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The incomplete transfer of charge and the existence of random noise
lead to the primary operational limitations of charge transfer devices.
Owing to the signal dependence of the residual charge, which accumulates
as a result of the incomplete transfer, signal detectzon with static detection
levels becomes seriously impaired before the onset of significant signal
attenuation or noise degradation. A scheme using dynamic detection levels
s found to greatly exlend the operational range of CTD’s and achieves
the minimum possible error rate for detecting uncorrelated charge packet
stzes. By contrast, stmple coding procedures are found to be ineffective
in overcoming signal degradation due to incomplete transfer. Shannon’s
expression for maximum information transmission capacity is lrans-
formed into an expression for maximum information storage capacity.
It is found that significantly larger storage capacities are possible with
CTD’s than have been achieved.

PRELIMINARY REMARKS
Proposition: Devices Function at Their Limits of Operation

One has only to design or fabricate a device which “exceeds specs,”
and then, because of his success, receive a set of revised (and more
demanding) specifications from the systems people to appreciate this
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very basic principle. Or, if one fixed his goals too low, some clever
fellow will come along with a new twist which makes full use of the
device and revolutionizes the industry. On the other hand, devices
function at their limits of operation and no better. This lies behind
the widely recognized importance of ascertaining fundamental opera-
tional limitations in the early stages of device development.!

It is, therefore, the primary objective of this article to discuss the
operational limitations of charge transfer devices (CTD’s). At a time
when the basic device structure to be developed is still uncertain, and
with relatively little analysis of the charge transfer process, noise, error
rates, storage capacities, etc. (and with even less experimental verifi-
cation of these analyses), the results of such an article may seem very
preliminary at best. In some respects this will be the case. However,
sufficient progress has been made in understanding the operational
features of CTD’s, especially with respect to incomplete transfer and
noise, that definite limitations can be placed on how large information
storage capacity and how small (digital) error rates can be made.

It is my intention to outline CTD operational limitations in rather
general (even perhaps philosophical) terms and to refer to appendixes,
existing articles, work in preparation, etc., for mathematical details.
The results are optimistic to the extent that they indicate how much
better one ean hope to do with CTD’s than is commonly envisioned.
However, at the same time, the results are pessimistic in that it is not
obvious how one is to achieve this optimum use. Implementing our
dynamic detection scheme, which results in the minimum possible
error rate for digital signals, represents, nonetheless, a major step
towards operating CTD’s near full capacity.

I. INTRODUCTION

According to a most significant theorem due to Shannon,? the maxi-
mum information transmission capacity Cr of any channel is deter-
mined by the bandwidth and the signal/noise ratio of the channel.
With a slight modification this theorem can be transformed into a
theorem on the maximum information storage capacity C, of any
channel, in particular of a CTD. This C, then places an upper limit
on the number of bits of information which ean be stored in an un-
regenerated section of a CTD. If we restrict consideration to codes in
which the size of each charge packet is independent of preceding or
subsequent packets, we can calculate a minimum error rate and
specify an optimum detection scheme for digital signals. To obtain
this result, some knowledge of the signal/noise ratio and the accumu-
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lation of residual charge owing to the incomplete transfer of portions
of every charge packet is necessary.

In this paper, in order to establish the minimum possible error rate
and maximum possible storage capacities attainable with CTD’s, it
will be necessary to first review the way incomplete charge transfer
determines the attenuation-versus-frequency characteristic and the
total bandwidth of a CTD. The role of incomplete charge transfer in
signal degradation will then be discussed. Once the dependence of the
accumulated residual charge on the preceding signal is understood,
it is possible to devise a dynamic detection scheme for simple digital
signals and to compare this with the basic method of absolute-ampli-
tude or fixed-threshold detection (static levels). With any form of
detection, noise will introduce errors. Following a review of CTD
noise, error rates are discussed. It is found that in the presence of
noise this dynamic detection scheme attains the theoretical minimum
error rate. Finally, maximum information storage capacities are calcu-
lated using the bandwidth and signal/noise ratio characteristic of a
CTD. The methods used to obtain specific results are sufficiently
general that they can be used, for example, to calculate error rates for
nonoptimal detection schemes.

II. REVIEW OF INCOMPLETE CHARGE TRANSFER, SIGNAL ATTENUATION,
AND BANDWIDTH

As with other electronic devices, signal attenuation and device
bandwidth are extremely useful concepts with which to discuss the
maximum storage capacity and minimum error rates characterizing
the operational limitations of charge transfer devices. In a CTD, signal
attenuation arises primarily from the incomplete transfer of charge**
and only secondarily from charge losses, for example, through thermal
(or other) leakage currents. Let us first consider incomplete transfer,
then signal attenuation, and finally bandwidth.

2.1 Incomplete Transfer

It is clear that the incomplete transfer of charge from one elemental
cell to the next will lead to signal degradation.”® The character of this
degradation can be ascertained as follows. The charge @, in the 7th
elemental cell at time ¢ will be the charge in the previous cell during
the previous transfer cycle (of period r,) diminished by the charge
Q7_1:—r, left behind in the (i — 1)th cell but increased by the charge
left behind in the zth cell during the immediately preceding transfer
@?(—~, and also less any charge lost (or gained) during the previous
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storage, @—,,—,. Thus
Q;.t = Qi#l.l—rg - Qg—l,‘-‘-fa + Qg.:—r. - Qi'—-l.i—n' (1)

In general, this equation is very difficult to solve since the @} and @} are
nonlinear functions of ;. Nonlinearities, however, are common in
electronic devices. Taking the usual approach, one makes a small-
signal analysis in order to linearize the equations. Thus we write
Qi.. = gi.o + i, where g, is the time-independent (dc) component
(bias) and g, is the small (ac)-signal component. Similarly, @® and Q*}
can be decomposed into de and ac components. Substituting these
into eq. (1) we can obtain two equations, one for the dc terms and one
for the ac terms. The dc equation can give us the time-independent
(de) charge bias level at the output. While knowledge of this may be
important in some applications, it does not lead to any significant
operational limitations. Of greater importance is the solution of the
equation for the ac terms.
The equation for the ac terms is from eq. (1)

