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Light scattered in one optical fiber can be scattered back into a
guided mode in a neighboring optical fiber. This type of scattering
crosstalk 1s investigated in this paper for slab waveguides. However,
the results for the slab waveguide case are upper limits on the crosstalk
between round optical fibers. Scattering crosstalk is expressed in terms
of guided mode radiation loss whose cause is the same scattering
mechanism. It 1s thus not necessary to know the details of the scatter-
ing mechanism as long as the scattering loss, which is a measurable
quantity, is known. In addition to the total radiation loss the cross-
talk depends on the width of the radiation lobe in which the scattered
energy escapes from the waveguide. The crosstalk is inversely pro-
portional to the width of the radiation lobe and thus is larger when
the radiation lobe is narrow. Scattering crosstalk can become serious if
both guides have a systematic sinusordal imperfection of the same
mechanical frequency resulting in a radiation lobe of nearly zero
width. In the absence of a systematic sinusoidal imperfection it can
be concluded that scattering crosstalk between dielectric waveguides
(optical fibers) is negligible if the radiation losses are tolerable. In
this case it appears unnecessary to suppress crosstalk by means of a
lossy medium between the waveguides.

I. INTRODUCTION

In an earlier paper® I discussed the crosstalk between optical dielec-
tric waveguides based on the directional coupler mechanism. In that
case, crosstalk was caused by the fact that the exponentially decaying
field of one guide reaches the region of a neighboring guide. This type
of crosstalk exists even if both guides can be considered to be perfect
dielectric eylinders.

The present paper is devoted to a crosstalk mechanism of a different
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type. A dielectric waveguide or optical fiber loses power by radiation
if the guiding structure is imperfect in any way. This imperfection
may consist of deviations in the perfect cylindrical geometry of the
core-cladding interface or it may consist in random variations of the
refractive index distribution. Some of the radiation, causing loss to
the guided mode of one fiber, may reach a neighboring fiber and can
there be scattered back into one of its guided modes. This type of
crosstalk is thus caused by waveguide imperfections. However, just as
in the case of the directional coupler effect, it is possible to link pre-
dictions of the effectiveness of this type of crosstalk mechanism to
the loss it causes to the guided mode. This makes it possible to give
very simple rules that link crosstalk to radiation loss (see equation
(50)). It turns out that scattering crosstalk is no serious problem
provided that the radiation loss of the guided mode (that is caused
by the same mechanism) remains within acceptable limits.

Our treatment of the scattering crosstalk problem is simplified by
limiting it to the case of the slab waveguide. It is intuitively clear
that the crosstalk between slab waveguides must be stronger than
crosstalk between round optical fibers. In fact, the crosstalk between
parallel slab waveguides is independent of their separation while the
crosstalk between round fibers must vary inversely proportional to
their distance. Furthermore, our treatment of crosstalk starts out by
assuming a definite scattering mechanism. That is, we assume that
the core of either guide varies in width. However, this special assump-
tion allows us to describe the more general case. No matter what the
mechanism, scattering of light can be attributed to the individual
Fourier components of either the core width variations or of the de-
parture of any other quantity from its perfect value. Regardless of
the particular mechanism each Fourier component causes a narrow
radiation lobe to escape in a definite direction. The same mechanism
that produced the radiation lobe in one guide is responsible for the
capture of some of this radiation in the neighboring guide. It is thus
immaterial by what mechanism the radiation and reconversion was
produced. In particular, if we express the strength of the scattering
mechanism by the radiation loss that it causes to the guided mode,
we have a description of the crosstalk effect that is independent of
the actual scattering mechanism. Realization of these few basic facts
greatly simplifies the treatment of the scattering crosstalk problem.

The deterministic scattering theory can easily be extended to include
statistical assumptions about the scattering mechanism. We are thus
able to express the scattering crosstalk in terms of three parameters:
the scattering mode loss, the ratio of waveguide length to free space
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wavelength of the guided radiation, and the width of the radiation
lobe.

II. CROSSTALK CAUSED BY SINUSOIDAL CORE THICKNESS VARIATION

As discussed in the introduction, we are basing the treatment of
scattering crosstalk on the mechanism of core width variations. To
begin with, we concentrate on crosstalk caused by sinusoidal varia-
tions of the core of both slab waveguides. The more general case of
arbitrary core width variations can be treated by decomposing the
arbitrary funections into Fourier series and utilizing the result for a
single sine wave component. Finally, we express the crosstalk in terms
of radiation losses suffered by each guided mode and are thus able to
free ourselves of the particular seattering mechanism.

