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Gain-Induced Modes in Planar Structures

By W. 0. SCHLOSSER
(Manuseript received January 31, 1973)

The properties of modes in a slab structure with gain in the cender region
and loss in the surrounding medium are investigated. The propagation
constant and field distribution of the lowest-order modes are determined.
The cutoff frequencies and propagation constants of the next-higher mode
are given. Furthermore, the effect of a refractive index depression or in-
crease in the center region is determined. The depression does not destroy
the mode, as may be expected, but causes it to have a cutoff frequency.
Comparison of these results to the experimental data showsthat gain-induced
modes play an important part in the lateral confinement in stripe-
geometry Gads lasers.

I. INTRODUCTION

Modes in cylindrical structures with refractive index boundaries are
well known. Their existence and basic properties are generally visual-
ized by superposition of plane waves reflected at the index boundaries.
Much less is known about modes in structures with spatially non-
uniform gain or attenuation.!? However, it seems intuitively possible
that some kind of mode should also exist in that case; indeed, Kogelnik?
showed that a cylindrical structure with a radial gain profile can sup-
port a Gaussian beam of constant diameter even if there are no refrac-
tive index differences present. Evidently, the nonuniform transparency
of the medium counteracts the natural tendency of the beam to spread.

In this paper we will consider a planar structure with stepwise dis-
continuities of gain or absorption. This geometry is of considerable
practical interest. As will be shown in this paper, the lateral confine-
ment of the optical field in a stripe-geometry GaAs laser is due to the
gain-loss interface at the edge of the stripe. Furthermore, it is easy to
create nonuniform gain distributions in planar structures either by
masking and optically pumping or by nonuniform injection current
distribution. The modes induced by these gain distributions can be
easily influenced from the outside by changing the pumping intensity
or injection current.
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II. GAIN-INDUCED MODES IN A THREE-LAYER STRUCTURE

The physical configuration with which we will coneern ourselves in
this paper is shown in Fig. 1. All material parameters are assumed to
be constant throughout the regions and differ only at the boundaries
z = 2a. As is well known from the theory of refractive guiding,* the
modes can be divided into four classes: TE even and odd in z direction
and TM even and odd in z. The two lowest-order even modes have no
cutoff frequency, whereas the odd modes can be guided only above a
certain cutoff frequency. For our application, the lowest-order even
modes are of greatest interest and we will deal with them first.

Before going into details, let us explain the notation which we will
use subsequently.

() The complex relative dielectric constant e is split into refractive
index n and extinction coefficient & according to

e = (n+ jk)2 (1)

(77) u determines the z dependence of the fields inside the center
layer |z| = @, i.e., they have the functional form

sin ( x)
u_ .
cos\ a
(742) w gives the dependence of the fields in the cladding [z| = a
which follow the function e~!=/2l. % and w are related by
u? + w? = (e — e)(koa)® (2

With these quantities we can derive the characteristic equations (the

+a

43

Fig. 1—Cross section of slab waveguide.
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field components are listed in Appendix A) for the even modes.
TE Mode TM Mode

w= utanu :—:'w=uta,nu (3)
They are formally the same as in the case of purely reactive modes but,
since ¢; and e; are complex, the solutions will be complex.

We determine under which conditions eqs. (3) have a solution. We
restrict ourselves to cases where the fields cannot increase exponentially
with increasing distance from the interface nor can there be any move-
ment of wavefronts from infinity toward the guiding structure. This
limits w to the first quadrant. It is then easy to derive a necessary but
not sufficient condition from egs. (2) and (3): e; — ez has to stay in the
first or second quadrant, i.e., Im (e; — e2) > 0, which is equivalent to

nlkl —_ ngkz > 0. (4)
Let us interpret this inequality for some special cases:

(¢) k1 = ks. Condition (4) reduces to m; > n, which is the well-
known requirement for refractive guiding.

(7%) my = ne. The condition (4) now reads k; > k., equivalent to
saying that the center region should be more transparent than
the sides, which agrees with physical intuition.