Qit1,t41, = Qivt — !I?.z + qg—i—l.l — G- (2)

As part of the linearization, one takes ¢} = pag: and ¢i = pBg.. (e and
8 can be calculated from the coefficients of a Taylor series expansion
of Q* and Q! in terms of ¢:pa = dQ?/dQ, and pB = dQ'/dQ,, where
p is the number of individual charge transfers within an elemental cell
and Q, is the charge to be transferred.) Substituting into (2) one obtains
the basic equation for g:,::

Qit1,ebre = Qivt — Pagi, + Pagivi,e — PBYi.e (3)
which becomes upon taking the Fourier transform
girr(w)e™re = gi(w) (1 — pa — ph) + pagiri(w). (4)

Up to this point we have linearized eq. (1) and passed to the fre-
quency domain, typical procedures in electrical engineering. We pro-
ceed to solve eq. (4) by first calculating

- . = 1 - pa — pﬁ_ —iwTo
q'-+1(‘-")/q‘(w) =1 = pae“""”e .
Then we note that since gi1(w)/q:i(w) is independent of ¢, it follows
that gy (w)/qe(w) = [gir1(w)/gi(w)]¥, where N is the number of ele-
mentary cells in the shift register. Recognizing that qw(w)/g.(w) is the
transfer function of the shift register, H (w), one finds that™*

—_ — N
H) = v (2B ) 5)
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As discussed in Section 2.2, H(w) can in principle be used to deter-
mine gy, for any given sequence of input charge packets Qt—_Nr,
qe—(N+1) 7,

The first factor in H(w) is just the phase delay in the signal present
even in the limit of perfect transfer (@ = 8 = 0). The second factor
contains a frequency-dependent attenuation and a further phase shift.
To a good approximation we may write

H(w) = A(w)ei*@), (6)
where the attenuation factor 4 () is given by
A () = e~mBe—nali—con wro) (7)
and where the phase factor ¢(v) is given by
¢(w) = Nwt, + ne sin wr,. (8)

(n = Np, the total number of charge transfers in the shift register
from input to output.) With knowledge of the device transfer function
H(w), we can discuss the attenuation 4 (w) and then compute the
device bandwidth.

2.2 Attenuation

The attenuation factor in eq. (7) can be interpreted as follows. The
first factor results from charge loss. If a fraction 8 of charge is lost
with each charge transfer, after n transfers the fraction remaining is
Just (1 — @)"~exp (—nB) (if nB? < 1). Charge loss is clearly fre-
quency independent. The second factor results from the incomplete
transfer of charge. For wr, 20, very-low-frequency components, the
size of adjacent charge packets is approximately the same. Thus the
charge incompletely transferred at site 4 is nearly compensated by the
charge incompletely transferred at ¢ 4+ 1. [ —pag; + pagip1 &~ 0 in
eq. (3).] Thus, apart from charge losses, gi;1 & ¢; and, hence, low-
frequency components are expected to be attenuated very little. Equa-
tion (7) bears this out. By contrast, if wr, = 2rf/fo R 7 (f R fo/2
where f, = 1/r, is the clock frequency), the attenuation is relatively
large, exp(—2na). Again referring to eq. (3), f a2 fo/2 implies that
gi,e and gity,, are ~180 degrees out of phase and Git &2 — qip1,.. Thus
contributions to incomplete transfer add (rather than compensate as
for low frequencies) and, again ignoring charge loss, eq. (3) predicts
an attenuation of (1 — 2a)" * exp(—2na). Again, eq. (7) bears this
out. For wr, = 7/2 (f = f,/4) the attenuation is exp(—na), an inter-
mediate case in which the phases of each successive packet differ by
90 degrees.
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One further point concerning incomplete transfer should be empha-
sized. A charge packet which “loses” a fraction a of its charge in each
of n transfers might be expected to be attenuated by a factor of
(1 — a)" = exp(—na). However, eq. (7) for A (w) shows how sensitive
the actual degradation of a packet is to the presence and nature of the
other charge packets composing the signal. Thus considering one
“isolated” charge packet can be very misleading. In Appendixes A
and B we discuss examples of attenuation in the time domain, and in

2na =0.2

ATTENUATION
=
®
T

104 1
0 fo/4 fu/2

FREQUENCY IN HERTZ

Fig. 1—Attenuation versus frequency for CTD’s with 2ra of 0.2, 2, 4, 5, 8.
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Appendix C we consider A (w) in more detail. A (w) is plotted in Fig.
1 as a function of w for several values of na. (8 = 0.)

2.3 Bandwzidth

In Fig. 1 we have plotted 4 () for 0 £ f £ f,/2, although eq. (7)
would seem to apply for 0 = f. The reason for this is basic. According
to Shannon’s sampling theorem,* f,/2, one-half the clock frequency
(one-half the sampling frequency), is the maximum frequency of the
signal which can be transmitted. Thus given the clock frequency f,,
the maximum bandwidth a CTD can have is f,/2.

Incomplete charge transfer clearly reduces the effective bandwidth
of a CTD. This is evident from the attenuation plotted in Fig. 1.
Normally one defines bandwidth by the size of the range of frequencies
for which the attenuation A exceeds some fraction § < 1. A more
convenient definition from the point of view of information trans-
mission and storage capacity is that the bandwidth B be given by the
following expression:

B = f—fﬂlrz IA(f) |2 f L’e—ﬂngl (2”&) , (9)
o [A0)]
where I, is a modified Bessel function.!? In Fig. 2, B is plotted as a funec-
tion of na. A slowly varying function, B decreases as (f,/2)- (4mrna)—}
for na >> 1. Thus despite the rapid attenuation associated with
ne 10 (e~ 0.5 X 10~ for f= f,/4 and e 0.2 X 10~ for
f = f./2), the bandwidth is still approximately 0.09 X (f./2), 9
percent of its maximum value. The relative insensitivity of 8 to na

BANDWIDTH / (f, /2)
5]
L
T

| ] ]
10-2 10-1 1 10! 102
2na

Fig. 2—Bandwidth versus na for a CTD.
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has an important effect on the maximum achievable CTD transmission
and storage capacities as we shall see.

