Since there is a death process on the finite trunk group between
carried calls, we have form = 1,2, ---, Nand for l=m — 1, ---,
N — 1 (in which case, the next arrival is the next carry)

P{j(rf) = m|j(riz) = 1)
- ( : )I_Z%“ (Fmn 1) (1) (n+m—1), (1)

m—1/ T

It

where ¢(s) is the Laplace-Stieltjes transform of F(¢),
o) = [ emar (). (2)
0

* For an introduction to semi-Markov processes, see Reference 4, Chapter 5.
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When j(r}_,) = N, note that the next arrival need not be the next
carry. With s.c. denoting service completion and F;(f) the ith-fold
convolution of F(f), we have

P{j(nf) = m|j(ri,) = N}

no s.c. before the first (7 — 1)
P < arrivals after r,—;, (N — m + 1) s.c.’s
before 7th arrival after r,_;

Il
s

1

i f‘” f‘e_m (mN 1 ) em(mmD(=a[] — (=) JN=ml
i=1Jo Jo -
XdF;_1(s)dF(t — s)

(" )NE“(N‘T”“)<—1)»¢<n+m~1)

m— 1 n=0 7
T— () ®)

j('rr:l.—l) = N}

Letting F1n(t) be the conditional probability that a transition will
take place within a time f, given that the process has just entered I
and will next enter m, we have

( l ) e—(m—l)t[l — e—tjl—m+1dﬁ'(t) ,

m—1
Plj(rH) = m|j(riz) =1}

AF1m(t) = (4)

= N
—Ng —(m—1) (t—a)
i§1 j; ¢ (m - 1) ¢

X[1—e(=¥=mt1dF,_, (s)dF (t—s)
L P{j(rf) = m[i(rf,) = N} ’

Although the SMP characterization of the CAP is of general in-
terest, it is particularly useful in determining the peakedness of the
CAP as we shall see in Section IV.

[=N.

IV. PEAKEDNESS OF THE CARRIED ARRIVAL PROCESS

Recall that the peakedness of a process is the variance-to-mean
ratio of the number of calls up on an infinite trunk group when that
process is offered to the infinite trunk group. To determine the peaked-
ness of the CAP, consider the situation shown in Fig. 4. In this figure,
each time a call is carried on the finite group, a call is put up on the
infinite group with an exponentially distributed holding time with the
same mean as on the N-trunk group but independent of the N-trunk



1624 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973

group holding time.* As before, j(£) is the number of busy servers on
the N-trunk group at time t. Let k(f) be the number of busy servers
on the infinite trunk group at time & We use the following familiar
result (given for renewal input in Reference 3 and for semi-Markov
input in Reference 5, which is the form applicable to our problem).
The following limits

Pi= lim P{k(ry) = 1) (5)
and _
P; = lim P{k(t) = i) (6)
exist and satisfy )
-T2, @)

where 8 is the mean time between transitions of the SMP (i.e., mean
time between carried calls). From (7) we obtain

lim E{k2(t)] = %, [lim M(rs) + 1] = L lim M(s), (8

t— o0 )8n—>on

where we have defined

M(t) = E{k()}. 9)
Defining

M+ = lim M(#}), (10)

n-—+w0

the peakedness of the CAP (denoted z.) is given by

- u+ - L t

2o =M 5 (11)

Note that 1/8 corresponds to the mean of the carried load (recall that
we are assuming unity mean holding time).

We are thus left with the problem of determining M+. This deter-

mination will be in terms of the distribution of time between carried
calls, to which the next section is devoted.

V. DISTRIBUTION OF TIME BETWEEN CARRIED CALLS

Consider an arrival at 7, which finds a free cireuit [i.e., j(rn) < N1
Let F.(t) be the distribution of time until the next carry (carried call) ;

* It is this independence which distinguishes the peakedness from the variance-to-
mean ratio of busy trunks on the N-trunk group (as discussed in Section I).

