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Combining Correlated Streams of
Nonrandom Traffic
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The Equivalent Random method is used for engineering many of
the telephone overflow-networks in the Bell System. But since this
method is not directly applicable to the analysis of graded-multiple
trunk-groups which carry overflow traffic, we extend the method to
cover such arrangements. The key to this extension is a technique for
taking correlation into account when combining dependent streams
of traffic which are themselves more variable than Poisson. In prin-
ciple, the technique is applicable wherever a stream of overflow traffic
1 divided, submitted to independent trunk groups, and then recom-
bined.

The extended Equivalent Random method provides adequate esti-
mates of load-service relations for graded multiples which carry
overflow traffic, provided the grading capacity is not substantially in-
fluenced by the network that precedes the grading.

I. INTRODUCTION

The Equivalent Random method™* is used for engineering many
of the telephone overflow-networks in the Bell System. However, the
method is not directly applicable to the analysis of graded-multiple
trunk-groupst which carry overflow traffic; e.g., gradings used as
alternate routes in step-by-step switching systems having common
control and alternate-routing capability. Apparently, Lotze®® is the
only author with results for estimating load-loss relations for gradings

t The reader should have some knowledge of graded multiples and the methods
associated with the engineering of telephone overflow-networks. Some familiarity
with the step-by-step switching system would also be helpful. Those not ac-
quainted with these concepts may find it worthwhile to consult Ref. 1 for a dis-
cussion of telephone overflow-networks. An introduction to graded multiples is
given in Ref. 3. Reference 4 contains a description of the pertinent aspects of the
step-by-step system.
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which carry overflow traffic. Unfortunately, his method requires data
which cannot be obtained in a step-by-step system at reasonable cost.

We extend the Equivalent Random method to cover such applica-
tions. The key to the extension is a technique for taking correlation
into account when combining dependent streams of overflow traffic.
(In prineciple, the technique is applicable wherever a stream of over-
flow traffic is divided, submitted to independent trunk groups, and
then recombined.) In Section 11, we derive the appropriate covariance
function. In order to describe how the covariance function is used to
extend the Equivalent Random method,’ we begin with an example
of an application of the extended method for the analysis of a step-
by-step graded multiple.

Figure 1 represents schematically a step-by-step grading which
might be used as a final route. Each horizontal bar denotes one trunk
(server). The traffic offered to the grading® is an overflow stream
from a subordinate network. The traffic is represented by the mean
« and variance v of the number of simultaneous calls that would be
in progress if this traffic were carried on a full-access group without
blocking. The diagram is designed to indicate that an arriving call is
first directed at random to one of the four first-choice subgroups;
ie., an arrival is directed to the ith subgroup with probability pi.
After reaching a particular subgroup, the call hunts vertically upward
for an idle trunk. If all three trunks in the subgroup are busy, the
call overflows into the second major level of the grading. The call
then seizes the lowest idle trunk in the second-level subgroup. If both
trunks in the second level are busy, the call overflows to the third
major level containing five trunks (usually called finals). If all five
finals are busy, the eall leaves the system and does not return; i.e., the
eall is blocked and cleared. The symbol ay and v, denote respectively
the mean and variance of the overflow from the grading.

In a step-by-step system, the arrangement of line-finders and
selectors through which calls reach a grading causes an inherent load-
balancing* over the first-choice subgroups; there is positive correlation
between the numbers of oceupied trunks in the individual subgroups.
Attempting to introduce the correlation into our model, we assume

t The Equivalent Random method is known to_be adequate for estimating
load-service relation for overflow-networks having Poisson input.”.®

t For the present study, we assume that all offered loads are constant. Hence,
we are estimating single-hour capacities of gradings. Utilization of our results
for normal engineering involving average busy-hour loads, would re uire periph-
eral operations to adjust the load-service relationship to reflect the effects of low,
medium, or high day-to-day variations in the load.?
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Fig. 1—Schematic representation of a step-by-step graded multiple containing
21 trunks.

the configuration given in Fig. 2. The four arrows above the full-
access group denote (correlated) overflow streams caused by the
corresponding input streams. The intensity of the ith input stream
is a; = pa.

