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A formula is derived for computing the power specirum of multilevel
digital phase-modulated signals. The resulls apply to arbifrary pulse
shapes and probability distributions providing that the pulses do mot
overlap and are independent. This formula can be applied easily to com-
pute power spectra of signals phase-modulated by various pulse shapes.
Several eramples are given for rectangular and raised-cosine pulses.

I. INTRODUCTION

Power spectra of digital angle-modulated signals can be calculated
in many ways. The direct way of defining the power speetrum is to
find the Fourier transform of a sample of the signal on a finite time
interval 7', . The magnitude square of this Fourier transform is then
divided by 7', and averaged over all possible values of the signal. The
power spectrum is finally obtained by taking the limit of the previous
result as T, tends to infinity. Power spectra of binary frequency shift-
keyed signals have been calculated by this method by W. R. Bennett
and 8. O. Rice." R. R. Anderson and J. Saltz* have extended the analysis
to multilevel digital frequency-modulated signals by using the same
technique.

Power spectra of digital phase-modulated signals can also be obtained
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from the TFourier transform of the signal autocorrelation funetion.
This second method has been used by L. Lundquist’ to calculate
the power spectra of signals phase-modulated by pulse stream
Y« aig(t — kT). The results obtained in his analysis apply to the ease
of overlapping pulses providing that the random discrete variables
a; are independent and have identical probability distributions.

In this paper, a general expression is derived for the power spectrum
of multilevel digital phase-modulated signals by using the Fourier
transform technique. The only restriction in these ealculations is that
the signal is modulated by independent non-overlapping pulses. Other-
wise each level can be characterized by a different arbitrary pulse
shape and have a different probability distribution. In order to simplify
the spectral analysis, we show that a multilevel digital phase-modulated
signal given by

u(t) = cos ot + 35 3 aig.(t — KT)] oY)

can also be written in the case of non-overlapping pulses as
o(t) = X X aiy(t — kT) cos [ut + P(0)]. @

The ¢.(t) in (1) define the pulse shapes of the different levels. The
discrete variables a; can take the values 0 or 1 and are mutually ex-
clusive in the same time-slot 7. In the equivalent expression (2), ¥(f)
is a unity rectangular pulse time-limited to one signaling interval T.
The P,.(t) are periodic functions of period 7' and are respectively equal
to the pulse shape functions ¢,(f) in the interval 7.

The spectral formula which is obtained has the same form as the
expression found by H. C. Van Den Elzen* for data signals which can
be written as a random process:

u(t) = ; Z g:..(t — kT). 3)

Digital phase-modulated signals written as (2) can be seen as part
of the class of signals given by (3). The same spectral distribution
may therefore be expected, once the g;..(f) are made explicit.

The spectral analysis made in this paper follows the method de-
veloped by Bennett and Rice.! A simple compact formula is obtained
which depends on the pulse shape functions ¢,(t) and their probability
distributions. The power spectra are found to be generally the sum of
a continuous spectrum and of a spectrum made of discrete lines. These
discrete lines oceur at the carrier frequency «. and at frequencies
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shifted from w. by multiples of the timing frequency. Several examples
of application are given for

(7) rectangular pulses of duration { < T'
(#7) rectangular pulses with finite rise time and decay time
(747) raised-cosine pulses.

The asymptotic limit of the spectrum as f — = is also given for these
pulse shapes.

II. LINEAR FORMULATION OF DIGITAL PHASE-MODULATED SIGNALS

Digital phase-modulation presents some similarity with amplitude
modulation. For example, binary phase shift-keying by x(t)(w/2)
radians is identical to amplitude modulation by z(f) if z(f) is a rec-
tangular wave which takes the values 1 or —1, thus

v(f) = cos (wri + x(t) g)

= r(l) sin w, L. @
The same signal can also be written with T'(f) = [1 + z(t)/2] as

w(t) = D(L) cos (w‘.i + %) + [1 — T(8)] cos (w‘,t - ’:;) (5)

5

In a previous paper,” it has been shown that this expression can be
generalized for any pulse shape which is time-limited to one timing
period 7. Equation (5) yields in the case of a binary encoding by two
pulse shapes ¢, () and g.(1):

() = T(0) eos [wt + Pi(f)] + [1 — T(®)] cos [wlt + Po()].  (6)

P,(f) and P,(t) are two periodic functions equal respectively to g,(t)
and g,(f) in a timing period 7.