III. THE ROLE OF INCOMPLETE CHARGE TRANSFER IN SIGNAL
DEGRADATION

Even though attenuation and bandwidth are frequency-domain
(and hence analog) concepts, we shall see in Section VII that it is
these quantities, along with the signal-power-to-noise-power ratio,
which are needed in order to calculate the maximum information
transmission and storage capacity for digital as well as analog signals
in CTD’s. Nonetheless, it is still helpful to discuss certain features of
digital signals in the time domain in order to better appreciate certain
operational limitations of CTD’s. For the next few sections we shall
ignore charge losses and consider only the much more important effects
of incomplete charge transfer on the signal.

Suppose a charge packet of initial size @i (representing a digital
“one’”) follows some sequence of charge packets either of initial size
Q. or of initial size Q, (representing a digital ‘“zero’). If @ is the coeffi-
cient of incomplete transfer, then after a single transfer the original
charge packet has been reduced by a factor of (1 — a), and, after n
similar transfers, by a factor of (1 — )™ In addition, the original
packet picks up some charge left behind by the preceding packets.
This residual charge we shall refer to as Qr, which is in general a func-
tion of the preceding signal. Thus the size of the charge packet repre-
senting the “one’” at the output is given by

Q= (1—a)Q + Q= (10)

A brief analysis of eq. (10) reveals that the primary operational
limitation imposed by incomplete transfer is the dependence of the
residual charge Qr on the preceding signal—the preceding sequence
of zeroes and ones. Neither the attenuation of the size of the charge
packet per se nor the accumulation of the incompletely transferred
charge per se play a primary role. For example, suppose that we are
using a very simple form of absolute-amplitude detection in which any
charge packet of size @ > @ = (@ + Qo)/2 is detected as a “one”
and any packet of size @ < @ is detected as a “zero.”” Then a one
preceded by a long string of zeroes will be detected as a zero if ne > 0.7.
Thus, under noiseless conditions we shall have a nonzero error rate in
cases where the signal attenuation is only one-half (see Appendix A).
On the other hand, the accumulation of incompletely transferred charge
can be reduced using zero-net-charge coding. As each bit of signal is
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coded into the same amount of total charge (distributed between two
packets), the total amount of incompletely transferred charge from
each bit is the same. Nonetheless, no significant improvement is ob-
tained. Indeed, the maximum na for zero errors under noiseless con-
ditions remains a strong function of the preceding sequence of charge
packets (see Appendix B). This result is true for analog as well as
digital signals, as is clear from the discussion in Appendix C. The
dependence of the residual charge on the previous signal suggests that
more attention should be given the detection of the signal rather than
its coding. This we discuss in the next section.

IV. THE OPTIMUM DETECTION OF SIMPLE DIGITAL SIGNALS

Let us suppose that some arbitrary sequence of charge packets of
size @, for a “one” and Q, for a “zero” have preceded the charge
packet which we now wish to detect. The residue or residual charge
added to the charge packet of interest can be designated @z as before,
where Qr is a function (given in Appendix A) of the preceding signal.
If the charge packet which we are detecting is in fact a one, then the
size (1) of the packet will he

Q(1) = (1 — a)"Q1 + Qx. (11)
If, however, the charge packet is zero, then the packet’s size Q(0) will
be given by

Q) = (1 —a)"Qu + Qx. (12)

One will clearly optimize the detection (even in the presence of noise)
if one choses for the detection level @, of the mean of Q(1) and Q(0):

Qa= (1 —a)"3(Q1 + Qo) + Q= (13)

If Q > Qu, we say that we have detected a Q, packet, and if Q@ < Qg
we say that we have detected a @, packet. Because Q, is a function of
Qr which in turn depends on the entire preceding signal, we shall refer
to this as a dynamic detection procedure. In contrast to Q. given in
(13), the static detection procedure mentioned in Section III has
Q= Q/(1 —a), and Q > Q, implies Q, and Q < Q. implies Q,.

It is shown in Appendix A that under noiseless conditions this scheme
of dynamic coding is errorfree regardless of the size of na or of the
nature of the preceding sequence of zeroes and ones. This again illus-
trates the role of the dependence of Qz on the preceding signal, which
we noted at the end of Section III. It is shown in Appendix A that

@

A -Q=0-ar2 %0, 00 a9
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as is clear from eqs. (11), (12), and (13) as well. The quantity (@1 — Qo)
may be referred to as the dynamic range of the device. Thus relative
to the dynamic detection level, Q4, the signal, @(1) or @(0), is attenu-
ated as (1 — a)" [Note that [Q(1) — Q.] and [Qs — Q(0)] are in-
dependent of the residual charge @.] In the presence of noise, errors
will clearly be introduced if (1 — &)"(@1 — Qo)/2 approaches the noise
level. This also shows that, having eliminated the signal-dependent
residual charge, attenuation now plays an important role in limiting
device operation. As n increases, this signal attenuation coupled with
the compounding of noise both reduce the signal-to-noise ratio and
lead to a reduction in the information transmission and storage
capacities of the device. However, now it will be for na & 4 rather
than for ne & 0.7 that attenuation becomes limiting.

To set the dynamic detection level Qa, @z must be realizable. In
the absence of noise, this is always possible in principle since Qr is
an explicit function of the known, preceding signal. In the presence
of noise, Qr determined by eq. (31) also yields, for most cases of
interest, nearly optimal detection in spite of the possibility that some
preceding packets may have been incorrectly detected.™

In Section V, we briefly review noise in CTD’s and then in Section
VI we shall see how this dynamic detection scheme minimizes the
error rate in the presence of noise. This further stresses the importance
of detection in optimizing the operation of “‘simply coded” CTD’s.

