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The bending losses of the asymmetric slab waveguide are compuled.
The computation is based on the knowledge of the exact form of the solution
of Mazwell's equations of the bent structure and the additional assumption
that the field near the bent waveguide can be approximated by the field of the
straight waveguide. The result of this theory is in good agreement with an
existing theory. It appears that the bending loss formula can be used to
estimate the bending losses of the round optical fiber if the mode parameters
entering the formula are replaced by the corresponding mode parameters
of the round fiber. We present curves that allow the numerical evaluation
of the bending loss of the lowest order even TE mode of the symmelric slab
waveguide.

I. INTRODUCTION

E. A. J. Marecatili has shown that a bent slab waveguide loses power by
radiation.’ His analysis is based on a solution of the eigenvalue equation
of the bent waveguide. It is possible to derive the expression for the
bending losses from an approximate theory that is much simpler than
the solution of the eigenvalue equation. We use this method to derive the
formula for the bending losses of an asymmetric slab waveguide. The
symmetrie slab waveguide is, of course, included in this treatment as a
limiting case. The result of this approximate theory is in very good
agreement with the theory of Mareatili. Furthermore, if the parameters
of the HE,, mode of the round optieal fiber are used in the slab wave-
guide formula, loss values are obtained that agree well with experimental
loss values for this mode.”

The bending loss theory presented in this paper is based on the fol-
lowing idea. A bent slab waveguide can conveniently be described in a
eylindrical coordinate system whose axis coincides with the center of
curvature of the waveguide (Fig. 1). The solution of Maxwell’s equations
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Fig. 1—Bent slab waveguide with a cylindrical coordinate system centered at the
center of curvature.

in the cylindrical coordinate system is known so that the shape of the
field distribution of the curved waveguide is known exeept for an un-
determined amplitude factor and for the value of the order number of
the eylinder function of the solution. Both of these unknown parameters
can be obtained if we assume that the field in the vieinity of the wave-
guide must be similar to the field of the straight guide as long as the
radius of eurvature is large. The approximate solution is used to calculate
the power that is radiated from the waveguide so that the power loss
per unit length caused by the waveguide curvature can be determined.
This procedure leads to a simple equation for the curvature loss. The
theory breaks down when the curvature is so severe that the field near
the waveguide can no longer be approximated by the field of the straight
guide. The limits of applicability of the curvature loss theory can be
expressed by inequalities for the waveguide parameters.

II. THE FIELD OF THE STRAIGHT ASYMMETRIC SLAB WAVEGUIDE

The field of the straight asymmetric slab waveguide is obtained as the
solution of a'straightforward boundary value problem. The geometry of
the structure is shown in Fig. 2. We assume that there is no field variation
in the y direction so that the waves of the structure are simple TE and
TM modes. We limit our discussion to TE modes. The field is then given
by the following equations:*®

Eu = Ae—-y(zkd) d

1A

z < o, (1a)

E,=Acos.<(x-d)—}sinx(x—d) —d<z<d, (1b)
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E, = A(cos %d + Esin 2xd)e“”“ —o €2 —d. (lo)

The amplitude of the field can be expressed by the power P carried by
the field:

wp.P ¥

A= 2KJ, 1 1 . (2)
|82+ 2+ 2o + 4

A factor exp [{(wt — B2)] has been suppressed. The constants and param-
eters appearing in equations (1) and (2) are defined as follows:

w = 2xf, radian frequency,
P = power carried by the mode,
1, = magnetic permeability of free space,
e, = electric permittivity of free space,
B8 = propagation constant,
2d = slab thickness,

k= (k" — 8%, ®
y = (8" — nik)}, @
8 = (8° — nak”)}, 5)
k= wlepo)?, (6)

n, = refractive index in the region d < z,

n, = refractive index in the region —d < = < d,

ns = refractive index in the region — o < a < — d.