In order to extend this formulation to multilevel digital phase-
modulated signals, let us consider the multilevel baseband-encoded
signal

80 = X 3 alolt — k). ™

The pulse shape functions g,(f) associated to the different levels can
be arbitrary providing that

g ) =0for 0>t >Tr=1,2 -+, n (8)
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The a] are discrete variables which take the values 1 or 0 at each time
slot 7. The a] relative to any time slot T are mutually exclusive since
only one pulse can exist for each time interval T. These conditions
lead to

Sai=1 for kT £t = (k+ 1T

k= —ow, -0, 4 oo, 9

For a signal made of independent pulses, the a relative to different
time slots form a discrete stationary random process.

The baseband signal (7) ean be seen as n mutually exelusive signals,
each one related to a particular level as shown in Fig. 1. For example
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Fig. 1—Multilevel baseband-encoded signal.
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the level r is given by
¢.() = X aig.(t — KT). (10)

Each ¢,(f) can itself be seen in Fig, 2 as the produect of a unity rec-
tangular wave by a periodic function, thus

¢.() = P.(1) Z aiy(t — kT). (11)

P.(#) is a periodie function of period T equal to g¢,(f) in the interval T.
~(t) is a unity rectangular pulse time-limited to one interval T. Let
us set

0t = 2 aiy(t — kT), (12)
k
the baseband signal becomes

o(t) = Z L.()-P,(0). (13)

A signal phase-modulated by an n-level digital signal such as (7)
can be written from (13) as follows:

v(f) = cos |wt + Z T'.(0)-P.()]. (14)

The n unity rectangular signals T,(f) as given by (9) are mutually
exclusive for all values of {:

> =1 (15)

prlt)= T aygp (t=kT)
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Fig. 2—Baseband signal corresponding to the level r.
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As a result, (14) is also equal to

o)) = 3 T.(D) cos [w.t + P,(D)]. (16)

The modulated signal written in this form presents some similarity
with amplitude modulation. Note that the argument is independent
of the random variables a; . This equivalent formulation simplifies
greatly the spectral analysis of multilevel phase-modulated signals.

III. POWER SPECTRA OF MULTILEVEL PHASE-MODULATED SIGNALS

3.1 General Considerations

The speetrum calculations are made under the following conditions:

(7) The baseband-encoded signal is made of independent pulses.

(#7) The levels are defined by an ensemble of functions g,(f) which
are time-limited to an interval shorter than or equal to the
timing period 7.

Otherwise the g¢,(t) are arbitrary and can have different probability
distributions. Let p, be the probability of occurrence of the level 7.
From (10) and (12)

Pr = (a-,k:)l (17)
and from (15)
2p =1 (18)

The power spectra, calculated by the Fourier transform method,
are given by

%, (19)

G() = Lim yiz: (| X, NT)

X(f, NT) is the Fourier transform of a sample of the signal in the
interval NT. {| X(f, NT) |*) is the expectation taken over all possible
values of the signal in the interval NT'

The Fourier transform X(f, NT) is calculated by using the linear
formulation (16), thus

X(f, NT) = E fﬂ . I,(1) cos |w.t + P.({)]e ™" dt. (20)

X(f, NT) can be separated in two parts which correspond respectively
to the positive and negative frequencies:
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NT .
X(L NT) =3 5 [ m@et e ot gy @1)
r ]
and
NT )
X(-,NT) =3 X [ meter et (29
r 0
Note that X(f_ , NT) = X * (—f, , NT) [* indicates that j is made
—jin (22)].

The Fourier transform (22) relative to the positive frequencies
can be written from (12) as

N-1 n (k+1) T
X(J, ,NT) =332 X alf R 1) (23)
k=0 r=1 kT

Let us set the new variable of integration y = ¢ — k7. From the perio-
dicity of the functions P,(t)

P.(y + kT) = P(y), (24)
which gives
n T
X(]r+ ,NT) Z E arerlT(w c—w) f e)‘l(wr—w)w-Pr(n)l dU (25)
k=0 r= 0

In the limit of integration P,(y) = g¢,(y); ¢.(y¥) can then be substituted
to P.(y), thus

X(f. , NT) = :2; 2 alet T fuT gl toem e L gy (26)
Let us set
P =3 [ ot gy (21)
and
F.4) = % il g (28)