V. REVIEW OF NOISE

Noise in charge transfer devices is a fascinating subject which, un-
fortunately, can be only highlighted in this section.*~” Owing to the
dramatic time dependence of the current during a single charge
transfer, the noise generated during a single transfer is quite non-
stationary. Since nearly all theories of noise in solid-state devices
assume that the noise is stationary,'® it is necessary to redo much of
the theory taking into account the nonstationary aspect. A time-
domain analysis has been found to be most convenient, whereas
standard treatments are carried out in the frequency domain.

In Fig. 3 the most common sources of noise in CTD’s are categorized.
At the input, one has full shot noise only if the electrons enter the
source independently (e.g., if generated by the random arrival of
phonons in an imaging device or if injected by an emission-limited
diode). At the output the nonrandom coupling to the clock line is the
worst source of distortion in some cases. A distinction™ is made between
noise generated from transfer processes, typically thermal and trap-
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INPUT TRANSFER STORAGE OUTPUT
SHO THERMAL LEAKAGE CLOCK
HOT TRAPPING TRAPPING COUPLING

COMPOUNDING

MODULATION

CLOCK VOLTAGE FLUCTUATIONS
CAPACITANCE VARIATIONS

Fig. 3—Sources of noise for a CTD.

ping noise, and that from storage processes, typically leakage and again
trapping noise. We shall return to this distinetion shortly. Since a
charge packet acquires some noise with each transfer-storage period,
the noise component increases as the packet is transferred from input
to output. This we refer to as compounding. Finally, the occurrence of
clock voltage fluctuations in the presence of fabrication variations in
the individual capacitances leads to a form of modulation noise. This
type of noise is also compounded. For simplicity we have left out of
Fig. 3 a number of less important noise sourees.

Let us now return to the important distinction between storage
process and transfer process noise.™ It should be recalled that a CTD
shift-register performs two functions simultaneously, the transfer of
charge and the storage of charge. In Fig. 4 we indicate the basic dis-
tinction between the noise generated from these two processes. In the
case of storage process (SP) noise, the charge fluctuation generated
during each transfer cycle in each cell is essentially independent of
that in any other cell. For transfer process (TP) noise this is not the
case. Conservation of charge implies that if an excess of AQ is trans-
ferred from one storage region to the next, —AQ is left behind for the
subsequent charge packet. This introduces a correlation in the noise
in adjacent charge packets which leads to a suppression at low fre-
quencies of the spectral density of TP noise. SP noise, by contrast,
is uncorrelated and, therefore, the spectral density is flat (white).
This difference between TP and SP noise is important for analog
applications of CTD’s and is discussed in more detail elsewhere.!*

For digital applications we shall need the ratio S/N of the square
of the signal charge to the mean-square noise charge at the detector.
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Fig. 4—The distinction between storage process and transfer process noise.

From the discussion of Section IV [see eq. (13)] the square of the
effective signal charge at the detector is (1 — &)*"[(@: — Q0)/2]". The
mean-square noise charge AQ? can be written

AQ2 = AQ%nput(l - a)zn + AQ%PHSP(”‘) + 2AQ%‘PHTP(”‘)) (15)

where AQ?,,. is the input noise contribution, AQZ, the storage process
noise acquired by a single packet during a single clock period, AQ%p the
transfer process noise acquired by a single packet during a single
charge transfer, (1 — @)?* the attenuation from input to output,
Hgp(n) the compounding factor? for storage process noise, and
Hrp(n) the compounding factor'? for transfer process noise. These
compounding factors are approximately equal to n for na < 1; how-
ever, for na 2 1 they are suppressed'? by incomplete transfer effects.
For na > 1, Hgp(n) & (n/ma)t and Hre & (20)7%, both of which are
much less than n. Essentially the effect of incomplete transfer is to
attenuate the accumulated noise as well as the signal. Owing to the
correlation between the transfer-process noise components,” Hre
saturates. For shot noise, AQZp = ¢, where @ is the (mean) total
signal charge (Q: — Qo). For thermal noise, AQ%e = $kTC, where T
is the temperature of the charge carriers and C is the storage capaci-

tance. For our purposes here we shall ignore other noise contributions.
Thus we find

S/N = (1 — a)**[(@1 — Qo)/2]*/AQ", (16)
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where AQ? is given by eq. (15). Equation (16) is plotted in Figs. 5
and 6 for « = 107 and @ = 10~ for C = 1, 0.1, 0.01, and 0.001 pF,
for thermal noise only and for thermal and shot noise. We shall use
eq. (16) in Section VI on error rates and in Section VII on storage
capacity.

VI. MINIMUM DIGITAL ERROR RATES

No one would operate a CTD under conditions where errors in
detection could occur even under noiseless conditions. However, in the
presence of noise it is possible for a “one’” to acquire sufficient net
“‘negative’ noise charge to be detected as a ““zero’” even under optimum
conditions. It is the purpose of this section to calculate the probability
of making a detection error, and to see to what degree the error rate
(error probability times clock frequency) is minimized for the simple,
two-level digital coding scheme by using dynamic detection.

Suppose that an arbitrary charge packet following an arbitrary
sequence of charge packets would, under noiseless conditions, be of
size @, at the output of the shift register. In the presence of noise the
probability P(Q) that the observed size of the packet is Q within dQ
is given by

P(Q)dQ = exp[—(Q — Q.)*/24Q*]/ (2rAQ*)¥dQ. (17

If we are using only zeroes and ones, then the probability P of detect-
ing a certain ““one’’ as a zero is given by

Pi- [ :"P(Q)dQ, (18)

where Q4 is the detection level (see Fig. 7). In eq. (18), P; depends
upon ¢, = @(1) which in turn is a function of the sequence of signal
charge packets preceding the one [see egs. (11) and (12)]. To deter-
mine the average error probability, P; must now be averaged over all
possible sequences of signals, in general a very difficult task.