(422) n1 = ma + An, where An is small compared to n, but not neces-
sarily small compared to k. In this case (4) can be expressed by

—+—=—>0, (4a)

where Ak = k; — k.. This inequality shows that there can be modes
even if An or Ak is negative, as long as the other mechanism is strong
enough to generate the mode. However, since (4) is only a necessary
condition, this case requires further examination.

The second problem we have to address ourselves to is that of the
cutoff frequency. For refractive guidance the lowest-order even modes
have no cutoff frequency. We will now establish the conditions under
which gain-induced modes have no cutoff frequency either. For small
values of (e1 — e2)(koa)?, w and u will be small and the tangent in
eq. (3) can be replaced by its argument. The solution of egs. (2)
and (3) is thus w = (&1 — €)(ako)? for TE modes and w = (es/e1)
X (e1 — e2)(ako)? for TM modes with ak, very small. This result
shows that the solution of (3) exists no matter how small (ak,) is,
independent of the guide parameters, as long as e1 — e is in the
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first quadrant. In other words, a gain-induced mode will have no cutoff
frequency as long as there is a refractive index difference to keep 1 — e
in the first quadrant. If there exists a refractive index depression, i.e.,
Re (e1 — €2) < 0, the modes do have a cutoff frequency.

We will now consider the case of gain-induced modes without a refrac-
tive index change. We specialize the discussion to small extinetion co-
efficients in the order of 10~#, whereas n is typically greater than one.
This covers typical laser applications reasonably well. The character-
istic equations for TE and TM modes [eqs. (3) ] differ only by a factor
of ei/ex = 1 + 7(2/n)(k; — ko) which is sufficiently close to one to
cause only a negligible perturbation. In the following, we will therefore
neglect the difference between TE and TM modes.

To simplify the discussion we define two new quantities: A normal-
ized frequency is given by

v = GkuVEl — €39. (5)
For gain-induced modes, v reduces to the form
v = akn j2w, (6)

which means that in this particular case the phase angle of v is inde-
pendent of the material parameters. It is furthermore customary® to
use a normalized propagation constant b

p= Bk — e (&)2=52+(51—q)b. 1)

€1 — €2 ko

Since in our application &1 — e is a small quantity, (8./ko)? is always
equal to e plus a small perturbation, whereas the variation of [b] is in
the order of one, thus alleviating some computational problems. The
two parameters » and w are related to v and b by u = v¥1 — b and
w = vvb.

With these new quantities, the two characteristic egs. (3) are trans-

formed into
Vb = V1 — b tan (241 — b). (8)

It should be noted that the normalized propagation constant b is
exclusively a function of ». It is, therefore, only necessary to solve the
characteristic eq. (8) once to cover all material parameters and di-
mensions, assuming, of course, the validity of the initial assumptions.

The solution of the characteristic equation was done on the com-
puter. Figure 2 shows the normalized propagation constant b for the
lowest-order mode as a function of |v|. We can interpret b more easily
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CUTOFF
0oDD MODE

Fig. 2—b(|v|) for lowest-order even mode (n, = n).

if we rewrite the propagation constant 3. [eq. (7)] to show its real and
imaginary parts.

%‘} = n — b:’(kl — kz) + j(kﬂ(l - b") + klb’)' (9)

The attenuation or gain of the mode as represented by the imaginary
part of 3./ks is solely dependent on b, which varies between 0 and 1.
For small values of b,, the attenuation will be determined by the outer
medium and only for higher values of b, will the gain in the center
region be of significance. This situation corresponds very closely to the
case of refractive guidance. For further reference we have included in
Fig. 3 the field distribution with [»| as parameter.

For any practical application, it is important to know up to which
frequency or dimension the guide is single moded. We will therefore
determine the cutoff frequency of the lowest-order odd mode and of the
first-order even mode. We define the cutoff value of b as the one at
which the radiation condition just ceases to be fulfilled. It turns out
that this is the case when w is purely imaginary, i.e., only power is
radiated away from the guiding structure, but the amplitude does not
decrease with increasing |x|. Re (w) = 0 is equivalent with the condi-
tion Re (b) = 0 [eq. (7)]. The solution of this problem has to be found
on the computer. The results are

|vudd{ = 1-877 ivevenl = 2759.