It is well known that dielectric waveguides possess two types of
modes. At a given operating frequency there are a finite number of
guided modes and a continuum of radiation modes. The coupling
between these two types of modes caused by variations of the core
thickness has heen explored in earlier papers.>* We ecan thus simply
draw on these earlier results for our present purposes.

The even and odd radiation modes of the dielectric slab waveguide
[equations (24) and (25) of Ref. 3] can be expressed in the
following simple form outside of the core, #; > d (Fig. 1):

¥

&, (p) = (g:,;p) cos [p(| 2y | — d) + ¢le™™, o)
20 3 .

50 = 5 (22) cos i | — )+ w7 @

As usual, the factor exp(+ iwt) has been suppressed. The phases
appearing in (1) and (2) are given by

tan ¢ = i:t.a,n ad (3)
and
tan ¢ = -—% cot ad, 4)
with (k = ©Ven,)
p = (n2k* — g} (5)

and
o = K — gHL (6)
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Fig. 1—Geometry of the two slab waveguides, The figure shows the definition
of several parameters and indicates a scattered light beam (as a ray) going from
guide 1 to guide 2.

The slab half-width is d; n, and n, are the refractive indices of core
and cladding. The power carried by the radiation mode is defined by
the orthogonality condition of the radiation modes:

ﬁ; f_w 8(p) 87(p") dx = P8, 8(p — p')- @

8,, is the Kronecker delta symbol while 8 (p — p’) is Dirac’s delta func-
tion. An even guided TE mode is coupled to only even radiation modes
by a sinusoidal variation of the core thickness of the form

d, = d + a, sin 8,2 (8)

According to Ref. 3 the radiation field excited by the sinusoidal thick-
ness variation of the slab core is given by

_alk’(zmu.,P)*(nﬁ — M) €08 Kk, d

E, =

3
w(ﬁld + &)
Y1
[ ots ed oo [play - d) +-4] a2 0
Jorcponar 10° cos® od + o”sin’ od)? ¢ A - O
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This formula holds for d < z; < . The variable A is given by

A=6 — (8 —B). (10)
The parameter 8, is the propagation constant of the even guided TE
mode. The other parameters appearing in (9) are

(mik* — g})* (11)

Ky
and

vi= (8 — nik")™ (12)
There are two differences between (9) and equation (27) of Ref. 3.
We are now dealing with core thickness variations instead of a varia-
tion of only one of the faces of the slab core. The guide length L had to
be replaced with the length coordinate z since we assume that the
guide is very long and that we are looking at a field close to the fiber
core and not at z > L infinitely far from the sinusoidally perturbed

section of length L. Finally, we have replaced the differential dp of
equation (27), Ref. 3 by

_ _B
dp = ~Eda. (13)

For large values of #z the factor (1/x) (sin Az/2) /A approaches a delta
function. We are thus permitted to take slowly varying functions out
of the integral and are left with

. 2
® ) sin A5
Limf cos [p(x, — d) + ¢le i #2472 —

4

dA

™
2

exp [—i[fz + Blx, — d) +¢]}.  (14)

The limits on the integral were extended from — o to 4. This
does not change its value since only the immediate vicinity of A = 0
gives a contribution. The dependence of p and 8 on A follows from
(5) and (10). The propagation constant f§ is given by 8 = 8, — 6, (or
A = 0). It is more convenient, however, to express it in terms of the
angle « at which the radiation is leaving the slab core.®* We have

B = n.k cos a (15)
and, similarly,

5 = n.k sin a. (16)
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The radiation field that is caused by scattering of light from the
even TE guided mode by a sinusoidal variation of the core thickness
is thus simply a plane wave,

1 -
B = — a,k*(2uwp,P)*(n; — n3) cos k,d cos ad o P9 o i (Feepny) (17

v B
2{(,61&! + %)(ﬁz cos® ¢d + &°sin &zd)}

The phase terms ¢ is given by (3), the parameter ¢ follows from (6)
by a replacement of 8 with g of (15).

This calculation proves once more that the standing-wave radiation
modes result in traveling waves when properly superimposed.