At this stage, we have modeled an arrival process having mean «
and variance v. The individual substreams to the first-choice sub-
groups of the grading are certainly correlated. How well the correla-
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Fig. 2—A model for correlated input streams.
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tion approximates the correlation that exists in an actual step-by-step
system is a point which must be tested. In Section III, we show that
the approximation works quite well when a large group of selectors
is connected to the grading. In any event, we can view the above
figure as a first approximation for the step-by-step problem. More-
over, the general features of the above configuration are not restricted
to step-by-step systems.

Figure 2 also illustrates the two basie features of the Equivalent
Random method. First, the method assumes that, for engineering
purposes, only the first two moments of an overflow process are
required. Second, the method assumes that any overflow process having
mean « and variance v is adequately approximated by the overflow
from a unique “equivalent system” consisting of a full-access trunk-
group with Poisson input. Whenever « and v are known, standard
techniques are available' to obtain the equivalent system of ¢ trunks
and intensity @ = a; + a» + ay + a4 of the Poisson input.

The next step consists of using results obtained independently by
Descloux'® and Lotze® to determine the mean e; and the variance v;
of the overflow (due to a;) which is submitted to the ith first-choice
subgroup of our grading. This “splitting” is determined by’

a; = pia (1)
and
Vi = ol% —1).
por=ali-) @
The covariance ¢; between the ith and jth “split” streams is given by
cii = pipi(v — a). ®3)

After splitting, our system is represented as

(ag !Vo)

!

f l f f

@4,V agp4,V2 a3,V g,V

Fig. 3—Graded multiple with correlated input streams.
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where it is understood that the parameters o; and v; of the individual
substreams satisfy equations (1) through (3). Using the Equivalent
Random method, we now approximate the individual substreams as
overflows from full-access trunk groups. Moreover, to determine the
total overflow which goes to the second major level of the grading,
we view the entire system in the following manner:

t f t f

Cay Vi) (a2 ,v) (a3 ,Vi3) (ayg,Via)

t t t !

(ay,w) (ap,Vs) (az,v;) Cag,V,)

t }
c“{ c,a{ }c,, : }c,.

!

8y

Qe |00 e

12
Fig. 4—First cycle of application of the extended equivalent random method.

Figure 4 indicates that an overflow of mean «; and variance v; re-
sults from a Poisson stream of intensity a,; being offered to a full-
access group of ey; trunks, i = 1, --+, 4. Furthermore, the ith sub-
stream is offered to the three trunks in the ith first-choice subgroup
of the grading, and causes an overflow of mean ay; and variance v;;
to be submitted to the second major level of our grading.

One can see the main reason for looking at the grading in the manner
desecribed above: the parameters a,; and v, are easily computed by

o = ﬂl.‘El.r“+a(at.‘)
and
Qi

VWi = ai‘-l:l et (i +3) + o — ay: + 1] '
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where E,(a) denotes the first Erlang loss-function (Erlang-B block-
ing probability).

To complete the first cycle of computation, we need to obtain the
mean & and variance # of the total overflow submitted to the second
major level of our grading. The mean & is given by & = Do e
Unfortunately, the variance # is more difficult to obtain, since the
individual substreams are correlated.

To obtain # we need the covariance, cov (z, j), between the ith and
jth overflow streams which are offered to the second level. A reasonable
method for computing cov (i, j) has not been available in the past.
Our extension of the Equivalent Random method consists of an algo-
rithm for computing cov (i, j) in a fairly efficient fashion for many
configurations of interest. A derivation of the algorithm is given in
Section IT.

After cov (i, j) has been determined, 7 is obtained from

4 4
5= Do+ X eov ). @)
i=1 ‘;;:,'1
Having & and #, we reduce the system configuration to that shown
in Fig. 5.

(QO:VO)

!

(3 ¥)

FlE {ii—-Starting point for the second cycle of the extended equivalent random
method.

The proportion of the traffic (&, #) offered to the first subgroup of the
second level is f, = (a1 + @12)/@, and P, = (a5 + @14)/a& is the pro-
portion offered to the second subgroup. Consequently, one cycle of
computation is completed.