T This is given in Reference 6 for the case of renewal input and weaker assumptions
on service times.
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i.e.,
F.(t) = Plict < t|carry at 7.}, (12)
where ict denotes inter-carry time. Denoting

F[t]j(rf) < N]= Plict < t| j(+F) < N}

and
F.(t) = P{ict £ t|j(riF) = N} (13)
and recognizing that
Folt]j(rh) < N]=F(t) (14)
yields
F.(t) = F(1) [1 - 111N};N] + F.(t) [ IP_”};NJ, (15)
where

P; = P{j trunks busy on the finite group just before
a call arrival} (16)

is the stationary call congestion probability given on p. 179 in Chapter
4 of Reference 3. In particular, Py is the blocking probability.
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Fig. 5—Peakedness of CAP (5 trunks),
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Let ¢.(s) and $.(s) be the Laplace-Stieltjes transforms of F.(f) and
F.(t), respectively. Transforming (15) gives

o) = 0@ [1 - (| + a0 [ @D

The function &.(s) can be obtained from the solution to the Type I
counter problem given on p. 207 of Reference 3 with renewal input
transform ¢(s):

¢m=u—mmfwm@mw, (18)

where, for our problem,

H({if)=1— ¢t (19)
and
m(t) = E{number of arrivals in (0, #)}. (20)
36
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Fig. 6.—Peakedness of CAP (10 trunks).
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From (18) we have

A é(s) ¢(s + N)
b0 = 01 = 0] | 250G - 2GRS ] e

where we have used

.[noc e~ *'dm (t) = l—jf(%) ' (22)

Combining (17) and (21) gives the transform of the intercarry time
distribution :

d’c(s) = ¢(s) -

[1 — ¢(s)]e(s + N) Py,
I~ ¢+ M) [l—PN]' (23)

We are now in position to determine M+, defined by (10), and sub-
sequently the peakedness of the CAP.
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Fig. 8—Peakedness of CAP (50 trunks).

VI. DETERMINATION OF M+

In order to determine the peakedness of the CAP [eq. (11)], we
need to evaluate M+ defined in (10). This will be done by characterizing
the conditional mean of trunks up on the infinite trunk group, given j
calls up on the finite trunk group.

Recall that we are considering an arrival at 7, that finds a free
circuit on the finite trunk group (i.e., j(r;) < N). The state dis-
tribution on the finite trunk group at ;¥ is thus given by

PF = Pr(j(sh) = i} =
Pf =0,

1 — Py’ == (24)

where the P;'s are the call congestion probabilities defined in (16).
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We define
Pty = Pr{j(r}) < N}, (25)
M~ = Etk(r7)} = E{k(rH)} — 1= M+ — 1, (26)
Mt = E{k(rH)|j(+H) =1}, (27)
and
Mty = E{k(r})|j(rf) < N}, (28)

where k corresponds to the infinite trunk group and j corresponds to
the finite trunk group. In terms of these quantities, we have

M* = MtyPt, + MLPE. (29)
Recall that, if j(r}) < N, the distribution of time until the next
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Fig. 10—Peakedness of CAP versus blocking (5 trunks).

carry is F(f) and if j(r}) = N the distribution of time until the
next carry is F.(t). Using this together with some conditioning argu-
ments, the following relationship is obtained (see Appendix A):

M- = M+ —1=PE,MEtye(1) + PEM%é.(1). (30)
From (29) and (30) we obtain

4 1 J’c(l) _ 95(1) .
M= g +aen [ P | e
Use of (21) simplifies (31) to

TT-e() 1-eWN+1)

It should be noted that the first term in (32) corresponds to the
value M+ would assume if the renewal input process was offered
directly to the infinite trunk group. The second term corresponds to
the reduction in M+ as a result of blocking on the finite trunk group.
We are now left with the problem of determining M.