The Fourier transform (20) takes the form

X(,NT) = 3 3 aite ™ B, (1) + TR (29)

k=0 r=1

3.2 Power Spectrum Calculations

The power spectrum calculated from (19) is the sum of four terms
given by
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.F (f ) 'F*(L)Gj?‘w—” (we=w)

= —i T (k=1) (0t w)
G = Lim w NT Z > dia JHFA() Fr(f e >
oo T +Fr(f+)'Fﬂ‘(f-)e’“‘””""””T“‘“*“”

! +Fr0‘_)_Fr(f.(_)e-ilk'f‘l'm:+m)+t'!'(ue—u)I

(30)
The third and fourth terms give the foldover between the positive
and negative frequency parts of the spectrum. This effect is negligible
when the bandwidth spectrum is much smaller than the carrier frequency
which is the case in most applications. The spectral distributions are
then accurately described by the first and the second terms of (30)
which give respectively the power spectra relative to the positive
and negative frequencies. The power spectrum relative to the positive
frequencies yields in that case

N-1 n

G(.) = Lim 37 Z X aaie T TIR QP )> 31)

i 8

The ensemble average is taken on the random wvariables aja; . The
bracket sign can therefore be introduced on the summation as

G(f.) = {Wﬂjl NLT {15 i (a{a:)e”“"“‘”“""F,(L)-F:“(L)}- (32)
P .
From the definition given in Section II:
pp. i E#1 and r#s

2 1 ~
(@ial) = Py if k=21 and r =35 (33)

p, if k=1 and r=s
0 if k=1 and r#s

where p, and p, are the probability distributions of the levels r and s.
After substitution of the terms {(aja;) by their values given by (33),
a summation is made on the variable I. The result gives
. — J1 — 2
G(f,) = Lim I:E {ﬁ Vp.p. 8 + = p.p.
N T—o0 r 1 T

=1
a

E ) cos kT (w. — w)}F (fIF *(f+):| , (34
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8° is the Kronecker symbol given by

5 = Jll if r= s
0 if r=s
Since the limit operation acts only on the second term of (34), G(f.)
can be rewritten as

a8
=1
r

y ~J1
G(f.) = [Z {T Vpp. 8.+ 2p.p. PTH} K@x

N=1

2 (N — k) cos kT(w. — w)}F (F.)F, (f+):l (35)

k=1

Summation on the discrete variable & yields for the series on k

N-1

Lim — Z N — k kT
\;ﬂNT (N — k) cos iT(w. — w)
-
1 sin’ (w, — u) o
= Lim —= | =N +
wro NT sin’ (w, — w) %1
1 1 & m
= —pte m;w B(fc -+ T)' (36)

El-r+7%)

forms a set of Dirac functions which give a series of spikes:

e +o if f=fo4 7
Sdoren)-] L
% ﬁf¢n+%

The substitution of (36) into (35) yields finally for the power spectrum
relative to the positive frequencies
}

6ty = {5
+ 2 - m) ey

m=—o0

n
C= | 2
r=1

): p.F.(f.)

The first term of (38) gives the continuous power spectrum. The second
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part gives the spectral discrete lines. These lines occur at the frequencies

f=fc+%(m=0,:tl,:|:2,)

it | XaF()| =0 at f=f+7

r=1

The final formula (37) depends on two sets of parameters:

(7) the probability distributions p, of each level
(72) the pulse shape functions ¢,(f) of each level from the Fourier
transforms (27).

When the n levels have identical probability distributions, (38)
becomes
S0 |}

6y = S S irgy - L
7 m;m,;bli _ 5()’: -+ %) (39)

n =1

The pulse shape, in most cases, is given by a unique function g(t)
for all the levels. Each level is then defined by a different pulse amplitude.
In this case, ¢(t) can only have one maximum value which is assumed
to be equal to one. The levels are then given by the ensemble a,g(t),
r=1,2 .., n, where the a, are equal to the peak phase deviations.
Several examples of power spectra will be calculated for this important
case.