For future reference we have included b(|v|) for the first-order even and
the lowest-order odd mode (Figs. 4 and 5).



892 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1973

1.0
03
08l 0.5
08|
0.7
07
06
>
[
@
Fr 1.0
£ 05— :
a
-
w
i
0.4
0.3
15
0.2 ’-
0.1 Ivi=2.0
] | ] I ] 1 | ]
o 0.2 0.4 06 08 1.0 1.2 1.4 16 1.8

x/a

Fig. 3—Field intensity for lowest-order even mode.

III. THE INFLUENCE OF ADDITIONAL REFRACTIVE INDEX DIFFERENCES

In general, if there is a gain or loss difference between two regions,
the refractive index will be different as well. Gain and refractive index
are related by the Kramers-Kronig relations and thus the presence of
gain can change the refractive index. Furthermore, in the case of the
injection laser, the injected carriers change the refractive index due to
the plasma resonance. In this particular case, the gain region can be ex-
pected to have a lower refractive index than the side regions. It is thus
necessary to explore the effects of refractive index increases and depres-
sions in the center region in conjunction with gain-loss differences.
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veuToFF = 2.758

Fig. 4—b(|v|) for first-order even mode.
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Fig. 5—b(|v|) for lowest-order odd mode.
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If there is an increase in refractive index in the center, we can expect
the confinement of the energy to increase with increasing index differ-
ence. However, in the case of a refractive index depression in the center,
the two confining mechanisms will counteract each other.

Let us consider the effect of increased refractive index in detail. In
contrast to the case of gain-induced modes where the phase of » was
x/4 [eq. (6)] independent of material parameters, it is now dependent
on the complex difference ¢; — e;. This precludes a representation of
the guiding parameters independently of the waveguide parameters as
it was possible in the previous case. We are thus forced to determine
a solution of the characteristic equation for each set of parameters. It
is therefore of importance to develop approximations for the propaga-
tion constant. We treat first the case, Ak/An << 1. We regard the wave-
guide as a perturbed refractive guide. The b(») characteristic is plotted
in Fig. 6. Obviously, both » and b are real. A small perturbation Ak has
two effects: (7) the characteristic eq. (8) becomes complex and yields
an imaginary part b;, whereas the real part is to a first order unper-
turbed; and (¢7) the propagation constant (9) is now approximated by

% ~ n + Anb, — b; Ak + j(ks + by Ak + b An), (10)

]

i.e., there appears a second imaginary component b; An, which acts
like a gain since An and b; are both positive. This effect is due to the
improvement in guiding by the gain-loss mechanism. The calculations
are straightforward and are listed in Appendix B. We note here only
the result:

o 9_@ (1 — bo)UoV’b_o

P = 11
An 1 + peVbo (11)

where the quantities indexed with a zero denote the unperturbed state.
In particular, » = akgnV2An/n. We notice that b; contains a factor
1 — bg, which decreases with by approaching unity. Inserting (11) into
eq. (10) yields an expression for the loss (or gain) of the mode:

(1 — bo)usbo )] _

1 + veVbo (12)

azku[kz'l-ﬂk(bo'F

We note that the function

_ (1 - bo)vu\jb_o
f(vo) = bo + T
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Fig. 6—b(v) for lowest-order even mode in a refractive slab guide and loss-weighing
function f(vy) for lowest-order even mode.

associated with Ak is only dependent on », and we have thus again
achieved a representation valid for all waveguide parameters. Figure
6 shows that f(vo) approaches unity much faster than by(v.); the loss
is approaching the loss or gain in the center region indicating improved
confinement due to the gain-loss difference.

We will now consider the refractive index depression in the center
region. From our discussion of cutoff frequencies, we know that modes
in this case do have a cutoff frequency if they exist at all. It can be

determined from the condition that w = Vb is purely imaginary.