It is shown in Appendix B that M; for m = 1, 2, ---, N satisfies
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the following set of equations:
N
(M —1]PF = 3 CinM T, m=12 ---,N, (33)
I=max(l,m—1)
where form — 1 SIS N —-1,1=m=s N,
l I—m+1 -—
=P (L) E (T o me 6o
m—1 n=0 7
Further, for I = N we have
N N-mtl /N —m + 1
P(,0 ) 5 (YT s m
Cym = L 1 . (35)

1 —¢N +1)

It should be noted that the above set of equations is in a form which
1s amenable to solution for the desired quantity M%. Written in
matrix-vector form, the matrix in question is triangular with additional
entries below the diagonal. Transforming the matrix associated with
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(33) into triangular form* leads directly to the quantity of interest
M7 for use in (32), which is subsequently used to determine the
peakedness of the CAP [eq. (11)].

VII. EXAMPLES

We ran some examples with a 2-moment mateh! interrupted Poisson
process (Reference 7) as the renewal input to the finite trunk group
(the computational aspects are discussed in Appendix C). Figures 5
to 9 show z., the peakedness of the CAP, as a function of p, the offered
load per trunk for N = 5, 10, 20, 50, and 100 trunks, respectively.

* Details are in Reference 9.

t The blocking experienced by an overflow process is less than the blocking seen
by a 2-moment match interrupted Poisson process and more than that seen by the
3.moment match process (all with the same mean and peakedness).
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On each figure are plots for offered 2’s of 1, 2, 3, and 4. It is seen that,
for fixed N, as z increases, the smoothing effect (reduction of peaked-
ness) becomes appreciable at lower p’s. This is because of blocking
remaining negligible for larger p’s as z is decreased. If we fix z, we see
that the smoothing effect becomes appreciable at lower p’s as N is
decreased. This is again explainable from the point of view of blocking,
i.e., blocking is larger on the less efficient small trunk groups.

Since blocking is an important parameter, Figs. 10 to 14 show the
peakedness of the CAP versus the blocking for the same cases as
shown in Figs. 5 to 9. Note that, for final trunk groups which are
normally operated with blockings of 0.01, the smoothing effect is very
small, while for high-usage trunk groups which may reach blockings
of a few tenths, the smoothing is substantial. Also, note that z, in all
the cases, approaches unity as the load (and blocking) increases which
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is consistent with the explanation in Section I as to how peakedness
differs from the variance-to-mean ratio of busy servers (which ap-
proaches zero).

It was observed in Reference 10 that, when z > 1, the blocking
probability is bounded away from zero no matter how small the input
mean is. This is evident in Fig. 10.

VIII. CONCLUSION

We have shown how to determine the peakedness of a CAF. The
use of mean and peakedness to characterize a CAP is attractive from
the point of view of simplicity and is consistent with the use of the
equivalent random method (Reference 2) in trunking analyses. To
approximately calculate the delays at a switching machine, we could
replace the CAP (or, more usually, a superposition of CAP’s) with an
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interrupted Poisson process with the same mean and variance and
proceed as in Reference 1. This is being investigated.

We mention, in passing, that we also tried out a renewal approxi-
mation for z.. That is, although the CAP is a semi-Markov process
and not generally a renewal process, we tried to approximate z, with

1 1

1 —¢.(1) g’
which is the peakedness that the CAP would have if it were a renewal
process. This approximation did not compare well enough with the
true 2z, to recommend its use. That is, although one might use a re-
newal approximation to a superposition of CAP’s after the peakedness
is determined (see the last paragraph), we do not recommend using a
renewal assumption to determine the peakedness.

In the course of determining the CAP peakedness, we have more
fully characterized the CAP as a semi-Markov process. Any queuing
results available for semi-Markov inputs could be used with the CAP
semi-Markov characterization given in Section III.
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APPENDIX A
Derivation of Equation (30)

Consider the system in equilibrium with times of carried calls {7,}.
From (26) we have
M- = E{k()}, (36)

which can be expanded as
M- = E{k(r7)|j(ri2) = NIP{j(rf-,) = N}

+E{k(r) | i (rdm) < NIP{j(ri) < N} (37)
This can be written as

M- =P} 3 3 iPlk(ry) = i|k(5fy) = n, j(riy) = N)

n=0 §=]