Repetition of the logic described above will yield estimates of the
overflow mean a, and variance v, . Moreover, the cyclic nature of the
procedure allows the logic to be programmed on a digital computer
so that load-service tables and other relevant information can be
generated in a straightforward manner.
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II. MATHEMATICAL MODEL

A service system S is composed of a collection 9 of ¢ first-choice
servers, two groups 9, , M, containing d, , d, second-choice servers
respectively, and two last-choice groups £, , £, each containing an
infinite number of servers (see Fig. 6). The arrivals into the system
are generated by » independent groups of customers @, , -+ , @, . The
arrivals from group G; occur according to a Poisson process with in-
tensity a,. All service times throughout the system are independent
and have a negative-exponential distribution with unit mean.

A customer, arriving to find an idle first-choice server, selects an
idle server from 91, and service commences immediately. If an arrival
from group G, ¢ = 1, 2, occurs when all ¢ of the first-choice servers
are busy, but at least one of the d; servers from the second-choice
group 9; is idle, a server is selected from 97; , and service commences
at once. If a customer from group G; arrives to find all the servers
busy in both 91 and 91;, then he is served by one of the servers from
the group £,. If k # 1 and k # 2, requests for service from group
G , which oceur when all ¢ servers in 91 are busy, are dismissed and
do not return.

We assume that the system is in statistical equilibrium and define
M, N;, L; to be the number of busy servers in 917, 9%, and £, respec-
tively (at a random instant of time) for ¢ = 1, 2. Define the state of
the system to be (M, N,, N,, L,, L;) with joint probability density
function f(m, n, , na , Uy, 1) =

P{M=mN,=n,Ny=mn,,L =1, Ly = l,}.

LAST - CHOICE L L
GROUPS 1 =
SECOND - CHOICE
GROUPS { N Nz

FIRST-CHOICE
GROUP M

f f b

=N a a3 a,

Fig. 6—System configuration.
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Settinga = a, + a; + -+ + @, , it follows that f must satisfy relations
of the following form:
For0=m=c—1,0=n=d,and ; =0,

(ﬂ,+ m+nl +n2 + ll + l2)f(mlnl Jn2 ] ll b] lﬂ)
= af(m - ]-’nl ,nz y ll ’ lg)
+ (m + l)j(m + lxnl 1n2 ] ll 1] IE)
+ (n, + Df(m,ny + 1, m0, Ly b)
+ (o + Df(m,ny yna + 1, L, )
+ (0 + Df(tm,ny yme, L+ 1, L)
+ (12 + ].)f(m,ng ,ﬂz ) ll ] l2 + 1)- (5)
Similar relations hold on the boundary of the state space {(m, n1, 72,
L,L):0=m=c0=n=d,l =0} Wedefine f to be zero at all
points not in the state space.
The preceding infinite set of equations is quite diffieult to solve.
However, when it suffices to know the various moments of the random
variables L, and Ly, the problem can be simplified by introducing a

two-dimensional binomial-moment generating-function. This function
is defined by

B(m,n, ,n, ; 2, , T2)

= S fmym yme, b, WA+ 22 (6)

I,=0 I3=0
for —1=2,=0,0=m=c and 0 = n; = d;. Assuming that the
binomial moments

A AR

B.!..h(ms ny rnZ) = LZJ kz; l l] [ 2] f(m) Ny ;"2 3 kl ] kz) (7)
k1=4{ a=ia l] l2

exist, it follows that?

o0

o0
B(m,n, ,n, ;% , Xa) = Z Z By, 1.(m,n, ,ng)m:‘x;'.

1,=0 Ig=0

Of course, the binomial moments B, ,.,(m, 7 , n,) are the entities
of interest since
t Various manipulations of these double series will be carried out in the sequel.