The magnetic field components are obtained from the equations

i 9E,
H, = wp, 02 @
Z
X
Ny n; Ny
- 2d |+

F(;iig. 2—Straight slab waveguide. n,, ns, and ns are the refractive indices of the three
media.
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and
_t 9B,
Wi, 0T

s =

@®

The boundary conditions (requirement of continuity of the transverse
electric and magnetic field components at the two interfaces) lead to the
eigenvalue equation for the propagation constant 3,

tan 2d = 1T 0 _. ©)
=
K

III. THE FIELD OF THE CURVED STRUCTURE

The solution of Maxwell’s equations in the region'(R 4+ d) < r < =
can be expressed as follows:

E, = BH® (n.kr)e"". (10)

The Hankel function of the second kind and of order » represents an
exact solution of Maxwell’s equations in the coordinate system shown in
Fig. 1. There is no field variation in the direction of the axis of the
cylindrical polar coordinate system of Fig. 1. (In the coordinate system
used in Fig. 2 the direction of the polar coordinate axis would be y.) The
radial distance r is measured from the center of curvature of the bent
waveguide. The Hankel function of the second kind is required since at
infinite distance, »r — o, an outward traveling wave must result. With
our time dependence, exp (iwt), the field of equation (10) satisfies this
requirement.

The order number » need not be an integer in this case since we need
not require periodicity of the field as a function of the polar angle ¢. If
we were interested in an exaet solution of the problem of the mode
traveling along a curved waveguide we would obtain the value of v as the
solution of an eigenvalue equation. In our approximate treatment we
assume that the field near the waveguide can still be approximately
described by the field of the straight structure. We can use the coordinate
system of the straight guide (Fig. 2) to describe the curved guide. The z
axis of the straight coordinate system becomes bent and we have the
relation

z = R¢. (11)

The function exp (—ivg) is equivalent to the propagation factor exp
(—1iBz) of the straight waveguide so that we have the approximate
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relation
B=r (12)

Since R is much larger than the wavelength of the field, » is a very large
number. Using » as defined by (12) in (10) constitutes the first approx-
imation. It remains to obtain a relation between the amplitude factor B
and the power that is carried by the guided mode. To achieve this we use
an approximation for the Hankel function that is valid for very large
order number v in the region

v > nkr. (13)

The desired approximation can be found in Ref. 4.

»(a— tanh a)

e

H® () = —i S (14)
A ]1—5 v tanh

with
cosha = ——- (15)
o= o
We obtain the hyperbolic tangent of a by the relation
24
2 T
2 4 I:IB - (nlk _)]
u = tanh « = [cosh o = 1] _ B/ J. (16)

cosh « [¢]

Equation (12) was used to replace » by 8. Near the axis of the waveguide
we can use the approximation /R = 1 so that we obtain from (4),
(12), and (16)

y tanh & = vR. 17

This approximation is adequate for the denominator of (14). The ex-
pression in the exponent must be approximated more accurately. We
use the x coordinate to describe the radial distance from the center of the
waveguide core and write

r
F=1+% (18)

This z coordinate corresponds direetly to the z axis of the straight guide
as shown in Fig. 2. Using (4) and (16) we obtain
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uzgff——im'ciﬂ%%[l_(%)zg] (19)

We can express @ by a well-known relation between the inverse hyper-
bolic tangent function and the natural logarithm*

a=ta,nh'1u=%h1(1+u)- (20)

1—u
The logarithm can be expanded in an infinite series
a=u+ '+ '+ W+ - (21)
From (19) we obtain approximately

o (1) _ M)zi(z)”_
U (,3) p( v/ R\8 (22)
Substitution of (22) into (21) yields
_ 1(1)3 1(1)5
a=g + 3 \5 + 5\3 +
B O S
(7 i 1+ﬁ2+,32 +.32 + (23)
The first series can again be expressed by the logarithmic function. The

second part of (23) contains a simple geometric series. We thus obtain
the approximation

147 :

B (k) 1 =z

=11 - z,
o 2 n L ¥ ‘7,3 L 'Y_zR (24)

8 B
With the help of (4), (19), and (24) we can form the expression
1+ 'ﬁ .
cu!—t.a.l'lhaz=a—'t.‘,=%ln1_I —%—;—;I—z- (25)
B

The approximations (12), (14), (17), and (25) allow us to express the £,
component (10) in the following approximate form:

|
P
P 5y | .
E, = —iB 8 e (26)

N
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The funectional dependence of (26) on the coordinate r coincides with
(1a).

For large values of R the field of the curved structure near the wave-
guide is approximately equal to that of the straight guide. The factor
exp (—16z) appearing in (26) was omitted from (1a). Comparison of (1a)
and (26) allows us, with the help of (2), to determine the amplitude
coefficient of the field,

J %wy;yRP ,
B = 2ixe 1 ) ’
1,6(203 + . + E)(:c2 + YQ)J
i Y
]
.expl— %Sln:fi—l -yRJ'- (27)
L B

Very far from the waveguide, r» >> R, the Hankel funection can be
expressed by its approximation for large argument* so that (10) assumes

the form
2 =1 i +1) = —if:
Eu — B 'Wlkre lnlkrei(Zv 1) /48 B . (28)

Equation (28) is very interesting. It shows that far from the waveguide
the field is very different from the field of the straight structure. Whereas
the field of the curved structure decays exponentially near the wave-
guide it assumes the form of a radiation field far from the guide. This
behavior of the exact field solution (10) of the curved structure explains
why curved dielectric waveguides lose power by radiation.

