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A New Approach to Optimum Pulse
Shaping in Sampled Systems Using

Time-Domain Filtering

By K. H. MUELLER

(Manuseript received December 5, 1972)

A new approach to time-domain pulse shaping in digital sampled sys-
tems is described. The proposed method allows time-limited impulse re-
sponses with optimum specified energy distribution in the frequency
domain to be generated. Additional constraints to guarantee zero inter-
symbol interference are easily taken into account. Nyquist-type pulses
which have the maximum possible amount of their total energy concen-
trated below some given frequency are one particularly important applica-
tion. An example of such an impulse response with only 6 percent excess
bandwidth is presented which shows that 99.96 percent of the energy can be
concentrated in the desired bandwidth with a pulse 16 baud intervals long
that can be generated using a read-only memory (ROM) with only 256
bits of storage. This new class of signals can be used advantageously for
waveform generation and processing in digital data systems.

I. INTRODUCTION

The joint optimization of functions in both time and frequency do-
main is a classical problem in communication theory. Hilberg and
Rothe! have recently found the lowest possible product of pulse and
one-sided spectral widths and have numerically evaluated the impulse
and frequency response—which is not Gaussian—that corresponds to this
minimum. Landau, Pollak, and Slepian?~*in their classical papers have
derived the pulse-form of given duration that has a maximum of its
energy concentrated below a certain frequency and vice versa; the
solutions to this problem are given by the now well-known prolate
spheroidal wave functions. Additional comments on this problem have
recently been given by Hilberg.> A widespread opinion is that pulses
with minimum energy at high frequencies should have a rounded form
with many continuous derivatives. This is not true; in fact, the optimum
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pulses based on the prolate spheroidal wave functions are usually not
continuous at the limits of their truncation interval. Hilberg® has shown
that constraints of continuous derivatives tend to increase substantially
the total out-of-band energy.

Steep spectral roll-off above the Nyquist frequency and small
residual out-of-band energy are desirable properties for signals in data
transmission systems to achieve maximum signaling rate over band-
limited channels and to avoid fold-over distortion in modulation and
demodulation. We have here, however, a very important additional
constraint: The generated signal must also have negligible intersymbol
interference. One method of deriving shaping filters which simultane-
ously minimize intersymbol interference and stopband response was
proposed by Spaulding.” His procedure generates better results than
the traditional approach of approximation to the raised cosine roll-off
in the frequency domain only.

In this paper we will again carry out optimization in the frequency
domain only; but we constrain the intersymbol interference to be ex-
actly zero and we truncate the pulse duration to a chosen number of
baud intervals. The impulse response is represented in sampled form.
This new class of signals will have particular application in digital
modem design.

II. THE SAMPLED APPROACH

A sampled Nyquist-type impulse response with samples a; is shown
in Fig. 1. For convenience, we will assume even symmetry, an integral
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Fig. 1—Impulse response given by samples a;. Truncation at ¢ = £M T'; sample
spacing Al = T'/p.
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number g of samples per baud interval, and coincidence of every uth
sample with the zero crossings; thus

Ayrp = 0 for k= +1,42 ---,+M
a; = a—; . (])
a; =0 for |i|= uM

The resulting spectrum is

M
S(w) = W(w) Y ae—iwitin 2)
i=—p M

where W(w) is an associated weighting function which may take into
account the conversion from impulses to a staircase waveform or any
other form of interpolation network. Let us define the (2uM 4+ 1)-
sample vector

al = (a—ua, =+, @0 "+, Quyr) (3)

and the transformation vector

p” = ipi, with  p; = e~ #iTlx 4)
so that we can write the spectrum in the simple form
S(w) = W(w)aTp. (5)
The power density spectrum is given by*
[S(w)[* = |W(w)|*a"pp'a. (6)

If we assume that the function w(¢{) has energy K, and is nonoverlap-
ping (width = T/u), the total energy (=) is simply

E(=x) = a’ak,. (7)
The energy below wy is of course
Blw) = 5 [~ | W(s)app'a do. (8)
TJ—wp
Our goal is again to find a, so that
_ E(wu) _
)\‘E(oo) = max (9)
or, by combining the last three equations,
\aTa = aTRa (10)
where the elements of the symmetric matrix R are defined by
1 e — k
= an | W (w) |? cos (wT =t ) do (11)

and a has to satisfy the constraints (1). This constraint reduces the

* A dagger is used to indicate the conjugate transpose, at = a*7.
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degree of the quadratic form (10), since aux = dor and thus all terms
7ui.ur are immaterial. After elimination of the zero elements and con-
centration of the remaining elements, the new form

\aTa = aTR4 (12)
evolves, which is now free of constraints. The desired solution is then
simply given by the eigenvector of R which corresponds to the largest
eigenvalue Ay.. (since no other choice of d@ will give a larger \). The
original vector a can easily be obtained by inserting zeros in the correct
positions of 4.