XP{k(ri) = nlj(xi) = N}

+PEy 3 3 iPUk(ry) = i|k(rh) = n, j(ri) < N}

n=0 i=1

XP{k(rizi) =n| j(ri=)) <N} . (38)
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Writing
Pik(ry) = t|k(rfy) = n, j(=f)) = N}
= [" Pl = ilk(ri) = m () = N,
Tn — Tno1 = L}dF ()
= L‘” (:1,) e=it(1 — e=t)n—idF,(t) (39)
and
P{k(ry) = i|k(ri) = n, j(rd) < N}
- [ " (:,‘)e—ﬂa — )P (t)  (40)

and observing that

;“;1@' (f) eit(1 — e~)i = net (41)
leads to the desired result
M- = PEuMiye(l) + PEMES(1). (42)

APPENDIX B
Derivation of Equations (33) through (35) for Mt
Consider the events

A = (i) =1, (1 — m + 1) s.c.’s before next
arrival after r.—1} (43)

Bim = {j(r.1) = N, no s.c. before (k — 1)st arrival after 7.y,
(N — m + 1) s.c.’s before kth arrival after 7.1}, (44)

where s.c. denotes service completion on the finite trunk group. From
these definitions we obtain

Pli(h) = m) = % Pldwm} + £ PiBwl.  (49)

The conditional mean of interest is thus given by
Mg = E{k(r)|i(r) = m}

NillE{k(f,,—)[Am}P{Alml + é:l E{k(ry) | Bin} P{Bin}

[=m—
= - 46)*
L3 = m] (40)
Defining the events
Ar= {j(xfy) = 1) (47)
*Whenm = 1, P{Aom} = 0, because P{j(r}-,) = 0] = 0. In that case, sum from
l=1tol=N—-1
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and

Agm = {(I = m + 1) s.c.,’s before next arrival after r,_,) (48)
gives
E{k(r7) | Ain} P{Ain)

= éfiP{k(f;) =4, Aun| A} PiF (49)

= Pt 5 PIk(s) = 1l dd) & iP(k(r7) =,

Agim[ Ay, k(r) = 7). (50)
Letting I < N and using

Pllk(ry) = 4, Agim| Ay k() = v} = f: (:) eit(] — gtyrs

m—1
and
yields
—_ = “ l
E{k(ry) |Ain}P{As} = P?Mf’fo (m— 1)

Xem[1 — et J=mtidF(§). (53)
From (1) we have

% l—§+l(l—nl+l)(“1)“¢(ﬂ+m) (54)
7=0 U]

= Cin M, (55)

where we are using (54) to define Cy,, in (55). This yields (34).
It now remains to show the desired relationship for Cym. We con-
sider the second summation of (46)

E{k(r) | Bun} P(Bin} = & iP(k(r) = 5, By, Bunl,  (56)
where
By = {j(vi=1) = N}
Bsm = {no s.c. before (k — 1)st arrival after Toey, N —m + 1)
s.c.’s before kth arrival after 7,_;}. (57)
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Now
E{k(r7)|Bin} P {Bin}

= 5 3 iP{k(ry) = 4, Bakn| By, k(7)) = n]

a=0 i=1

XP{k(riy) = n|B:JPE  (58)

Py X, nPik(ri) = nl Bl N f; 3 (?: - }) it

i=1

Il

x(]_ _ e—!)(rwt’)e—Na ( N ) eﬁ(m—l]u—s)

m — 1
X (1 — e~ (=) N=mtldR,_,(s)dF(t — s). (59)
Upon performing the summation over 1, (59) simplifies to

- P‘I&Mx N ./'00 [t e—(N+l)ae—m(t—a)
m—1 o Jo

% N—f‘l'l; ( N — ;TL +1 ) (r-.1)"6_"('—']dFk_1(S)dF(f — S)
7=0
N §-m-l N—-—m+1
= + — 1)
PyMY (m — 1) ,EU (=1 ( n )

X¢F (N + 1)¢(n + m). (60)
Summing over k gives

3 BUk(r) | Bun} P{Bin)

N-—-m+1 N —
i) o (YT ) s m
n=0 1 (61)
1 —¢({N +1) ’
which is the desired result for (35).