The mathematical justification for the validity of the manipulations can be
obtained from Ref. 11, Sections 5.3 through 5.5.
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B, .1 B Z JZI i By, i.(m,n, yn,) = E[[Jl] [IQDI' (8)

m=0 n;=0 nyg=0 ! l
1 2

In particular, B(I.U) = E(L]_J, B(O,l) = E(Lg), and B(l,l) = E(Lng)
so that cov(Ly , Ls) = B(11) — B0 Boy -

Relations for the binomial moments are obtained by multiplying
both sides of Equation (5) (and the boundary equations which were
not given) by (1 + r,)"'(1 4+ r)'* and summing on /, and I, . Equating
like powers of r, and x, yields the following finite system of equations:

Ho=m=ec—1and0 = n, £d,,
(@a+m+n +n+ L + LB, ..(m,n, ,n)
=aB, ,(m — 1,n, ,n) + (m + DB, ,,(m + 1,n, ,n)
+ (n, + DBy, (m,n, + 1, n,)
+ (n, + B, ;,(m,n, ,n, + 1). (9)
For0 =n, =d, — 1,
(@ +a+c+n +n+ L + LB, (e, n ,n)
= aBy, (e — 1,0, ,n,)
+ a,B,, ..(c,n, — 1,n) + a,By, (e, n, ,ms — 1)
+ (ny, + 1)B,, (e, n, + 1, n,)
+ (o + 1)B,, o.(e,n, ,ne + 1), (10)
Whenever 0 < n, < d, — 1,
(a, +c+n +dy+ 1, + L)B,, (e, n, , d,)
=abB,, .,c— 1,7 ,d)) + a,B,, ,.(c,n, — 1, d,)
+ @By, e, n ,dy — 1)
+ (4 DB, e, n + 1, ds) + a,B,, ._\(c,n, , d). (11)
A similar result holds for 0 = ns = d, — 1. At the extreme boundary
point (¢, dy , ds),
(c+d +do+ 1, + L)B,, (e, d,,d)
=aB, e —1,d, ,d)) + aB,, . (c,d — 1,d.)
+ a.B,, (e, d, ,d, — 1)
+ aB .0 d ,d) + a.B,, .\, d, ,d). (12)
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Since By, (m, ny, nw) = P{M = m, Ny = ny, N, = no}, it follows
that

3 dy da

> > 2 Boolm,n,m) = 1. (13)

m=0 n,=0 na=0

We set B., ,,(m, n, , n2) = 0 for any point (/; , Iz , m, 71, nz) NOL in
the set

(,lp,mn,,ma): L,=20, 0=m =g 0 = n; =d}.

A very useful relation can be obtained by summing all of equations
(9) through (12) to obtain

da
L+ LBy o = Z B, .1.(c, dy yng)

na=0

a3 Biooea(esna , o). (14)

n, =0

Consequently, B(11y = E{LiL.} can be obtained from

q.(m, ny) = "i:n B, o(m, ny ,m2) (15)
and
da
q(m, n,) = :,;0 Bo.(m,n, ,n). (16)
That is,
2B, = aga(e, d\) + a:q:(c, da). (17)

Relations for ¢, and g. are obtained directly from equations (9)
through (12) (see Appendix B). However, the relations require
Byo(c, my, ds) and Byy(c, di, ny) for 0 = n; = d; . (See Refs. 12 and
13 for a related problem.) Setting &; = l» = 0 in equations (9) through
(13) yields, with equation (14), a system of (¢ + 1) (di +1) (d2 + 1)
independent linear equations for By, which in principle can be solved
numerically. Unfortunately, for the step-by-step applications de-
seribed in the introduction, ¢ ean be quite large (20 or more) although
d, and d, normally do not exceed 5. Consequently, systems of 500
and more equations would not be uncommon. Since a solution might
be required for several sets of parameters in any particular network,
a direct numerical solution is not attractive.

In Appendix A, we obtain a closed-form expression for Boo (m, ny,
Nw) in terms of the (d; + 1) (dy + 1) constants
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B(ﬂu sn2) = E[[M [Nl [N,}:! y 0=n =d,. (18)
Cc n,

Na
Furthermore, these constants satisfy (dy + 1) (d» + 1) independent
linear relations, so that a numerical solution is quite practical. In fact,
the maximum size of the system of equations requiring solution for
step-by-step systems is reduced from more than 500 to 36.
A closed-form expression for g, (e, d2) and g.(c, d;) is derived in
Appendix B. These results combine into the following computational
algorithm for cov (L, , Ls) : First of all,

B0, 0) = E, .(a) (19)

(the Erlang-B blocking probability for the first-choice group), and
forO0=n,=di,ny + ny >0,