Let us write eq. (18) in a slightly different form by changing
variables.

Qi-QW) exp(—Q2/2AQ?)
Po [ gy

or

[Qda—Q(1))/(aQ2)}t
Py = f == 12z (2m)}

)

or

Py = 1i[Q: — Q(1)/(a@H, (19)
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Fig. 5—Signal-to-noise ratio for CTD (a = 107%) with storage capacitance C of
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P(Q)

N\

Fig 7.—A charge packet of size @, under noiseless conditions has a probability
distribution of P(Q) m the presence of noise. The probability that Q < Qg (that an
error is made in detection) is the area “under” P(Q) for @ < Qu.

where, of course,

fw = [ etz o)} (20)

We desire (Py) = (f1), where the brackets “( )"’ denote averaging
Q(1) (and possibly Q) over all possible sequences of ones and zeroes
[Q(1) = Q1 — a)"Q: + Qr from eq. (11)]. If @, > Qq for all possible
Qr (as it must if errors are to be avoided under noiseless conditions),
then we show in Appendix D that (P) = f{([Q« — Q(1)]/(A@)H)}.
In other words, the function f evaluated at the average of its argument
is a lower bound to the average of the function, the average error
probability. This permits putting a lower bound on the error rate.
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If [Q: — Q(1)] is independent of Qg, as is the case for the dynamic
detection scheme discussed in Section IV, then

(P1) = fil[Qa — Q(1)1/(AQY)}} (21)
and the average error probability is at the lower bound. For the
dynamic detection scheme of Section IV, [Qs — Q(1)] = — (1 — &)

X (@1 — Qo)/2, which implies that

(S/N)}
Py = [ e/ @m), (22)
where (S/N) is given in eq. (18). If static detection had been used
[Qi = @/(1 — @)], then the average error probability would always
exceed the (P;) given in (22).

It remains to prove that the optimum (dynamic) detection scheme
given in Section IV gives the lowest possible error probability for
simple digital coding. The proof is as follows. We found above that
for detecting a one the average error probability was at least

(Pow = [1{[{Qa) — (Q(1))]/ (2@} (23)

(The “Ib” stands for lower bound.) Noting the definition of f; [eq.
(20)], we note that we can make (P;)y, smaller by reducing (Qu),
(@(1)) being already determined. However, we must also consider the
error probability in detecting a ‘‘zero.” Proceeding as for a “one,”
we obtain for Py the error probability for detecting a certain “zero,”

Py = fol[Qa — Q(0)]/(AQ)}}, (24)
where now
fo) = [ erdz/ @mp. (25)
Also
(Po)w = fol[(Qa) — (Q(0))]/(AQ%)*}. (26)

From the definition of f,, we note that we can made (P)1, smaller by
increasing (Q4), (Q(0)) being already determined. Assuming that an
equal number of “zerces” and “‘ones’ are used in the simple digital
coding, then (by symmetry) choosing (Q4) so that (Pi)w = (Po)mw,
we shall achieve the minimum lower bounds. (P,) = (Po)n for
(Qa) = [(Q(1)) + (@(0))]/2. But for our dynamic detection scheme

Q) = QUL — &) = [(Q(1)) + (Q(0))1/2 (27)

and for our dynamic detection scheme (P;) = {P1)1, and (Po) = (Po)w.
Therefore, since (Qq4) for the dynamic detection scheme produces the
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lowest possible lower bounds for error probabilities, and since the error
probabilities are in fact equal to these lower bounds, no other detec-
tion scheme can detect with lower error probability. (It is possible
that another scheme can do just as well, however, since it is only (Qa)
and not Q itself which is the determining factor.)

1t is clear that this theorem places an operational limitation (a
minimum error rate in detection) and CTD’s using simple digital two-
level coding. The theorem can be extended" to the dynamic detection
of multilevel digital codes.

VII. MAXIMUM STORAGE CAPACITY

One use of the CTD is as a memory or storage element. In other
applications the CTD can be used to shift or to transfer information
from one location to another. To properly access the operations of
CTD’s in these applications one must calculate the maximum infor-
mation transmission capacity and the maximum information storage
capacity of the CTD. As a result of the work of Shannon, our labors
are greatly diminished.

Shannon? proved a most profound theorem. Let B be the bandwidth
of a transmission channel, and let S/N be the signal-power-to-noise-
power ratio. Then the maximum transmission capacity of the channel
Cr in bits per second is given by

Cr = Blogz(l + S/N) (28)

This result can be understood for the CTD in the S/N >> 1 range
as follows. The number of levels into which a digital signal can be
divided and still be detected with reasonably small error is (S/N).
Log:(S/N)} is the maximum amount of information in bits detected
with each charge packet. f, is the rate at which charge packets are de-
tected. Thus f, loga(S/N)t = 1, log:(S/N) =~ B logs(1 + S/N) is the
number of bits of information transmitted per second. (In Section 2.3
we noted that for na < 1, B~ f,/2.) Shannon was, of course, much
more interested in the S/N << 1 range. For this case his theorem implies
that no matter how noisy the transmission channel may be, it is
always possible to pass information along it. We shall not make use of
Shannon’s result in this latter range.