In Fig. 7 real and imaginary parts of b are plotted as functions of
s/\ with the parameters listed in the figure caption. Since b, is larger
than one, eq. (10) shows that the effective refractive index is smaller
than that of either medium (An is negative). The phase velocity is
therefore larger than that of a plane wave in either medium, as in
metallic waveguides. Altogether, this is quite a different behavior from
the ordinary dielectric waveguide. One would expect the index depres-
sion to counteract the confinement and, if the depression is strong
enough, to destroy it completely. As discussed before, this is only the
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Fig. 7—b(s/\) for lowest-order mode for a refractive index depression An = 107
n = 3.66, k1 = 2.107% k» = 1074

case below the cutoff frequency. To ensure that the solution of the
characteristic equation is real and not a freak of the computer program,
we have derived an approximate solution for Ak/An < 1 in Appendix
C. The normalized propagation constant is given by

w2 .2 Ak
where
y = Som <2100
A n

IV. GAIN-INDUCED MODES IN STRIPE-GEOMETRY GaAs LASERS

The function of the stripe geometry has been viewed as selecting
a filament and preventing others from forming.® We will now show that,
in contrast to a laser with a wide area contact, the stripe geometry
does provide a confining mechanism for the optical power and is not
merely “selecting” the filament.

In stripe-geometry lasers, the flow of carriers is confined in a stripe
region parallel to the junction (laterally). This is done by proton bom-
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barding the adjacent regions.” The proton bombardment and subse-
quent annealing alter the free-carrier density but not the optical prop-
erties of the material.® There are no deliberately built-in refractive
index changes between the active and the passive regions. The experi-
ments show that with stripe widths of ~12 um the lasers operate gen-
erally in a single lateral mode; the origin of this confinement has not
yvet been explained. Figure 8a gives a linear scan of a typical nearfield
distribution. However, at high current levels or wider stripe widths,
numerous deviations from such a single-mode field distribution occur.
Figure 8b gives an example of the nearfield in such a case. The field still
fills essentially the whole stripe width but is highly nonuniform. Fre-
quently the intensity maximum changes its position with changing
current. It is clear that the simple case we have been analyzing so far
cannot explain these effects. However, not enough knowledge is avail-
able at this time about the numerous parameters involved. We there-
fore try only to isolate the common properties of the majority of stripe-
geometry lasers and explain them in terms of gain-induced modes. We
had three major facts to consider:

(7) For stripe widths in the order of 12 um and less, there is gen-
erally a single mode for current levels close to threshold.
(%) At stripe widths above ~18 um, the field distribution is very
often nonuniform even at threshold.
(#97) The threshold current increases steeply with decreasing stripe
width.

Since we know that there must be a gain-loss difference between the
stripe and the surrounding regions, we will apply the previous results
on gain-induced modes and investigate if the experimental results can
be explained by this effect or if additional mechanisms have to be in-
voked. In doing so we must keep in mind that we can expect the
agreement between experiment and this theory to be only qualitative
since a number of effects are neglected. We mention the few most
obvious:

(7) The loss in the layers above and below the active region
contributes to the overall loss. This contribution is dependent
on stripe width.

(47) The gain depends on the field intensity and is therefore not
constant.

(#74) The mirror loss may depend on the stripe width.

The mirror reflectivity B of the lowest-order mode was determined to
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(a)

(b)

Fig. 8—Linear scan of nearfield distribution of stripe geometry lasers with stripe
Widt}tll Olfd ~12 pm. One division =3.7 um. Current in both cases is ~20 percent above
threshold.