(nl + nz)ym +naB(nl ] n2)
= a,B(n, — 1,n,) + a,B8(n, yne — 1)

d d

- a,[ ! ]ﬁ(d1 y Ma) — az[ : ]5(’”1 , da). (20)
nl - 1 Ny — 1

By definition, B(ny, — 1) = B(— 1, n3) = 0 for 0 = n; = d,. The

numbers v, are intimately related to various aspects of overflow sys-

tems' and satisfy the following recurrence relation:

1

Vo

= E, (0 (21

and

(22)

vV
" nv,, N

Then, (from Appendix B)

0 [ﬁ(dn ) dﬁ k:l

alc, do) = h;:_:l (23)
a EH | 1]
i=1 ]—* 1] k=i Vi
and
e Z[IB(J‘; d>) H k ]
k=i+1 Vg (24)

i

k=j+1 ka
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From Appendix A,

E{L,} = af(d,,0) and E{L)} = a.8(0, dy), (25)
so that

2 cov (Ll ’ Lg) = a1q2(C, dl) + aqu(c, dz) - 2alagﬁ(d1 ) 0){3(0, dz)- (26)

Equations (19) through (26) constitute an algorithm for the com-
putation of cov(Ly, Lz).
Whenever

a, =a, and d, = d,

the symmetry of the problem (see Fig. 1 and equation (18)) implies
that

ﬁ(nl H n!) = -B(nﬂ ] nl)' (27)

The symmetry required by (27) would prevail for most step-by-step
graded multiples. In such cases (27) can be used to reduce the number
of equations to ¥ (d;y + 1) (dy + 2). Consequently, the dimensions
of the systems of equations needed for an analysis of most step-by-step
graded multiples would not exceed 21. Such systems can be solved
very efficiently by numerical matrix inversion.

III. NUMERICAL RESULTS

In order to establish a base for comparison, we used a simulation
to obtain load-service relations for a 25-trunk and a 45-trunk step-
by-step graded multiple. We obtained results for several values of
variance-to-mean ratio z = v/a and several selector configurations.
We found that the extended Equivalent Random method furnished
adequate estimates of blocking probability in each case where the
maximum number of selectors was used. However, as the number of
selectors was reduced for a particular grading, the inherent load-
balancing* caused actual grading capacity to be higher than indicated
by the extended Equivalent Random method. Consequently, we con-
clude that the extended Equivalent Random method provides adequate
estimates of load-service relations for graded multiples which carry
overflow traffic, provided that the network through which calls reach
the grading does not significantly influence grading capactty.

In view of the effort required to obtain the covariance cov (L, L;),
one naturally questions the necessity of accounting for the correlation
which occurs in our problem. In fact, on several occasions, we en-
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countered the following question: What sort of results would be
obtained if both mean and variance were split by proportion (i.e.,

a = pa and v; = pw) when splitting is required, and cov(L;, L;)
were assumed to be zero whenever a variance recombination is re-
quired?

In order to consider the preceding question, as well as to obtain a
better understanding of the behavior of cov(L;, L;), three computer
programs were written to generate load-loss relations for step-by-step
graded multiples. These programs were based respectively on the
following assumptions:

(7) The input traffic is completely random, i.e., Poisson.!

(@) The input traffic is nonrandom. Mean and variance are split
by proportion when required and cov (L, , L;) is assumed to
be zero.}

(777) The input traffic is nonrandom, and the gradings are analyzed
by using the extended Equivalent Random method.

Throughout the study, the offered traffic was assumed to be balanced
over the subgroups of any grading under consideration (i.e., p; = p;
for all 4, j).

For comparison, we used each of the three assumptions to compute
load-service relations for a 25-trunk and a 45-trunk graded multiple.
The results are displayed in Fig. 7. For these examples, the variance-
to-mean ratio of the nonrandom offered traffic was held constant
at 2.25.

The different results arising from assumptions (i) and (iif) were
surprising. It was originally felt by some that assumption (i) would
cause over-trunking, but not by the amounts indicated. For example,
notice that the 45-trunk grading yields a B.01 blocking probability
for an offered load of 330 ces (9.17 erlangs) with a variance-to-mean
ratio of 2.25 when the correlation is neglected as outlined in assump-
tion (if). However, Fig. 7 indicates that the same traffic can actually
be handled at B.01 on the 25-trunk grading when the correlation is
taken into account. Hence, assumption (it) leads to at least 80 percent
overtrunking for the example. An examination of other portions of
the curves yields similar results. Consequently assumption (i) must
be discarded.