A more interesting quantity from the standpoint of the CTD is the
maximum information storage capacity. This can be calculated from
Shannon’s Theorem? as follows. If Cr is the number of bits per second
transmitted, then if one waits a time 7', equal to the time it takes the
information to be transferred from the input to the output of the
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linear medium, the maximum storage capacity in bits €, must be
given by
C, = T.Cr = T,Blog:(1 + S/N). (29)

For a transmission line, T, is given by the length of the line divided
by the propagation velocity. For a CTD, T, = N./f, where N, = n/p
and p is the number of charge transfers per clock period T, = 1/f,.
Thus for a CTD we find for the maximum information storage capacity
C, in bits:

Ce = No(B/f,) log:(1 + S/N). (30)

[Strictly speaking, the maximum information storage capacity will
actually be less than or equal to the C, given in eq. (30). This is be-
cause as S/N decreases, the length of the code word increases.? How-
ever, for a CTD with N, storage units, the maximum length of a code
word is restricted to N,. Thus for small S/N, the prediction of eq. (30)

104
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STORAGE CAPACITY IN BITS
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o= ]0-'3
Q,/C=10v
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Ll ! |
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Fig. 8—Storage capacity C, versus n, the number of charge transfers, fore = 107,
Q/C = 10 volts, C = 1, 0.1, 0.01, 0.001 pF. Shown for comparison is C, for 2- and
4-level digital codes.
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may be in fact unrealizable. As our primary concern is for S/N > 1,
the upper limit of C, should be sufficiently accurate. ]

Knowing N,, (B/f.), and (S/N) as functions of n, the number of
charge transfers, we can calculate C, versus n to determine the maxi-
mum C, possible under various circumstances and for what n C, is
maximum. This has been done in Fig. 8 for « = 10~® and in Fig. 9
for @ = 104, In both figures Q/C = 10 volts, @ = @, = 2Q,, and
storage capacitance C = 1, 0.1, 0.01, 0.001 pF. Also shown is C.,
for two-level and four-level codes. Here 7 is limited by an n(maximum)
for each code at the number of transfers beyond which signal degrada-
tion due to incomplete transfer would lead to errors in absolute-
amplitude detection in the absence of noise. We note (i) that the
maximum C, occurs for n about a factor of three larger than for
n(maximum) from the examples of simple coding and detection, and
(43) that the maximum value of C, is about a factor of four to five
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Tig. 9—Storage capacity C, versus n, the number of charge transfers, fora = 107
Q/C = 10 volts, ¢ = 1, 0.1, 0.01, 0.001 pF. Shown for comparison is C, for 2- and
4-Jevel digital codes.
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larger than C, at n(maximum) for these common digital codes. [It
should also be noted that C, at n(maximum) for two-level digital
coding exceeds C, at n(maximum) for multilevel coding. This is dis-
cussed in more detail elsewhere.!*] It is encouraging to note that there
exists such a margin between what is theoretically possible and what
can be simply accomplished. From Section VI, however, it appears that
it will be rather difficult to achieve optimum performance if this be
desired (or essential).

VIII. CONCLUSIONS AND RECOMMENDATIONS

It is not surprising to find that incomplete charge transfer and
random noise (especially shot and thermal) limit the bandwidth,
storage capacity, and error rate of CTD’s. What is surprising, how-
ever, is that the residual charge level Qg resulting from the portions
of charge (preceding the packet of interest) incompletely transferred
is so strongly signal dependent that signal detection with static detec-
tion levels becomes seriously impaired prior to the onset of significant
signal attenuation or noise degradation. Coding to offset the signal
dependence of @z is found to be ineffective for the simple examples
considered. On the other hand, by employing our dynamic detection
scheme, which adjusts the detection levels to null out the signal
dependence of the incompletely transferred charge, the operational
range is significantly extended, limited only by the physically un-
avoidable effects of attenuation and noise. It is also shown that no
detection scheme can be devised with a lower error rate than this
dynamic detection scheme.

It might be concluded on the basis of the above result that more
attention should be focused on detection rather than coding as a
means of offsetting the worst effects of incomplete charge transfer.
Noting the results shown in Figs. 8 and 9, however, it is apparent that
substantial increases in storage capacity are possible with more
sophisticated coding-decoding schemes.
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APPENDIX A

In this appendix the degradation of digital signals is discussed in
general in some detail. In Appendix B these results are applied to
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certain specific cases using several simple coding procedures. In
particular, the signal-dependent residual charge Q is discussed. These
mathematical details should be of some assistance in understanding
several equations presented in Sections III, IV, and VI of the text.
The analysis will be in the time domain. In Appendix C a frequency
domain analysis is given.

We shall denote by @u the size of the Nth charge packet at the
input which precedes the packet of interest by N clock cycles. As in
the text we shall denote by Qr the size of the accumulated residual
charge originating from the incompletely transferred portions of the
preceding packets, @x. Mathematically @r is given by

Qo= —a 2 ("3 )avan, (31)

NZ1

where n is the total number of transfers from input to output and «
is the coefficient of incomplete transfer for each transfer. [Equation
(31), as well as eq. (3), are somewhat approximate. To obtain a “‘pure”
binomial factor in (31), or equivalently to be able to write a single-
transfer equation like eq. (3), one must assume that the actual transfer
of charge can be approximated by simplified single transfers either on
a per-cell basis as in (31) or on a storage-region basis as in eq. (3).
The error involved in this approximation will be of the order of « or
na?, whichever is larger. ]

The physical significance of (31) is the following. The portion of
Qx which will show up in @ are electrons incompletely transferred
N times, each time introducing a factor . The binomial factor gives
the number of distinct alternative sequences of ‘“‘transfer’” or ‘‘no
transfer’” which can lead to a portion of @y contributing to @z.

Suppose now, as in the first example in Section III, we have a
packet of size @, preceded by an infinite string of packets of size Q,.
Then for @& one has

Qr(000---) = (1 —a)* ¥, (“ "I;,N)cwv@u
N=1
=— (1 —a)l—01—a)y"m]Q. (32)
Similarly,

Qr(l1l--+) =— (L —a)"[1 — (1 — &)~ ™ JQu. (33)

For a @, following the string of @y’s, the size of the charge packet
Q[eq. (10)] at the output will equal @ = (Q, + @o)/2if n is such that

(1 —a)"@— (1 —a)"[1 = (1 —a)~™]Q = (@1 + Qu)/2
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or if (1 — a)” = % [to within a factor of (1 —a)~21]. Should
(I —a)">1,0< Q and the one would be detected as a zero.