We have so far ignored the finite width of the cladding. We could
easily take reflections and refraction at the cladding boundary into
account. However, our theory is meant as an order-of-magnitude
estimate of crosstalk so that the small reflection losses at the cladding
boundary will simply be ignored.

As the radiation reaches the core of the neighboring slab waveguide,
reflection and refraction are taking place. It is intuitively clear that
the plane wave impinging on the core of the neighboring slab wave-
guide can be expressed as a superposition of an even and an odd
radiation mode of the guide. In fact, it can be shown that the plane
wave impinging on the second guide can be expressed by

E, = Gle *&,”(p) — ¢ &, ()}, (18)

with the even and odd radiation modes (1) and (2) being expressed
in a coordinate system centered at the core of the second guide. The
coefficient is given by

ak*(xB) (n} — n3) cos x,d cos &d —sp(R—3d) (19)

G=—e" ;
2{(,6.&1 + %)(5’ cos® 6d + & sin® &d)}

R is the distance between the centers of the two waveguides. We now
know how the radiation originating at the first guide excites the radia-
tion modes of the second guide. If we assume that the second guide
also has no other imperfections than thickness changes of the core
and if we are concerned with the excitation of another even TE mode,
only even radiation modes of the second guide can contribute to the
crosstalk problem.

The question of how an even radiation mode excites an even guided
TE mode has been solved (in principle) in Ref. 2. The excitation of
the guided mode is expressed by an excitation coefficient c(z). How-
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ever, we are interested only in the value of ¢ at z = L. To the first
order of perturbation theory we obtain

C(L) — ie*l'QB(Dfd')e#ipn(R—QD)e-'m:(n;Jc/par)(R—Qﬂ)e—2i¢
a,a:5k' (n; — n3)° cos kid cos kod cos® Gde ***F

' }
2{(314 + %)(Bgd + %)} (7 cos® 6d + & sin® 5d)

L -
f g T (sin Bzz)e“ﬂ’_m' dz. (20)
a

Several new parameters have been introduced in (20) (see Fig. 1).
R is the separation between the core centers of the two guides. The
first exponential factor of (20) accounts for the phase shift of the plane
wave inside the claddings of the two guides with cladding thickness
D — d. The second exponential factor accounts for the phase shift
in the medium of index n,; between the two guides (separation B — 2D).
The value of 5 in the medium between the guides was designated by
ps. (see Fig. 1). The subscript r indicates the real part of p; . The imag-
inary part of p; attenuates the plane wave as it traverses the space
between the two guides. We have assumed that the core and cladding
of both guides are lossless but allow for the possibility that the medium
separating the two guides may be lossy. The loss suffered by the plane
wave in the medium between the guides is given by the third exponential
function in (20). The real part of the refractive index of the medium
between the guides is n; , the amplitude loss coefficient of the wave
is a3 . The ratio nsk/ps, adjusts for the slant angle of the wave and
R — 2D is the separation of the two guides (cladding-to-cladding
distance). The subscripts 1 and 2 refer to quantities belonging to
guide 1 and 2. Finally, we have added the amplitude loss coefficients
o, and a; to account for the losses suffered by each guided mode. These
losses can be thought of as the sum of heat losses in each guide plus
radiation losses caused by the variation of the core thickness. The
factors a, and a, indicate the amplitudes of the sinusoidal thickness
variation of the cores of each guide. However, it is assumed that the
perfect geometry and the refractive indices of both guides are identical.
The mechanical frequencies 8, and 6, are not independent of each
other. Only when the propagation constant 8, of the guided mode of
the second guide and the mechanical frequency 68, of the thickness
variation of its core are related to each other by the equation

02 = 62 - ﬂ- (21)

can any amount of power be coupled from one guide to the other.
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From (10) (with 8 = § and A = 0) and (21) we obtain the condition

6, = 0, — (.31 - 132) (22)
The range of 6, values contributing to radiation is given by®
ﬁl - 'nzk < 01 < ,81 + ’ﬂ,gk. (23)

In the more general case of a Fourier spectrum of mechanical fre-
quencies of the core thickness variation, we see that each Fourier
component of guide 2 combines with a certain Fourier component of
guide 1 to provide crosstalk.