Lower bounds to the load-loss relations for nonrandom traffic

t Assumption () is known to cause an underprovision of trunks.
t Assumption (7)) was considered by many to be the most natural approach
to improving on assumption (z).
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Fig. 7—Load-loss relations for the 25-trunk and the 45-trunk graded multiples.
Variance-to-mean ratio of the offered load is z = 2.25.

result from assumption (i) as illustrated in Fig. 7. For these examples,
undertrunking by 18 to 25 percent results from approximation (z).
Since the disparity will increase for larger variance-to-mean ratios,
assumption (z) does not seem applicable either.

Two other approximations were also tried but the results were very

poor. The first used the correct splitting equations (1) through (3)
but assumed cov(L;, L;) = 0. As a result, some of the load-service
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curves actually intersected cach other. The second also used the
correct splitting formulas but assumed the correlation coefficient.

cov (L, , L))
[var (L.) var (L,)]}
to be constant at recombination points and equal to the correlation
coefficient for the split (nonrandom) offered traffic. The predicted
blocking resulting from the last approximation actually decreased as
the intensity of the offered traffic inereased.

p(L,- rLJ') =

1V. CONCLUSIONS

We have presented a technique for taking correlation into account
when combining certain dependent streams of overflow traffic. The
result was used to define an extension of the Equivalent Random
method; an engineering approximation for estimating the ecapacities
of overflow networks,

The extended Equivalent Random method yields good estimates
of load-service relations for graded multiples which carry overflow
traffic provided the network through which ealls reach the grading
does not significantly affect grading capacity. Consequently, for ap-
plication to step-by-step gradings, the extended method is restrieted
to gradings which are connceted to large groups of selectors. We are
currently investigating techniques which would allow us to consider
systems which do influence grading capacity.
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APPENDIX A

System State Probabilities

In this section, we obtain the solution for the system of equations
(9) through (13). We use a generalization of a technique employed
by Kosten.**
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For notational simplicity, let p(m, n,, na) = B, (m, n1, na), and
let p, (m, 11, N2) denote any function which belongs to the family @
of functions satisfying equation (9) for0 < m < « and 0 < n; = d;.
Define

o d

P g g = 3 30 3 pulm,me, )G (28)

m=0 n1=0 na=0

It follows from equation (9) that

A-0L -t - =at—0P. (9

This linear first-order partial differential equation can be solved by
(Lagrange’s) method of characteristics (see Ref. 15, Chap. 2). The
characteristic equations are

dt _ _dg  _ dgs  _ dP
1—t 1—¢q 1—¢q al—=10P
with solutions

1_'9'1'_ _ ,—at
——l—t_k‘ and k =¢e*P

where k and k; are arbitrary constants. Hence, the solution to equation
(29) is given by

_ ot I*QI 1“'—”12)
P(t’q"q’)—EH(l—-t’l—t (30)

where H(z,, 2,) denotes any analytic function of the arguments
z1, z». From (28), it follows that the Taylor series for H must be
finite, and so

Pl = 5 5 e, m(52) (522)" e

n1=0 na=0
Following the notation of Riordan (Ref. 1, p. 89), let {ax(m):
m = 0, 1, --+} be the sequence with generating function
(1 — t)~* exp(at), that is,

0 eul

oot = g (32)

The variables o (m) satisfy the following recurrence relations.*'*
Form=0and k = 0,

ma(m) = ac(m — 1) + ko (m — 1), (33)
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ko (m) = (k + m — a)o(m) + aor_,(m), (34)
and
3 oulm) = 51, (35)

It is convenient to define
U-](m) = O’k(—l) =0. (36)
Hence, from Equations (31) and (32),

P(t: 05 Q)

=33 S aln e — @)1 — @) (37)

m=0 n,=0 na=0

o0 dy da dy da k k
255> [(—1)“‘*"’ > 5 ][ ath, 1

m=0 n,=0 ng ki=ny ka=ngy nl n2
-crk,ﬂ.(M)]ﬁ"'qi“qS’. (38)