In Appendix B we shall discuss more complicated coding schemes to
see whether @5 (31) can be reduced or at least made less sensitive to
the signal preceding the charge packet of interest. For the present let
us continue to derive some of the other results stated in the text.

To cast eq. (13) into a simpler form we proceed as follows:

)“Qn + Qo

Qs = (1 + Qr
:u—@@+u—m ("3 )er@n-e+@
R e R
= QU — ) + @ (13')
where
Q= (1 —a) i("+N)N@N—®. (34)

The static detection level, @, = @/(1 — ), actually differs by a
factor of (1 — @)~ from the @ used in Section IIT and in the discussion
following eq. (33). The difference, while insignificant, arises from
whether one takes Q. to be the average of @, and Q,, the sizes of the
charge packets at the input, or whether one takes Q, to be the size
at the output of an average charge packet [of size @ = (@, + Qu)/2]
following a string of similar packets. Thus for such a case

¢.=¢=00-wr+a-ax ("}"V)e

N=1 N
=Q(l —a)*— (1 —a)"[1 — (1 — a)~ 070
or _
= Q/(1 — a). (35)

To show that by using the dynamic level @ given by eq. (13) one
can have zero detection errors in the absence of noise we proceed as
follows. Using eq. (11) one has at once that

Q) —Qa=(1—a)"(Q:— Q) (36)

independent of Q. As @1 > Qo, @ > @ and, therefore, (1) — Q4 > 0.
Similarly using eq. (12) one finds @; — Q(0) > 0. Thus, in the absence
of noise, @(1) and Q(0) are always separated by Qq, and hence no error
need be made in distinguishing them.
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APPENDIX B

In this appendix we use the results of Appendix A to investigate
what improvement if any is possible in CTD operation by using several
simple coding procedures. We shall assume noiseless absolute-ampli-
tude detection using a static detection level at the average output
charge level. Equation (31) for Q& can be used to calculate the result
of other coding procedures.

In Table I, I have enumerated four simple means of representing
or coding a digital zero (0) and a digital one (1) using charge packets.
The first is just to represent a 0 by a Qo packet and a 1 by a @, packet.
As calculated in Appendix A [see following (33)], a @ following a
long string of Q,'s [example ‘“(a)”] will be detected as a Qo if na > 0.7.
This is the “ne Limit” entry in the table. Finally, the size of the @,
packet is attenuated as exp(—na) as stated. For this coding a second
example, “(b),” is given—a - -+ @:1Q@:1Qo - - -+ sequence. In this case
Qg is always sufficiently large for a @, and sufficiently small for a Qo
that under noiseless conditions Q(1) > @ and @ > Q(0) for any na.
However, as noted in Section 2.2, such a signal is attenuated as
exp (—na) attenuation.

One might hope that by preventing @z from becoming much differ-

TasLE [—Four SiMpLE MEANS oF REPRESENTING DIGITAL
7ZEROES AND ONES UsiNG CHARGE PACKETS

Example Representation ne Limit* Attenuation

0 1
Qo @

(a) 1000 - - - 0.7 g na

(b) 1010 - -- © gina
QQo Q1

(a) 1000 - - - (1)0.7; (2) 1.67 ¢—na

(b) 1010 - - - (1) 0.79; (2) 2.4 ena
Q0 Q@

(a) 1000 - - - (1) =; (2)0.8 eine, gna

(b) 1010 - - - (1) 2.36; (2) 0.785 e na
3g 4@

(a) 1000 --- (1)0.4; (2)0.5 e~na

(b) 1010 - -- (1) 1.6; (2) 3.1 g

* The notation (1) refers to the first of the two packets forming a bit, and (2) refers

to the second.
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ent than @, one could increase the na limit. In Table I three possi-
bilities are given. The first consists merely of coding 0 into two ad-
jacent @, packets and 1 into two adjacent Q,’s. If one detects the
second of the two Q; packets in sequence (a), the na limit is increased
to 1.67. For sequence (b) detecting the second Q, now has an na limit
of 2.4 while the signal is attenuated as exp(—na). How much of an
improvement this offers, however, is questionable. To store the same
amount of information #» must be doubled reducing the 1.67 to an
effective 0.835. To maintain the same information rate, f,, the clock
frequency must be doubled. This will increase «: if « is doubled, then
the 1.67 limit, already reduced to 0.835, will be reduced further to
about 0.42. Compared with the 0.7 limit of the simplest code, this is
rather unfavorable. One compensation is that having two packets to
detect rather than just one can be used to reduce the error rate in-
duced by noise. However, one can do better, as the following example
illustrates.

The third example in Table I is the zero-net-charge code. Here a 0
is coded as a @, packet followed (in time) by a Q, packet. (In the
register shifting from charge left to right this is represented as Q:Q,.)
A 1 is coded as QoQ:. The advantage of this procedure is that each
pair, whether coding a 0 or a 1, contains the same amount of charge,
2Q. This prevents a buildup of charge in Q. The most demanding
test is sequence (b) in which the na limit is 2.36. This is a significant
improvement over the 1.67 limit in the previous example. However,
if one takes into account that to contain the same amount of infor-
mation n must be doubled (as now each bit requires two charge packets)
and that the clock frequency must be doubled to maintain the same
data rate (which will increase «), one realizes that really very little
has been achieved by increasing the upper limit on na from na < 0.7
to ne < 2.4 (2.4/4 = 0.6). Other straightforward modifications of the
basic 0, 1 code, of course, suffer from the same fault. Thus to achieve
any improvement it is necessary that one still must be able to take
advantage of the possibility of detecting both charge packets to do
better than the simplest code. The reason for the failure of the zero-
net-charge code in terms of frequency-domain concepts is given in
Appendix C.