11I. GENERAL CORE THICKNESS VARIATION

Having determined the amplitude coefficient of the guided mode in
guide 2 that is excited by purely sinusoidal variations of the thickness
of the fiber cores we can immediately generalize to the case of arbi-
trary core thickness variation. We expand the core thickness of each
guide in a Fourier series:

P =
4 =d+ (%) 3 a,, sin 0.z, (24)
v=1
2\} & .
d, = d + (E) > a,,sin 6,2, (25)
k=1

with 6, = vr/L. We choose the Fourier sine series because we already
know the result for a single sinusoidal thickness variation. The ex-
pansions (24) and (25) involve a complete set of orthogonal functions.
By replacing

a — (%);al. (26)

2
a; — \/% Aa, (27

and summing over v we convert (20) to the general case. Only one
summation is required since each Fourier component of guide 1 com-
bines with only one definite Fourier component of guide 2. However,
before writing down the resulting formula we will make two more
changes. First, we can convert the sum to an integral with the help of
the relation

and

'Z —»f f de. (28)
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Second, we introduce the Fourier coefficient ¢(#) that was used to
express the radiation losses in Ref. 3. By definition we have

6.(6) = ;jf d — e dz  j=1,2 (29)

The relation between ¢;(8) and a;, is given by the following equation

#°060) = Im8,0)) = —gpze.  i=1L,2 (0

The notation Im indicates the imaginary part. Then we form the ratio
of power at the end of guide 2, P,(L), to the power at the end of guide 1,
P,(L) = e*"*P,

P(L |Cl2 _eza;L|c|2
P(L)  Py(L) '

With the help of (21) the integral in (20) can easily be performed
and we finally obtain

Py(L) _ L*(ni — n3)'k" cocs2 x,d cos® kyde® (1 - e‘“‘“‘“”‘)2
Py(L) B B2 a; — oy
(8. + Bad +

_ f"'*""‘ ¢, (6, )¢ "(ez)a cos’ ¢d
si—mi P cOS’ &d + & sin® &d

(31)

_e—ﬂl'tbe-'l'IEﬁ(D—ﬂ')+a:r(R—2D)Ie—a:(nak/an)(R—EDJ d81 (32)
Equation (32) is the expression for the crosstalk between two identical
slab waveguides. The coupling mechanism is the thickness variation
of the two waveguide cores. The even guided TE modes in either
waveguide need not be the same.

In its general form the crosstalk ratio is not very useful since the
spectral functions ¢, and ¢. are usually not known. However, it is
possible to provide estimates of the crosstalk by using the radiation
loss of the guided mode that is caused by the same mechanism that
provides the crosstalk. The scattering loss was given in Ref. 3
(i=1,2).

9 AP, L(nl — n3)’k* cos® k,d
Oy = PL (ﬁ d + ‘.)
T\ Yi

2 2
Jj’i(el‘) I P COs ﬂ‘d d.B- (33)

—mak P08’ od + o’ sin® od
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[There is an error in equation (14a), Ref. 3. The left-hand side
should read APd/(PL).] Equation (33) differs from equation (14)
of Ref. 3 since we have here assumed that the core thickness varies
while in Ref. 3 it was assumed that only one side of the core cladding
interface is distorted.

For simplicity we consider now the case that the two modes of the
coupled guides are identical and that only one sine wave component
of the Fourier spectrum exists. We thus have (¢ = ¢2):

|6:(0) I = | & (O = 57 " (0 — 6) (34a)

and

[6:7(6)] = i (0)65” (8) = 7 a* 8(6 — 0), (34b)
and obtain from (32) and (33) with ey = a2

i:gﬁ; = (1/4)(2arL)ﬂe—2un(mk/nr)(R—ZD)‘ (35)
The index r is meant to indicate that « is the radiation loss. In this
special case the crosstalk is simply proportional to the square of the
mode power loss coefficient 2a.L times the power loss that the plane
wave suffers in going from guide 1 to guide 2 through the lossy medium
between the guides.