IV. THE BENDING LOSS FORMULA

Since we know the field far from the waveguide it is now easy to
calculate the power loss caused by the fact that energy is radiated away
from the waveguide. The amplitude of the radiation field is independent
of the z coordinate. The z dependent factor in (28) determines only the
phase of the field. The power loss suffered by the field at a given position 2
can thus be calculated by the radial power flow at the same position z,
even though the contribution to this radiation may have come from a
point z; with z, << 2, because each length element of the guide contributes
an equal amount of radiation. An element of unit length on the axis of the
waveguide is projected on an element of are length

r ’
L= 7 (29)
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at a distance r — R from the waveguide. The power loss 2a per unit
length of waveguide is thus

S, is the r component of the Poynting vector,
S, = —MBHE = [ | B, 1, @3

and P is the power carried by the mode. Using (27), (28), and (31) we
obtain from (30)

2 24d —-U
% — 2vke e (32)

2 g2 l l)
(n. — ny)k ﬁ(Zd + 5 + 5

with

b 3l
B 8 2y
U—l')’lnl_l J"YR 332R (33)
8

The approximation on the right-hand side of (33) holds for v/8 <« 1.
The relation «* 4+ v* = (n2 — n?)k* was used to simplify (32). The range
of validity of the bending loss formula (32) cannot be given precisely.
We have already encountered the inequality (13) that was necessary
for the approximation (14) to hold. A similar inequality can be stated
for the field expressed by Bessel and Neumann functions inside of the
waveguide. In order to be able to express the field inside of the curved
waveguide by approximate expressions that reduce to the sine and cosine
functions appearing in (Ib) in the limit of large radius of curvature,
we must require

v < nokr (34)

everywhere inside of the waveguide. We can express these conditions in
the form

d
p>nk(1+2) 39)
and

8 < nlk(l - g)- (36)
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The validity of our theory becomes doubtful if one or both of these
inequalities are violated. However, a comparison with Mareatili’s
theory' shows that our approximation is still quite good even in regions
where (36) no longer holds.

The simple expression (32) for the bending loss of an asymmetric
slab waveguide can be used only if the values of «, v, 8, and 8 are known.
It is, of course, only necessary to determine one of these parameters
from the eigenvalue equation (9) since they are all interconnected by the
equations (3) through (6).

It is useful to point out that the loss equation (32) seems to be ap-
plicable to other types of waveguide than the one for which it was
derived. I have compared experimental values® of bending losses of a
round optical fiber with the loss predicted by (32). For such a comparison
it is necessary to use the parameters «, v, etc., that apply to the wave-
guide to which the formula is to be applied. In case of the round fiber the
parameters of the HE,, mode were used to compute the bending loss
from (32). The reason for this choice of parameters is the fact that the
parameter v determines the decay behavior of the field outside of the
waveguide. It is very important that the proper field decay is used, so
that it is more logical to use the v value of the round fiber instead of the
value computed from (9), if (32) is to be used to compute the bending
loss of the round fiber.

It is a curious fact that the loss formula (32) can also be obtained
without use of the Hankel function appearing in (10) if we use a field of
the form

\/'Rr— exp {—i fﬂ r ¥(r) d?’} (37)

with
> 3
v(r) = l:ﬁ2 E;E - nficz] : (38)

The validity of this claim can easily be checked by performing the
integration. The factor in front of the exponential function is somewhat
arbitrary. However, the exponential function itself admits of a physical
interpretation.

The straight waveguide has a field that, outside of its core, behaves
according to exp (—yx). In the curved system z is naturally replaced
by r. If we consider that the process of bending the waveguide is likely
to lead also to a distortion of the phase fronts we can try to describe
the separation of consecutive wavefronts by an r dependent wavelength
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(A, is the wavelength of the straight guide),

AMD) = ), (39)

SR

The propagation constant is related to the wavelength by the relation

2 R

B(T) = )\(’n“) = 60 ,,,' (40)
By replacing the propagation constant in (4) with (40) we obtain (38).
Sinee v is now no longer a constant it is natural to replace vr by [ v dr
and thus arrive at the form of the exponential function appearing in (37).
By using (37) instead of (10) and proceeding exactly as shown in this
paper we obtain (32) once more. It is interesting that we have thus
obtained an approximation for the Hankel function that holds for the
region where the order number is very nearly equal to the argument as
well as for the region where the argument is much larger than the order
number. Equation (38) shows clearly that y(r) changes from real to
imaginary values as » increases.’