[

[—y

+

SR

r=1

IV. EXAMPLE OF POWER SPECTRA

4.1 Rectangular Pulse Shape of Duration T

The application of (38) to a signal phase-modulated by rectangular
pulses of duration equal to the timing period 7T is straightforward.
The Fourier transforms (27) are given in this case by

1 r il(we—wlytarl
Py =5 [ e dy
T _ sin (w, — w)g
— Ee:ar_e;(uc*w)(T/‘-!) T‘ , (40)
(wo - w) 5

where the @, are the phase deviations of the different levels. Equation
(40) applied to (38) gives
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|50 (. w)'ig
W) =]~ 7
w, — W) >
2

2

s — 1. (41)

n ia 2 1 n .
{i-[Spem [} +1] e
r=1 r=1

The spectrum has only one line at the carrier frequency.
If one assumes that the levels are equidistant and equiprobable

such that

ar=au+'r_lﬂ']
r=12

n
) <y R (42)
1 [
P =0
one obtains
5,.:’ I ) Sin g 2 "
. p,.(’ - n‘-’ . i ] ( )
sin 5
and the spectrum is given by
T2
) T sin (w, — w) %
i) = 4 7
w, — @) o
in | i@
1| sing BELS
Al = | == | | | 80— D ()
] sin — J' sin —
; 2n | 2n

In polar modulation, the @, can take positive and negative values.
The term .., p,¢'"" can then become equal to zero for an infinite
number of solutions. All these solutions give the same power spectrum,
but without the diserete line:

. TP
‘ T sin (0, — w) 5 .
Gy =1 ‘m’ : (45)

=

For example, the polar systems made of g pairs of equidistant and
equiprobable levels such that
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2q ) q
e =3 cosa, =0
r=1 r=1

are given by

2 levels polar modulation {ail = 5
{atl = :i:i

4 levels polar modulation
+*2 — 4:
@ = :i:‘i'zr
6 levels polar modulation T
Qs = i‘_i
3
@ = £

- ete.
All these modes have the same spectrum given by (45).

4.2 Rectangular Pulse of Duration r < T

Let us now consider a rectangular pulse shape of duration r < T.
Assume the pulses are located symmetrically in the interval T as
shown in Fig. 3. The Fourier transforms F,(f,) are equal in this case to

1 (T—r7)/2 we—a)y
RO =3 eeay

. (T+7)/2 ) T .
+ e:nr‘[ Gr(mr—t-?)u d?j + er(wr*w)!l dlj}' (46)
(

r—r)/2 (T+7)/2

gt P —
1

o]
0

Fig. 3—Rectangular pulse with + < T.
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The result of (46) applied to (38) yields for the continuous part of
the spectrum

. T :
7l sin (w, — w) 5 . sin (w, — w) =
Gf) = T120 | — —-m (1 =€)
4 | = T T T
(we — @) 5 (. — w5
sin ( w) g sin (w, — w) 1) n )
e e i g |
("“-’r w) 9 (‘-"r - w 2 J
(47)
The diserete lines are given by
Ga(f.)
1 & sinmr 7 sin 7 T : ; h m
1 BT (- Seen) | -1+ )
mm ;17

(48)

There are always diserete lines in this case. As an example let us con-
sider the case of a polar phase modulation with two equiprobable levels
given by a, = =£/2 radians. Equations (47) and (48) give in this case:

e -0 Il
wr =G =—2
—a

2

A T

. sin mr =
1 & |sinmr 7 T

+5 > |V - T

4 .= mm

m
fe—1+ 7‘)' (49)

mmw

T

For T — 7 <« T the continuous spectrum is practically the same as
the one obtained for pulses of duration T, except for the discrete lines
at f = f. + m/T (m = £1, £2, --- ). In both cases the spectrum
decreases as 1/f* as f — o,

4.3 Rectangular Pulse Shape with Finite Rise Time and Decay Time

We consider in this example a rectangular pulse shape of duration T
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a(t) ._gg,zsl:éi_.t

1
0s T-s T +t

Fig. 4—Rectangular pulse with finite rise time and decay time.

with a finite rise time and decay time as shown in Fig. 4. The calcula-
tions are made for the case of two equiprobable levels with peak phase
deviations equal to #7/2 radians. We assume that the rise time and
decay time are both equal to s = (T — 7)/2; 7 is the top pulse length
The Fourier transforms F,(f,) are given in this case by

1 S iltwe 2 T
Fl(f+) — E i 61[(Wr w)+(r/28) 1y dy_i_er(ir/_)f e:(w.— W)y dy

T
+ el(r/ﬂ](?’/«) f el}(m:—u]—(r/'.!n)]!r dff}' (50)