APPENDIX C
Computational Considerations

In this appendix we briefly* discuss some computational problems
experienced in the numerical solution of the carried process problem
and point out some possible approaches to circumvent them.t In

* A more detailed deseription of our computational experience is in Reference 9.
t We first diseuss the approaches and then the numerical experience we have had.
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particular, we are concerned with the computation of the state prob-
abilities, Pj, j =0, ---, N, defined in (16) and the computation of
the quantities Ci defined in (34) and (35).

We also specialize and subsequently simplify the above results for
the case where the interarrival time distribution is a sum of ex-
ponentials. In particular, we consider the interrupted Poisson process’
as the renewal input. This specialization appears to have eliminated the
numerical problems associated with the required calculations for
large trunk groups.

The problem of determining the call congestion state probabilities
for a renewal input to a BCC system with N independent exponential
servers is considered on p. 179 of Reference 3. The results are as
follows: Let

= _Eﬁi})_) =0, N —
CJ+1‘(1_¢(J-+1) C:; .7—0: :N 1: (62)

with Co = 1. Then B,, the rth binomial moment of the P;s, is given by

N N\ 1
= ()s
Br:Cr_N——'

=0 .7 CJ'
The B, satisfies the backward recursion
_(l—0+1) N
Br_(W)Br{-l—i_(?‘)BN, (64)
with
1 1 N /NN 1
= =5 = . )+ 65
By Py :gﬁ(J)Cj (65)
(Reference 11, p. 93). The Pj’s are given by
N
pi=y (-0 (%) By (66)
r=j

The computation of the C; coefficients and the binomial moments
B, is fairly straightforward and does not pose much of a numerical
problem. It is the computation of the P’s, using (66), that is sensitive
to numerical errors. The alternating sign in (66), together with the facts

that (;) B, can be quite large and the summation in (66) is between

zero and unity, lead to a numerical problem.*

* Actually, for an N = 10 case seven significant decimal digits were lost in one
subtraction and the resultant probability was computed to be zero. This plays havoe
with the solution to (33). Details are in Reference 9.
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An alternate approach® to the computation of the state prob-
abilities is by way of the equations

N
P = ¥ palPj (67)
j=k—1
where the transition probabilities p;z represents the probability of
going from state j prior to one arrival to state k prior to the next
arrival. The p;'s are given by

P = (j+ 1) [T ema = enmrarey, i<, (68)
k 0

and
DNk = PN-1,k (69)

From (67) and (68), we obtain the backward relation

P 1 X
E— = Y paP (70)

Py =30 ~ o &

Expanding (68) gives

; itl—k / ;i _
=TS (P TF) Cowat @y
=

The computational procedure is outlined as follows: Compute Py
from (65)t and use (70) to compute P; for j < N. It should be noted
that, although the terms in (71) alternate in sign, ¢ never exceeds
unity and is monotonically decreasing. Also note the relation between
;i given by (71) and Cin given by (34) and (35). At this point, the
accuracy in computing the P,’s should be comparable to the accuracy
in computing the Cin's.

For the case where F (¢) is the sum of exponentials (e.g., interrupted
Poisson process) we can further simplify (and more accurately com-
pute) the Ps and Cin. We go to the integrals from which the sums
(with alternating signs) appearing in (34), (35), and (71) were derived.
Note that we have

(L) () o

m — 1 7=0
- -}

0

(m : 1)3""‘(1 — e)mrdR () (72)

* Motivation for investigating this approach stems from remarks made by P. J.
Burke. (In recent unpublished work, Burke showed a more accurate approach for
the case where the renewal interarrival time distribution is a sum of exponentials.)