One might hope that a similar procedure would allow us to obtain
approximate expressions for the bending loss of the round optical fiber.
However, such attempts lead to equations that are not in agreement
with experiment. On the other hand, the loss formula (32) agrees well
with experiment® if the parameters of the round fiber are used.

The loss formula (32) holds for all values of the refractive indices n,,
n,, and ny for which mode guidanee is possible. Small index differences
are not required for (32) to be valid.

V. NUMERICAL EXAMPLES

Because of the large number of variables involved it is not possible to
provide graphic displays for all possible applications. The loss formula
(32) is sufficiently simple (exeept for the need of knowing the waveguide
parameters k, v, etc.) so that loss values for cases of interest can easily be
caleulated. We provide curves that aid in computing the bending loss of
the even TE mode of the symmetrice slab waveguide.

Figure 3 is a comparison of our theory with the results of Ref. 1.
The ordinate is the function (2A)¥aR while (8A)*2dn,/A is plotted on
the abscissa. The parameter A is defined as n, — n, (we are using
n; = ny). The expression 36n,2A*/\ assumes the constant value 60
for the curve of Fig. 3. The agreement with Marcatili’s theory' is re-

T A discussion of bending losses based on a similar argument is presented in Ref. 5.
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Fig. 3—Comparison between this theory and the theory of Ref. 1. A = n, — n;,
ny = Ny 36112RA%/?\ = 60.

markably good. The inequality (36) is violated for values of the abseissa
that are larger than 1.7. This may explain the departure between the
solid curve representing equation (32) and the dash-dotted curve
representing Marcatili’s theory. The fact that the solid curve actually
touches the asymptotic value shown as a dotted line in Fig. 3 (this
value is assumed for infinite values of the absecissa, its location as shown
in the figure has no meaning) is probably an accident since the solid
line increases again for larger values of the abscissa outside of the range
shown in the figure.

We restrict ourselves to the case of the symmetric slab waveguide

with n, = n,. It is possible to express « and v (which equals 8 in this
special case) as functions of
V = (2 — nd)kid. (41)

The propagation constant 8 depends not only on V but also on the value
of n,k so that it is not possible to express the bending loss only in terms
of V. However, in the special ease that n, and n, are very nearly equal we
have 8 = n,k so that we need not actually solve the eigenvalue equation
to obtain the propagation constant. To aid in the evaluation of the
bending loss formula we provide curves for 2e8d’" and for d°g*U/R in
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Fig. 4 as functions of V. The approximate expression given in (33) was
used to express U. If B can be approximated by n,k these two curves
enable us to calculate the bending loss without any difficulty. For
symmetrie slab waveguides with a large value of n, — n, we can calculate
8 with the help of (4) from known values of v and n,k. A plot of yd as a
function of V is provided in Fig. 5. The parameter vy is interesting in
itself since it determines the exponential decay of the guided mode out-
side of the waveguide core.

VI. CONCLUSIONS

The bending loss of an asymmetrie slab waveguide has been calculated
using an approximation that is based on the assumption that the field
near the bent guide is still almost identical to the field of the straight
guide. The results of this approximate theory are in good agreement
with the bending loss theory of Mareatili' in the range of applicability
of our theory. It is hard to apply a similar analysis to the bent round
fiber because the exact form of the solutions of Maxwell’s equations for
the curved structure is not known. However, the bending loss formula
obtained for the slab waveguide model yields good agreement with

2
10 =

e

dze“//
100 /7 [kt

- /|

4
e

0 0.5 1.0 1.5 20 25 3.0 3.5
v

Fig. 4—The functions 2«8d2’ and d332U/R are plotted versus V = (ny — ) kd.
(m = na.)
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Fig. 5—Plot of vd as a function of V. (n, = ny.)

experiment® if the mode parameters of the fiber mode are used in the loss
formula instead of the mode parameters of the slab waveguide.

For the case of small index differences, curves that allow the deter-
mination of the bending loss of the lowest order symmetric TE mode of
the symmetric slab waveguide are provided.
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