Fo(f,) can be obtained from (50) by changing the sign of 7/2. The
calculations yield for the continuous power spectrum:

sin (w, — w) T
_— ’1’ cos (w, — w) 5

gy =T} = G

feoi] 6

The discrete lines are given by

"il"

1{r\(s) & cos® (QTm%) m
v . ol . _ 70, o
ZOEHHIO I [( ) (,)] {r.-1+7) @
mm T —_ 4

The power spectrum decreases in this case as 1/f* as f — . Figure 5
shows the spectrum given by (51) and (52) which is calculated for
s/T =

1.4 Raised-Cosine Pulse Shape

In the case of raised-cosine pulse shapes, the spectra are computed
for polar modulation. We assume that the pulse duration is equal to
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the timing period T. The pulse, of maximum height 1, is then given
by g(f) = sin® Qt/2 with @ = 2x/T. A first example is calculated for
a two-level system with different probability distributions. The second
example is calculated for a multilevel system with equiprobable level
distributions. The two-level and four-level cases are then compared
for peak phase distributions which give Y} ¢'“" = 0.

4.4.1 Two-Level Polar Phase Modulation with Raised-Cosine Pulses

Let =42a radians be the peak phase deviations of the two levels.
The Fourier transforms F,(f.) are given in this case by

11" e sin? 0
Fig) =g [ ety ()

F.(f.) can be obtained from (53) by changing the sign of a.
The term 2ja sin® Qy/2 of (53) expanded in Bessel series gives

0.25
0.20
—
o
~
V]
-
0.5
r T
@
z
w
o
4
&
= 010
-]
w
o
u
0.05
AREA=
0.0022
0 I 3
fo + T

Fig. 5—Power spectrum for two-level polar phase modulation with rectangular
pulses with finite rise time and decay time.
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o sin mre _ e’"{Ja(cr) + 2 > (=1)"Ju(a) cos 2nQy + 2§
n=1

f (—1)"J3.-1(a) cos (2n — l)ﬂy}- (54)

by its Bessel series expansion (54) into (53)

2fa sin? Qu/2

Substitution of e
yields

sin (w. — ©) &

Ff., +a) = geﬂf«'r—m)(wz)u, .
(wc - f.r)) E‘

(CIJ,, _ w)E

-{Jn(a) +2 5 (Vo) g

:tQj i (_I)RJZR—I(Q) (w.: _ w)(;.uc__(;:z _ 1)292}' (55)

Equation (55) applied to (38) yields for the continuous part of the
power spectrum:

. TP
sin (w, — w) 5
G.(f+) = ppT TH
(wc - w) '5

{[r@ +2 % v gD s

2 3 (DYoo) T g cos a} .
(56)
Noting that
Jola) + 2 i (—1)"Js(a) = cos @
and ! (57)

2 i (=1)"J2ua(@) = —sin a,

(56) can be rewritten as

) sin (Cdc - w) - 2J . sin (a + m_‘)'?l') 12
G(fs) = 4p.p.T —_— El (—1)"J ) _ =

L

(58)
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The discrete lines are given by

Ga(f+) m;ﬂ J (@) l:l — 4pp. sin’ (a +m )] 5(f: —f+ %)
(59)

The asymptotie limit of ¢.(f,) as f — = is obtained by summing
(58) for | w, — w | > mQ, thus

masin (w, — w) 5

Lim G.(f.) = 4pp.T

c 2 3 ’
f— [(w,. _ w) %]

which shows that G,(f,) ~ 1/{* as f — .

The power sharing between (7.(f,) and G,(f.) is a function of « and
mpe . Since p, + p. = 1, G.(f.) = 01if p, or p, = 1 as expected. All
the power is then contained in the discrete lines (case of a signal phase-
modulated by a periodic funetion).