be ~0.3 and hence the mirror loss, defined by ayr = 1/L1In 1/R, to be
=10/cm for L = 400 um sample length.® The attenuation of GaAs is
~10/cm. We ask now how much gain would one need to reach thresh-
old with an active region width of ~12 gm. In the following, we will
call gain g the excess gain over the intrinsic attenuation in the active
region. To reach threshold, the effective gain of the lowest-order mode
(gb, — a(1 — b,) from eq. (9)) must equal the mirror losses:

gby — a(l — by) = au, (14)
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Fig. 9—Threshold gain as function of stripe width. Mirror loss ax = 10/cm,
n = 3.56, « = 10/cm, and refractive index depressions An = 1073, 10—,

where « is the loss in the side regions. b,—as pointed out before-is ex-
clusively a function of |¢| (Fig. 2). gh/4r is plotted as a function of
stripe width in Fig. 9. We can see that the gain value corresponding to
~12 um stripe width is quite realistic and we conclude that the gain-
induced guiding must play at least some role in the stripe-geometry
confinement. As a further piece of experimental evidence, it has been
shown by Dyment!? that the threshold current in a stripe-geometry
laser increases strongly with decreasing stripe width. There is, unfor-
tunately, some uncertainty about the relationship between current
and gain. Generally, an exponential dependency is assumed (g ~ J¢,
where ¢ varies between 1.5 and 3). We have used ¢ = 2 to insert
Dyment’s measured results into Fig. 9. We have furthermore intro-
duced g(s/\) curves for refractive index depressions of 10~* and 10™*
which correspond to carrier densities of 10'8 and 10'®/cm, respectively.
The agreement is satisfactory considering the accuracy of the measure-
ments. It therefore seems reasonable to conclude that the gain-induced
modes provide the dominant confining mechanism in stripe-geometry
lasers. In view of this conclusion we will now derive a few properties of
the gain-induced modes which should be useful for predicting some
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properties of the stripe-geometry lasers. Wherever the ouput of the
laser is to be coupled into an optical system, it is desirable to reduce the
stripe width without increase in threshold current. Equation (14) was
therefore evaluated for various loss values in the side region. Figure 10
shows that—at least for zero refractive index difference-« has very little
influence on the necessary gain. Evidently the increased loss in the
higher « case is compensated for by improved guidance.
A refractive index depression generates a gain-width relationship of
the form [eq. (13)]
ko 1 1

0=eut 4 6/N 2an
n

It is quite evident that it is very difficult to compensate for the very
strong s/\ dependence by proper choice of An. It is, however, possible
to reduce the stripe width with a refractive index increase, in which
case the effective gain is given by [eq. (12)]

_ax+ ol — f(v))
where f(v) is plotted in Fig. 6. However, at present, the technological
difficulties of this approach have not been solved.

(15)

110100
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Fig. 10—Threshold gain as function of stripe widths for different attenuation « in
the side regions. ax = 12.5/cm.
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V. CONCLUSION

Modes caused by gain attenuation differences in a slab structure
have been investigated. They can exist without refractive index differ-
ences, in which case the lowest-order even modes do not have a cutoff
frequency. The cutoff frequencies for the next-higher modes are given.
The influence of additional refractive index increase or decrease in the
center region is studied. One particularly interesting result is that, in
the presence of gain, a refractive index depression does not remove the
mode, but it causes it to have a cutoff frequency.

An application of these results to the problem of lateral confinement
in stripe-geometry lasers shows that gain-induced modes are mainly
responsible for the optical confinement. Thus the stripe geometry does
not just select a filament, but provides a confining mechanism for the
optical power. (A similar conclusion was reached independently by F.
R. Nash.!') The sharp increase of the threshold current with reduced
stripe width is a direct consequence of this gain-induced confinement.
It therefore appears impossible to reduce the stripe width signifieantly
below ~10 um without a substantial sacrifice in the threshold current.
A deliberately built-in refractive index increase in the center region
should alleviate this situation.

APPENDIX A

Field Components in Slab Guide

TE T™
lz| < a
x . T
E, = Awyocosuae B2z H, = Aweyeq cos u — e iBez
T T
H:=—A,6,cosuae fzz E,=A,5’,cosu&e B2z
H,= —jA “sinu = g b E,= jA —sin u= ez
J 7
a a a a
[z] Z a

E, = Awp, cos ug—l#s=+ulizial=1]  H  — Auepe, cos ue 8 lsztullz/al=1)]
E

H, = —AB, cos ue~Ubsztwlzlal=D]  F_ = AR, £ cog ye—lbestu(lzial-1)]
€2
H. = FjA Lcosue libstutizial-l F, = 44 L&
a a es

Xcos ue—liBzztw(|zfa]—1)]
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The notations are explained in the list of notations at the end of the
paper. The separation parameters are related to each other by

(.Bza')2 + u? = El(kﬂa)z, (.Bza)z — w? = Ez(kuﬁ,)z,

and u? + wk = (61 - Ez)(kuﬂ)z.