IV. RANDOM VARIATIONS OF THE CORE THICKNESS

The average radiation loss is simply obtained by replacing |¢|*
with the ensemble average (|¢;/?) in (33). Obtaining the ensemble
average of (32) is a little more complicated. To simplify the discussion
we write the integral expression oceurring in (32) in the following
form

2

I =

Bit+nak
[ 600000 (@) do
B

1—nak

TS e F6) [, 60

v=1

with
Gn = 0, - (.81 - ﬁz) (37)
With the help of (30) we can also write for the ensemble average of I
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I = 41%; Z‘, (ay,a¥, a0k, YF(8,)F*(6,). (38)

The asterisk indicates complex conjugation. It appears reasonable to
assume that there is no correlation between guide 1 and 2. We thus
assume that we can write

(a'l va?‘t ’aipa;p') = (al va;.u ')(aﬂya';u ') . (39)

It is shown in Ref. 4 that for a stationary random process with
L — o we have

(anat, ) = (lay, [*)s,, - (40)

[The proof presented in Ref. 4 for the usual complex Fourier series
can easily be extended to the Fourier series (24). The conclusion (40)
remains correct,. ]

We thus have

D) = 27 T dla. X1 0, 19| ) P ay

Returning to the integral notation we have

B1+nak
=T [ et X160 [ | P P s, . @)

For stationary random processes we can assume (|¢(0)[%) =
¥ (|¢(6)]*). We thus obtain the ensemble average of the crosstalk
in the form:

(Py(L)/P\(L)
{(2a,, L)(2a, L)
r:wm—n,)i_(l el 'L) f (|¢'1(ﬂ) I )"\1 @,(0. )Pnzjt cos’ ﬂd Sra k) (R-2d) g
R @ — B cos’ ad+a sin® #d)’
dnakL f ( 0.(6) )6 cood_ [ _U0ul0) [ cos’od
W o cos ad + o sin® od Jo o cos’ ad + o sin® od

(43)
We used (15), (16), and (10) which, with A = 0, assumes the form
0, = B — B = B, — nsk cos (44)
to obtain
df, = n,k sin ede = pda

for the integral in the numerator of (43). The angle « indicates the
direction in which the plane wave radiation from a given Fourier
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component escapes from the waveguide core. (The angle « must not
be confused with the loss coefficients a; or a,.) In the integrals in the
denominator we have likewise used the transformation

B = n.k cos a, (45)
so that we obtain from (5)
p = 2k* — 8%t = nok sin @ (46)
and
dg = —pda. 47)

For a discussion of (43) it 1s much more convenient to consider the
case that mode 1 of guide 1 and mode 2 of guide 2 are identical. The
conclusions for the more general case are very similar. We can further-
more assume that the power spectra of the two guides are identical
since they are supposed to be statistically similar,

(lou ) = (e ) = (o [*). (48)
We thus obtain the much simplier formula (For simplicity we use
ag = 0)
" {1 9(8) *Ynokp’® cos' ad
(PAL)/PL) 7 Jo (o' cos’od + o' sin’ed)’ "

Qe L dnokL { f (L 6(6) [)o" cos’ ad }
s pcosod + oosintod O

(49)

V. DISCUSSION OF THE SCATTERING CROSSTALK

The crosstalk for identical modes, equation (49), can be expressed
approximately by very simple formulas. Let us assume that the
Fourier spectrum of the core thickness variation is so narrow that only
a narrow beam of radiation leaves guide 1. The radiation is centered
around an angle a and fills a range Aa. Provided this range of angles
is sufficiently narrow and if we also assume that the Fourier spectrum
is constant in the region contributing radiation and zero outside of
this region, we can write (49) in the following simple form.

Pz(L) _ ™ 1 2 —2a3(R-2D)/sina
<P1(L) = I L (Aa) sin g 2LV : (50)

(The angle o and the loss coefficients «, and a3 must not be con-
fused.) We have reinserted the loss in the medium between the two
guides in (50). We thus have the interesting result that the crosstalk
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depends on the square of the loss coefficient of the guided mode, on the
loss in the medium between the waveguides, and on the width of the
radiation lobe. The crosstalk decreases with increasing lobe width.
In fact, by comparing (50) with (35) we see that we can let Ae become
as small as

™

Aa = n.kL sin a

) (51)

because in this limit (50) applies to a single plane wave coupling
the two guides together.

In the other extreme it can be shown that (49) can be approximated
quite well by the expression

PO\ 3 .
<P1(L) = Tkl ey (52)

if we assume that (|$/*) = const, which corresponds to the case of
random scattering of radiation in all directions. We assumed a3 = 0
in (52). The error between the approximation (52) and the equation
(49) is always less than a factor of two. This is not a bad approxima-
tion for an order-of-magnitude estimate. It is interesting to note that
we obtain (52) formally from (50) by taking

Aasina = % (53)
Since it is certainly reasonable to assign Ae = = to the case of

isotropic radiation, we see that the crude approximation (50), which
holds precisely only when A« is very small, can actually be used to
estimate the scattering crosstalk for all cases of interest.