Comparing equations (29) and (38), one can see that the functions
p: in @ are of the form

ny+na & - k k
pi(m,ny ,mg) = (=)™ kz kZ ' 2]oe(icl s k2)ag, r,(m), (39)
1=ny a=ng nl n2

and are determined up to the (d, + 1) (d. + 1) constants {a(n,, n.):
0 < n; = d,}. There are (d, + 1) (d» + 1) independent linear equations
among equations (10) through (13), and so it follows that there is
exactly one function, p* in @ which satisfies equations (9) through
(13). The appropriate restriction of p* must be p. The remainder of
this section is devoted to a derivation of the relations which the con-
stants {a(n, , n.)} must satisfy in order to obtain the solution.

An equivalent but less complex set of boundary conditions is ob-
tained by putting m = ¢ in (9) and subtracting equations (2) through
(13) respectively. Hence, if 0 = n; = d; — 1,

(@ — a, — a))ple, n, ,ne) + ayple, n, — 1, ) + asple, ny ,ny — 1)

=+ Oplc+ 1,n,,n,), (40)
for0=n =d; — 1,
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(@ — a)ple,n, , ds) + aple,n, — 1, dy) + aple,n, ,d — 1)
= (c+ Dp+ 1,n,,d), (41)
and a similar relation holds for 0 = ny, = d. — 1. Finally,
aple, d, , do) + aple, dy — 1, ds) + asple, dy , dy — 1)
= (4 Dplc+ 1,d,,ds). (42)

Now, define

dy  da

P.q, q) = Z=u E_o p(m,n, , n.)qy' qz", (43)
ds
Gm.n.(qQ) = E=0 p(ml n, !nﬂ)q;’r (4:4)
and
dy

Hm.ﬂn(Ql) = Z—D p(mr nl rnZ)q’!’l“' (45)

It follows from equations (40) through (42) that
[a — a(l — q) — &1 — @)IPqi , @) + (1 — ¢)¢7'Ge 0. (2)
+ a,(1 — @)¢2"H, 0,(q) = € + DPeii(qy , @).  (46)
Equations (39) and (43) through (45) imply that
dy dy

P.(q; , @) = Z Z a(n, :nz)ﬂn,+n,(m)(1 — )1 = @), (47)

ny=0 ng=0

da

G..0(q) = (_1)6‘ HZ:D ald, , n)oa,n @1 — ¢2)", (48)
and
Heulg) = (1" X alm , )@ = )" (49)

Using the identity g; = 1 — (1 — ¢;) and the relations (47) through
(49) in (46) obtains

d, da

a Y, 2 al )o@l — @)™ (1 — )"

ni1=0 ng=0

di+1 da

—a 2, 2 al — 1,0)0m 4000 — @) (1 — )"

ni=1 ny=0
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dy  da+1

—a 2 2 aly ,na — Do @01 — @) (1 — g2

ni=0 na=1

e S S (- 1)"{ a

m=1 na=0 1 _ IJ
ald, , n2)oa, a1 — q)" (1 — g2)"

e 5 Y (—1)”’{ .

ny=0 na=1 n, — 1

ca(n, , d2)o,, 0,01 — q)"(1 — g2)"

e+ D Y Y ol m)omemle + D1 — ¢)" (1 — )"

ny=0 ny=0
Equating the coefficients of (1 — ¢,)" (1 — g2)"* yields
{aﬂ'"..“,,(c) - (C + 1)0',,,+,,,(C + 1)]“("'1 )n2)
= [aa(n, — 1,n:) + wa(n, ,n, — 1) + ta(n, ,ny — 1o, 40,-1(0)

+ (‘_l)d”mﬂl[ d ]a’(dl ,nz)ﬂ'd,w,(c)
n, — 1

—
Ny — 1
Using (33), we see that

a(n, , d)o,,+4,(C). (50)

a0, 10,(€) — (¢ + Dow, (e + 1) = — (s + na)on, inaia(e).  (51)
It is worthwhile to define
B(ni, na) = (—1)"""aln, , n2)n,4n,(¢), and n = n; + ny. (52)
Now, substitute (51) and (52) into (50) to obtain

an+ l(c)

2.(©) Bn, ,n.) = a,p(n, — 1,n,) + a.B(n, ,n, — 1)

_al[ d }.B(dl ) N2)
n, — 1

o ] (n, , do) (53)
nz - 1

for 0 = n; = d; and n > 0. (Both sides vanish for n; = n. = 0.)