APPENDIX B

Approximate Solulion of Characteristic Equation for Refractive Index
Increase in Outer Region

We assume that Ak/An << 1, i.e., the refractive index step is govern-
ing the guiding properties. The normalized frequency » can then be

expressed by
§ [ An . Ak
v =T 2—;(14-3%)' (17)

We treat the characteristic equation for TE modes first [egs. (3)]. The
regular solution for Ak = 0 will yield real values for » and w. For
small Ak/An, both will be complex with a small imaginary part. We
list the real and imaginary part of the characteristic equation separately,
neglecting second-order terms:

Uy SIN Uy = Wy COS Uy (18a)

wi (1 + w,) sin u, 4+ %, COS U, ] = W; COS Ur. (18b)

The real part (18a) is identical to the unperturbed equation and we as-
sume, therefore, %, and w, to take the values of » and w, respectively,
of the Ak = 0 case. Combining (18a) and (18b) yields the following
relation between u; and w;:

wi[u? + w.(1 + we)] — wiu, = 0. (19)

Now we have to relate w;, w; to b;, the quantity we really want to
determine.

w = vVb u =Vl — b (20)
With a small imaginary part of b we get
f U5 bi
w—vr\@:[l-i-j(v—r-f-zbr)] (21a)
. [N b,‘
u—UTUl—bT[I+3vr(?}:—m)]' (21b)

These equations show that, if the real parts of w and u are unperturbed
to the first order, the real part of & will be unperturbed also. If we intro-
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duce egs. (21) into the characteristic eq. (19), b; can be determined

_ Ak (1 - br)vr\{b_r

b= an 1+ v,

(22)

The characteristic equation for the TM mode has an additional factor
€1/ €. It is easy to show that the real part of b is altered by Ab from the
TE value by

Ab, _  And(l —b)
bu— n 1+w

(23)

The imaginary part is to a first approximation the same as for the TE
mode [eq. (22)].
APPENDIX C

Approvimate Solution of Characteristic Equation for Refractive Index
Depression in Center Region

Again we assume Ak/|An| < 1. An will be negative. The normalized
frequency v is now expressed by

.8 2| An| . Ak )_ . . Ak )
U—Jhn‘rr-\f - (1+‘]2[An| —Jv.(l 32—|An| (24)
Let us assume that u is very close to =/2,

=n/2 4 8+ jy, (25)

where & and ¢ are small quantities. Since

SIETO]

where we note that w/v is small compared to one. The characteristic
equation to a first-order approximation takes the form

we use

(5+8+a)+ i@+ =0 (27)

The solution is

(28)
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It is now easy to calculate b, which is related to u by

b=1-(4)" (29)

v
The result is

b=l+%{l+3‘%(l+uf)} (30)

keeping in mind that »,/v; < 1 and v} > 1.

NOTATIONS

a = ﬁr—k attenuation constant

a halfwidth of slab

b normalized propagation constant [defined in eq. (7)]

s = 2a width of slab

An = mny — ne

Ak =Fky — ke

€ dielectric constant of vacuum

€1, €2 relative dielectric constants (subscript 1 refers to
the center and 2 to the outer region)

g gain in center region

ko = wVpoeo free-space wave number

ki,2 extinction coefficient (subscript 1 refers to the center
and 2 to the outer region)

A free-space wavelength

o permeability of free space

n1,2 refractive index (subseript 1 refers to the center and
2 to the outer region)

2mc
w === angular frequency

separation parameter
v = akoVe; — €2 normalized frequency
separation parameter

£

g
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