The condition p, = p. = 1 (identical probability distributions)
gives a maximum for the continuous distributed power:

P> = ZI@W“@+WS

(60)

and (61)

Pf) == Z J(a) cos’ (a + m %)
The power becomes equal]y divided between both parts of the spectrum
for a peak phase deviation of 4=/2 radians and p, = p, = 3. For
this particular case,” the series expansion of (55) and (59) ean be limited
to the first two terms. A good approximation for the power spectrum
is then obtained by

gyt e
00 =5 0 — o) =

[ T AT :
)t D

and
st B8

Figure 6 shows the power spectrum given by (62) and (63).
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Fig. 6—Power spectrum for two-level polar phase modulation with raised-cosine
pulses,

4.4.2 Mullilevel Polar Phase Modulation with Raised-Cosine Pulses

The results obtained in the previous section can be generalized in
the case of multilevel polar phase modulation with identical probability
distributions. Let 4-2«, radians be the peak phase deviation of a multi-
level system of g pairs of levels (r = 1, 2, -+ , ¢). The Fourier trans-
forms from (55) are equal to

. T
T sin (w. — ) 5
Fr(f+ ] :}:Cl'r) = 581[(‘“_“”?/2)1“" _——T: lA-r :’:JB’-}J (64)
@ —w) 5
with
= . (w. — w)*
A, = o\lr, - 2n\Fr : 2
- . J(a)+212( n"J (“)(wc—w) ~ (2nQ) (65)
= S _ n (wc — w)z -
B, 2 12 (—=1)"Jpn-r(s) (w, — w)’ — [(2n — R
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The continuous power spectrum calculated from (38) with (64) and

(65) yields
p |5 @ — @) ﬂ
G.(f.) = 7 ~
4 (e — w) %1 J

{ ilA +B]———[Z(A cosa, — B, ‘sma,)]z} (66)

Taking into account (57), A, and B, can be rewritten as
Jﬂn(ar)

A, = cosa, +2 3 (-1 :
1 l — (Wr _ w).
and 2nQ ©7)
B, = —sina, + 2 Z (=1 Jon-s(e) .
' 1 — [ we —w ]
2n — 1)Q

Substituting of A, and B, by (67) into (66) yields

sin (w, — w) ?—;—l

Ge(fs) =T
QW - W)H

N {Z(—] "Jonoi () ﬂ
[1 [(’n:;u)n]

a )u
1 -
2l |, o]
2nQ2
ri (_l)n'['.!u(ar) COS a, Z (_1) J -l(ar) "’l“ @
w,—w? - [w,—w]"’
L= (n — 1)Q

_ L
qz

li[Qnﬂ_

+00

\ 1
Gu(f+) =
1 m*—m
For a four-level system given by
‘20’| = ZIZE

(68)

The discrete lines, obtained from the second term of (68), are given by
2 m\
T

{Z T cos (a +m§)} (. -1+ 2 @0
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Fig. 7—Power spectrum for four-level polar phase modulation with raised-cosine
pulses.

the series expansions in (68) and (69) can be limited to the second
term. A good approximation of the power spectrum is then given by

2

—J (E) cos & +J (?I) co's3—1r J (E)sinI +J (?ﬂ)sin 3—‘":21
A8/ T8 T UAR/ TR 8/ 8 TS 8

s (5

(70)
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and

gy = 5 {(E) cos (54 m3)

+ J ('Jﬂr) cos( + m )} 6()’.. — I+ %) (71)

The spectrum given by (70) and (71) is shown in Fig. 7. Note that this
spectrum is almost identical to the spectrum of the two-level system
calculated with 2¢, = #£7/2 and p, = p,, shown in Fig. 6; in both
cases ».°_, ¢ * = 0. This result presents an analogy with the cal-
culations made for rectangular pulses of duration 7' which satisfy
the same condition.

V. CONCLUSION

A formula has been derived for computing the power spectrum of
multilevel digital phase-modulated signals. The results apply to arbi-
trary pulse shapes and probability distributions providing that the
pulses do not overlap and are independent.

This formula is easy to apply to various pulse shapes. Several examples
are given such as:

(i) rectangular pulses of duration smaller than or equal to the
timing period
(i7) rectangular pulses with finite rise time and decay time
(#77) raised-cosine pulses.

Approximate results can be obtained for more complex pulse shapes
by the following method. The spectrum is a function of the pulse shapes
g.(1) by the Fourier transforms

T
F'U) = %f p+jlul(+ﬂr(|)le—i‘.’ff (H

T can be segmented into a large number of intervals in which g¢,(¢)
is approximated to its average value in this interval. F,(f) is then given
by the following series expansion

sin (w, — @ 5 .
(f) L gitwewcrram <n ol gl twem @) (kT/m)
- "n T ¢

(wr - w) m
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