It is furthermore important to note that the model of scattering
used to derive our equations is very likely to be of no importance to
the results. Since we could express the crosstalk in terms of the radia-
tion loss of the guided mode and some features of the radiation
spectrum we can be confident that our equation (50) holds at least
to order of magnitude for any type of waveguide imperfection that
causes radiation.

If we ask ourselves what relation the slab waveguide theory may
have to the case of round optical fibers we can only draw some very
general conclusions. The plane wave radiation produced by the slab
waveguide does not diminish with distance. It is thus not surprising
that the crosstalk formula (50) is independent of distance except for
the obvious distance dependence of the loss term containing as. The
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radiation of a round optical fiber has the form of cylindrieal waves
so that we must expeet that, in addition to the features expressed by
(50), there will be an additional factor d/R multiplying the cross-
talk expression. Tt is hard to say whether this adjustment will yield
an expression that deseribes the crosstalk for round fibers to a fair
approximation. However, it appears safe to assume that the crosstalk
predicted by the slab waveguide theory is actually larger than the
crosstalk for round optical fibers. We can thus consider the results
of this paper as an upper bound of the crosstalk of round optical
fibers. Any design features that are predicted on the basis of this
theory are likely to be conservative if applied to the round fiber case.

We conclude our discussion with a numerical example. Let us
assume that the length of the guides is L = 1 km. Taking d = 1 um,
we have L/d = 10°. Next, we assume that n,kd = 10 and that the
radiation loss of the waveguides is 4 dB/km corresponding to 2a,L = 1.
In the absence of loss in the medium between the two guides (az = 0)
we thus obtain from (52)

P‘Z(L) _ -10
<P1(L) = 3/4 X 107" (54)

The crosstalk is thus insignificant even without trying to isolate the
guides from each other by providing loss in the medium between the
guides. This example is actually quite representative. The assumed
mode loss is typical for Rayleigh scattering losses in good solid
materials. Since Rayleigh scattering is the theoretical limit of seat-
tering loss, one should consider the crosstalk caused by this mechanism.
Our conclusion is thus that Rayleigh scattering does not cause appre-
ciable crosstalk between two optical fibers. The situation worsens
somewhat if the radiation is bunched. However, we can stand a
much smaller value of Ae than Ae = = before crosstalk becomes a
problem. It appears that the only real danger is the possibility of a
pure sinusoidal thickness variation of the fiber core such as may be
caused by a systematic flaw in the fiber pulling process. Such an
imperfection can cause serious crosstalk even if the radiation loss
attributable to this mechanism is quite small. We see from (35) that
a purely sinusoidal distortion of the waveguide core causing only
2a;L = 10-% can cause a crosstalk ratio of 2.5 x 107. The theory of
Reference 2 predicts that a loss of 2a,L. = 107 is caused by a sin-
usoidal core thickness variation with an amplitude as small as = 107°
.
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VI. CONCLUSIONS

Using the model of two slab waveguides with core thickness
variations we have computed the crosstalk that is caused by light
seattering in one guide and reconversion of this seattered light in the
other guide. Since the results of the theory can be expressed in terms
of the radiation loss that is caused by the same scattering mechanism,
it 1s assumed that the theory has general validity. It is also concluded
that the crosstalk of round optical fibers is smaller than that of two
slab waveguides so that the theory can be considered as an upper
bound on the erosstalk between fibers.

Scattering crosstalk can be substantial if both waveguides have a
sinusoidal imperfection of equal mechanical frequency that persists
throughout the entire length of the guides. If such an imperfection
should exist, it would be necessary to isolate the waveguides from
each other by providing a surrounding medium with loss. However,
it appears unlikely that such a systematic sinusoidal deformation
should exist since it would require that a definite mechanical period
with a frequency inside of the range given by (23) should have been
generated by the manufacturing process.

Any other imperfections that are of a statistical nature are much
less serious even though they might lead to radiation patterns with
narrow radiation lobes. It appears likely that scattering crosstalk
will not present a problem particularly since the radiation losses of the
waveguides must be kept low in order for the guides to be useful. Un-
less a definite sinusoidal imperfection does exist it seems unnecessary
to provide loss in the medium separating the two waveguides in order
to reduce the scattering crosstalk.
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