T Note that each term in the sum of (65) is positive.
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[see (53) and (54)]. Let
Ft) = !i N Rp— (73)

then the integral in (72) can be identified as a beta, function.* Re-
peated integration by parts in (72) gives

0 l _ N 8
f ( )e (1 — e AR (1) = 3 fomlks ), (74)
0 =1

m—1
where
kir; l -1
Jumlsy 73) = (l—i—r;—}— 1)(l+r.-)(l—|—r.-— 1)
N I— (I —m)
(l+r,~— (l—m)) for I>m—1 (75)
Forl = m — 1, we obtain from (72)
kﬂ".’
fm—l.m(]vi, ry) = m r,-' (76)
Note that fi can be computed recursively from
I+1
S m(ksy 1) = (rﬁ )fi,m(k"; 75) (77)

with initialization from (76).

The direct calculation of the integral has thus led to a computa-
tionally tractable method of computing the C;.’s and the Ps. C\,, is
calculated from

s

C!m=Pz+(Zlflm(kurl))) m'—léléNil’ (78)T
[see (53)] and

Com=— LT (e 0 79)t

Nm = 1 — d)(N + 1) ( i=1fN-M( iy Tl')) ( )

[see (35) and (72)].

The P;'s are calculated from (70) where (68) is simplified as above
(using integration by parts) and then used to compute the transition
probabilities. Note that for an interrupted Poisson process,” S8 = 2,
and ki, ks, 1, and 7, are given in Reference 7 in terms of the switch

* Identification made by D, L. Jagerman.
Note that this procedure does not involve the calculation of either binomial
moments or binomial coefficients.
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parameters. An alternate method of computing the P;'s for the
interrupted Poisson process is via the use of birth and death equations
and conditioning the results on the switch being closed. A computer
program for doing this was available (Reference 8).

At this point, it is of interest to discuss our computational experi-
ence using some of the aforementioned procedures. The first method
considered was to calculate the P;’s by first obtaining the binomial
moments [egs. (62) to (66)] and to compute the Cin’s from (34) and
(35). Using single precision arithmetic the procedure worked for N = 2,
but failed for N = 10. The problem was traced to inaccurate calcula-
tion of the probabilities from binomial moments. Double precision
arithmetic extended the range of N (worked for N = 10). The method
failed at N = 20. The failure was traced to the same cause as above.
At this point we used the birth and death equation approach to calcu-
late the P,s® which assumes an interrupted Poisson input. This
extended the range to N = 20. For N = 30 we ran into problems
computing the Ci»'s from (34) and (35).* Modification of the Cin
computation using (78) and (79) significantly extended the useful
range on N. The results presented in Section VII were computed using
this method of calculation.

REFERENCES

1. Heffes, H., “Analysis of First-Come First-Served Queuing Systems With Peaked
Inputs,”’ B.S.T.J., 62, No. 7 (September 1973), pp. 1215-1228.
. Wilkinson, R. L., “Theories for Toll Traffic Engineering in the US.A,”"BS.T.J,
35, No. 2 (March 1956), pp. 421-514.
Takécs, L., Introduction to the Theory of Queues, New York: Oxford University
Press, 1962.
. Ross, S. M., Applied Probability Models with Optimization Applications, San
Francisco: Holden-Day, 1970.
. Franken, P., “Erlang Formulas for Semi-Markovian Input,” Elektron Infor-
mationsverarbeit Kybernetik, 4 (1968), pp. 197-204.
. Descloux, A., “On Markovian Servers with Recurrent Input,” Proc. Sixth
International Teletraffic Congress, 1970, pp. 331/1-331/6.
Kuczura, A., “The Interrupted Poisson Process as an Overflow Process,” B.8.1.J.,
52, No. 3 (March 1973), pp. 437-448.
. Marzec, R. P., unpublished work.
. Zeitler, M. J., unpublished work.
. Holtzman, J. M., “The Accuracy of the Equivalent Random Method With
Renewal Inputs,” B.S.T.J., this issue, pp. 1673-1679.
. Riordan, J., Stochastic Service Systems, New York: Wiley, 1962.

o o o W N

-

* This implicitly indicates the range of accuracy for the computation of the P;’s
from (70) and (71).