One final example is to follow the @, or the Q; with an intermediate
packet of size Q. As seen in Table I, sequence (a) puts an na-limit of
0.5, which is inferior to the other codes. This attempt to reduce
|z — Q| by following @, or @, with a Q packet to “average’” out the
incompletely transferred charge is thus seen to be ineffective.
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APPENDIX C

It is quite informative to briefly discuss in the frequency domain
the effects of various digital coding schemes on the character of the
signal.”?

In Section 2.1 we noted that incomplete charge transfer leads to a
frequency-dependent attenuation A (w) given by

A(w) = exp[—na(l — cos wr,) ] (37)

for 8 = 0 in eq. (7). A(w) is plotted in Fig. 1 for various values of na.
As discussed in Section 2.2, low-frequency components (f << f./2)
suffer very little attenuation, whereas components with frequency near
half the clock frequency (f =2 f,/2) are attenuated by exp(—2na), a
large attenuation for na 2 3.

One can offset this high-frequency attenuation by the following
scheme. If one takes every other charge packet and replaces it by a @
if it originally was a Qo, and by a @ if it originally was a @, then
relative to Q one essentially multiplies each packet in turn by +1, —1,
+1, —1, +1, —1, - - -. This has the effect of converting the spectrum
of the signal from F(f) to F(f.,/2 — f): the f =0 component is
attenuated as A (f,/2) and the f = f,/2 component as A (0). To better
preserve the entire signal, one can sum the outputs of a register with
attenuation A4 (f) and a register with attenuation A (f,/2 — f). The
ratio of maximum attenuation to minimum attenuation is thus im-
proved from exp(—2na) to 2 exp(—na)/[1 + exp (—2na)]. However,
distortion near f = f./4 is still significant for na > 2.

To see the effect of the zero-net-charge coding scheme on the signal,
consider this example. If the clock frequency is f,, the maximum fre-
quency the CTD can carry is f,/2. However, if two charge packets
are devoted to each 0 or 1 as in the second through fourth examples
in Table I, then the bandwidth is reduced to fo/4. If the second ex-
ample is chosen, then the band extends from f = 0to f = fo/4; if the
third example (zero-net-charge coding) is chosen, then the band ex-
tends from f = f,/4 to f./2, the lower-frequency components of the
signal being carried at the higher frequencies and vice versa. If
amplified by exp(+na), the ultimate effect of incomplete transfer on a
signal coded using zero-net-charge coding is seen to be essentially the
same as that on a signal coded using the second example. What is most
striking, however, is that by reducing the clock frequency by a factor
of two and using simple coding, one reduces na by a factor of four,
greatly reducing the attenuation.
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By examining the effect of other coding schemes on the spectrum
of the signal, and by taking into account the frequency-dependent
attenuation accompanying charge transfer in CTD’s it is possible to
ascertain whether an improvement in (noiseless) detection will be in
fact real or only apparent.

APPENDIX D

In noise, detection, and communication theory one often encounters
an integral of the form

1(A) = f_ T g (2 (38)

where A > 0. This expression, while extensively tabulated numeri-
cally, is difficult to work with analytically. In this appendix we shall
(¢) bound I(4) between two simple analytic functions of A which
differ by only a factor of 2, and (i) prove that (I(4)) = 1({4)) for
420

(z) Bounds on 7(4):

In Fig. 10 we illustrate the motivation for our approximations.
I(A) is the area under the Gaussian for 2 = — © to z = — A. If
we draw a line tangent to the Gaussian at 2 = — A and extend the
line from z = — A to the z-axis as shown, the area of the triangle
formed by this tangent, the a-axis, and the vertical line z = — A4 is
clearly less than I (A). Similarly, if an exponential curve [B exp(+Cz)]
also tangent to the Gaussian at + = — 4 and decaying to the left is
drawn, then the area between this curve and the z-axis forz < — 4
is clearly greater than I(A4). Thus, if we calculate these two areas, we
will have an upper and lower bound on I(A). (These curves will
clearly not cross the Gaussian if 4 = 1, the inflection point of the
Gaussian.)

To calculate the areas we proceed as follows. The slope of exp (—z2/2)

atz = — A is A exp(—A2%/2), and of course its value at z = — A is
exp(—A?/2). Thus the equation of the tangent is
y(x) = exp(—A42%/2) + A exp(—A4%/2)(z + A) (39)

(which is zero for x = — A — 1/4, f(—A — 1/A) = 0) and of the
exponential is

y(e) = exp[—A%/2 + A(z + A)]. (40)
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-

—-A o] x

Fig. 10—Approximating the area under a portion of Gaussian curve by bounding
the area between that of a right triangle (whose hypotenuse is tangent to the Gaussian
atz = Z A) and by the area under an exponential (also tangent to the Gaussian at
z = — A).

Thus computing the appropriate areas we find that if A = 1 then

D/2 < (2m)[(A) < D, (41)
where
D = exp(—A2%/2)/A. (42)

Such bounds are very useful in calculating error rates, where one is
seldom interested in accuracy better than a factor of two, and where
upper and lower bounds are often very useful.

(%) (I(A)) = I((A)), A = 0:

To evaluate (I(A)) is clearly very difficult even under the simplest
of probability distributions of A, whereas I ((4)) is generally very easy
to compute if (4) is known. I((4)) can then be used as a lower bound
for the more interesting (/(A4)). We shall now prove the above in-
equality. (This result is reasonably well known.?® The proof is given
here for completeness.)

I(A) is a function of A. According to the mean value theorem we
may write

I4) = 1(A) + 77| (4 - @) +5 75 4-@r, @
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where A’(A) lies between A and (A) and depends on A. Thus we may
write

@) = 1640 + 5 {7l @ —@r)y
Now then
T = A exp(—43/2)/ (2n)’ (45)

which is zero or larger for A = 0. Thus if we are averaging A over a
probability distribution P(4) for which P(4 < 0) =0, then
A’(A) = 0, and, consequently, the second term on the right-hand
side will be zero or greater. Hence it follows that

(I(4)) = I((4)). (46)

In Section VI this inequality is used to put a lower bound on the error
rate for detecting digital signals.
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