The elements 7 in (11) will of course depend on the choice of wy and
numerical integration generally will be necessary to evaluate them.
Because of the Toeplitz and symmetric nature of 2, only a small num-
ber of terms need really be calculated. Numerical integration and de-
termination of eigenvectors are available as subroutines with most
computers, so that no complex programs need be written for the pro-
posed optimization method. We also would like to emphasize that the
described method is very flexible. One might, for example, try to mini-
mize the energy contribution within some given frequency range
wy < w < ws; this may easily be achieved by changing the integration
limits in (11).

Two cases of W{w) are of practical interest. The first one is the zero-
order-hold function which generates a staircase waveform (this is the
usual output of D/A converters). In this case, we have*

T . wT
w = — a 13
(w) " sine ( % ) (13)
and therefore
x(14+8)
T = L sincﬂ( i) cos [E (z — k)]da: (14)
umto 2u ©

where we have expressed w, in terms of the normalized Nyquist excess
bandwidth 8.

In the second case we will assume w({) = 48(¢), so that the spectrum
W (w) is flat. Due to the periodicity of the resulting spectrum, it is rea-
sonable to consider the energy distribution within one period only. The
resulting elements of the matrix B can then be expressed in closed form

1'{;.-=1+Bsinc:vr(1+ﬁ)[i—k} if ik

. * . (15)
Tii = + 8 if 72==%

n

which further simplifies the optimization procedure.

* We define sine(z) = sin (z) /2 for convenience.



TIME-DOMAIN PULSE SHAPING 727

ITI. GENERALIZATION FOR ARBITRARY SPECTRAL BANDS

Equation (10) is a special case of the more general problem of maxi-
mizing the energy in one or more specified frequency bands with re-
spect to the energy in some other frequency bands. Taking into ac-
count the desired integrating limits and the constraints (1), a quadratic
form

NATQ4 = ATRA (16)

will then evolve, containing (12) as a special case with @ = I. By sub-
stituting

b = VQa, (17)
we have now to deal with the new form
AbTb = bTVQ1R\Q b, (18)
which is identical to (12). We are looking for the particular b satisfying
V@ IRQ b = Ab. (19)
By premultiplying both sides with V@1, we get
Q'Ra = )\, (20)

so that the desired 4 is simply the eigenvector of @='RK which corre-
sponds to the largest eigenvalue An.x.™ The matrix @ is guaranteed to
be nonsingular since it is not possible to have zero energy in a finite
frequency interval with a time-truncated impulse response.

IV. EXAMPLE

To get some feeling for the capabilities of the described optimization
procedure, the samples of a Nyquist-type impulse response were ealcu-
lated using the following parameters:

Excess bandwidth factor 3 = 0.06
Truncation for |t| > 8T (M = 8)
u = 4 samples per baud interval.

The unusually tight roll-off would allow full 4800-baud operation over
voice-grade telephone channels with a QAM or a VSB system. If the
sample values are coded into 8 bits plus sign, the chosen resolution will
bring down the quantization noise to a negligible level of —65 dB. The
storage requirement is still only 256 bits, so a rather small bipolar
ROM may be used.

* Note that Q“E need not be symmetric, but its eigenvalues are the same as those
of the symmetric matrix in (19).
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The resulting spectrum is shown in Fig. 2. Attenuation is 6 dB at the
Nyquist frequency and 17.6 dB at the 6-percent edge. The sinc(-)
weighting caused by the staircase output is not included ; it would pro-
duce additional attenuation at higher frequencies. The resulting eigen-
value was Amax = 0.99963, showing that in fact the residual out-of-band

energy is very small.
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Fig. 2—Spectrum of optimized impulse response with A = 0.99963.
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V. CONCLUSIONS

A new optimization method for sampled Nyquist-type impulse re-
sponses has been proposed. Minimum energy in one frequency band as
compared to the energy in any other frequency band is achieved. The
computation is straightforward and involves the determination of
eigenvectors of a symmetric matrix. It is shown how the constraint for
zero intersymbol interference can easily be included. Applications of
this method are numerous in digital signal synthesis and processing.
Storage can be achieved with high accuracy using ROM’s of moderate
size. Any desired scaling of time and frequency response is possible with
such a system and the well-known disadvantages of traditional filters,
namely aging and tuning, are nonexistent.
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