_az
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One additional relation is required. Using (39),

}_;0 Z:,op(m,nl y Np) = Zﬂ Z;na(nl s e, wna(110)
[Z ™ (—1)’“] Z s ( 1)“]
ki=0 k] ka=0

a(0, 0)ao(m).

Consequently, noting relation (36), one obtains

=35 3 pmn ) = a0, 0) 3 ai(m)

m=0 n1=0 na=0

a(0, 0)o,(c).

Thus,

«(0,0) = (c)

and

80, 0) = 28 = By..0); (54)

ie., B is the Erlang-B blocking probability (also known as the
first Erlang loss-function) for the first-choice trunk group.

Equations (53) and (54) completely determine B(ny, ns) for
0=mn = d,. Using (52) and (39), we see that the state probabilities
are given by

P(m; n , n2)

- 3 5 eyt () (M) kel

ky=n, ka=ns

Using the relation

[lc m] _ A;] k—n
m) \n n lm—n
it is straightforward to show that if
A N EARIARL: .
Almmn.na) = Z Z Z ! ' p("": Ikl 9k2)
i=m ky=n, ka=na m nl n,
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for0=m = cand 0 = n; = d;, then an inverse relation is given by

'P(ms Ny, Na)

= E D D B G S [’fw [’Cz
i=m ki=ni ka=na ) ln) s
Ak b (56)

for0O=m=cand0=n,= d,.
Consequently, comparing (55) and (56) we see that

IB(n] Jn2) = A(c.ﬂ..nz)

_ gl iﬂ[ N, lm } -
1 c ny Nay
Equations (14) and (55), imply that
E{L,} = aB(d,,0), (58)
and
E{L,} = a,8(0, d). (59)

For the computation of g(n,, n.) using (53), the ratio

)]

T

is required for n = 1. A recursive relation for the ratio is obtained
from (32) via

Eﬁl_(c) — [1 + ¢ :Ta:l 4+ (_Io—,,_|(c) :

0.(0) n e
that is,
v"=‘_1(_1_)+cha+1 for n = 1. (60)
n \V,—y n

The first-order (nonlinear) algorithm is initiated with

1 _ ae) _ :
o) T P o

Le., the Erlang-B blocking probability for the first-choice trunk group.
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APPENDIX B -
A Conditional Mean
In this appendix, a formula is obtained for the computation off

q (ml n) = dlz Bl.ﬂ(mynl 7”)

— B{L,|M = m, N, =n)P{M = m, N, =n}. (62)

From equations (9) through (12}, it follows that for 0 = m = ¢ — 1
and 0 = n = d.,

(@ + m + n + 1)g(m, n) = aglm — 1, n)
+ (m + )glm + 1, n) + (n + 1glm, n + 1) (63)

and for0=n=d> — 1,

(a2 + ¢ + n + Dglc, n) = aglc — 1, n) + axqle, n — 1)
+ (n + gle, n + 1) + aBoolc, di, n). (64)
Also,
(c + dy + Dalc, do) = aglc — 1, dz) + axq(e, d2 — 1)
+ aBoole, dy , ds).  (65)
Using the methods and results presented in Appendix A, we can
show that
S et Orsi(m)
glm,n) = ;;-Zn(—l) mkm for 0 =m=c¢c
and 0 =n =d,, (66)

where v_; = 0, and

da
(n + l)vn+1wn = QolWp-1 — Qg

]wd, + aB(d, ,n)

n—1
for 0=n=d,. (67)
In particular, g(c, ds) = w4, , and can be obtained from (67) in the

following closed form:

1 Throughout this appendix, the subscript 1 on ¢: has been omitted for nota-
tional simplicity.
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az i=0 [B(d] ,j) H ]

k=j+1

. d, dat1 a ’
o E{ - 1] H"’”}

Q(C, d2) = (68)

A similar expression is valid for g. (¢, dy).
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