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Two parallel dielectric waveguides can exchange energy if the field
carried by one guide reaches the other guide. We consider only the case
of coupling between degenerate modes of dielectric waveguides (optical
fibers, etc). Degenerate modes have equal phase velocities, but their
transverse field distributions need not be 1dentical.

The coupling theory presented in this paper applies to dielectric
waveguides of arbitrary shape and arbitrary distribution of refractive
tndex. The dielectric media of the guides as well as the surrounding
medium are allowed to be lossy. The coupling coefficient is obtained
by means of perturbation theory. It is shown that whereas lossless
degenerate modes can exchange their power completely, lossy modes
tend to equalize their power,

The theory is applied to the problem of crosstalk between cladded
dielectric slab waveguides and cladded optical fibers embedded in a
lossy medium.

Since a lossy surrounding medium also causes an increase in the loss
of the guided modes, formulas for this additional loss are presented.
It is shown that additional mode loss results even for a lossless sur-
rounding medium if ngk > 8. (ny = index of surrounding medium, k =
free space propagation constant, 8 = propagation constant of guided
mode.)

I. INTRODUCTION

Optical fibers appear attractive as waveguides for the transmission
of light. Since many such fibers are likely to be bunched together to
form a cable, the problem of crosstalk between the different fibers of
the cable arises. There are several sources of crosstalk. Light seattered
in one fiber may excite a guided mode of an adjacent fiber. This
double scattering mechanism is discussed in the next paper in this issue.
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The present paper is concerned with the direct coupling of power be-
tween two parallel dielectric waveguides. Even though it addresses itself
to crosstalk in optical fibers the theory is more general and applies to
dielectric waveguides of arbitrary distribution of the refractive index.
The modes carried by the two guides need not be identical. However,
we assume that the phase velocities of the modes in either guide are
identical. We call modes with identical phase velocity degenerate
modes. We furthermore admit the possibility that the media of the
waveguides as well as the surrounding medium in which the guides are
embedded may be lossy. The restriction to degenerate modes is no
serious limitation for cases of practical interest. Provided that the
coupling coefficients are constant, appreciable coupling of power from
a mode in one guide to a mode in the other guide is possible only if
the modes have identical phase velocities.

The coupling theory is based on finding the change of the propaga-
tion constant of the mode of one guide caused by the presence of the
other guide. This perturbation theory is directly based on Maxwell’s
equations and is thus independent of the composition and geometry
of the coupled waveguides.

We obtain the coupling coefficient in form of an integral over the
cross section of the waveguides. The integral is taken over the scalar
product of the electric field vectors of the two guides. The general
coupling formula is then used to obtain the coupling between two
cladded slab waveguides as well as the coupling between two cladded
round optical fibers. The crosstalk between these two types of wave-
guides is discussed. The crosstalk can be reduced by increasing the
separation between the two guides and by increasing the loss of the
medium in which the guides are embedded. Coupling between dielectric
fibers has previously been treated by A. L. Jones' and by R. Van-
clooster and P. Phariseau.? However, these authors consider only
uncladded lossless fibers.

1I. COUPLED LINE EQUATIONS

The general properties of coupled waveguides can be studied with
the help of coupled line equations. Neglecting the possibility of
coupling to modes traveling in the opposite direction we can write the
general coupled line equations of two degenerate modes as follows:?

dA

o = —iBA + B, (1)



COUPLING OF DEGENERATE MODES 1793

B o BB+ cud, (1b)
The propagation constant B is assumed to be the same for either
mode; A is the amplitude of the mode of one guide and B that of the
mode of the other guide. If each guide ean support more than one mode
these modes would have to be ineluded in the coupled line equations.
However, it is well known that only modes with equal phase velocity
exchange a significant amount of energy if they are coupled together
by a length-independent coupling mechanism. The restriction to only
two modes is thus an excellent approximation. The coupling coefficients
c¢; and ¢. are allowed to be different since the two modes can be
different even though they are degenerate. However, if the waveguides
are lossless, conservation of power imposes the condition?

€, = —ci. 2

The asterisk indicates complex conjugation.

In the following analysis we assume that 8 as well as ¢; and ¢, may
be complex quantities since we want to include the case of lossy modes.
Equation (2) is thus not assumed to hold exaectly. Since 8 as well as
c; and ca are constants we can immediately solve the coupled line
equations and obtain solutions in the form

¥
A) = %{Au(e—mﬂ' + e2%) + ((;_:) Bo(e 4% — e'“')}e'”", (3a)

H
B(Z) = {Bo(e—lﬂﬂz + el’Aﬁz) + (%) Ao(e—l'dﬂz _ eiﬂﬂz)}e—iﬂz, (Sb)

B | =

with

AB = iV, . @)
The coefficients A, and B, are the field amplitudes A and B at z = 0.
It 1s apparent that equations (3a) and (3b) are composed of the
superposition of two new normal modes with propagation constants
B =8+ A8 (5)
and
2 = [ — AB. (6)

For complex values of ¢; and ¢, we obtain also a complex value of the
change of the propagation constant ApB. In that case, it is clear that
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the two new normal modes do not only have slightly different propaga-
tion velocities but also suffer different amounts of loss.

For the study of crosstalk we ueed the solution with B, = 0. That
means we assume that at z = 0 only mode A is excited. If we restrict
ourselves to the case

| ABz | K 1 (7
we find that the ratio of the amplitude B to amplitude A for distances
z = L for which (7) is valid is given by

B(L) _ (c_)*
AL = ) . ABL, (8)
The absolute square of the ratio of B/A is the power ratio at z = L
in the two guides. Using the letter V for this power ratio we obtain the
following useful formula for the distance L at which the power ratio
in the two guides is V:
§ (V)’}
. 9
88 @
For low-loss modes equation (2) must hold at least approximately so
that we obtain from (9) in the low-loss case

V}
“lasl

gl
Cz

L (10)
The low-loss assumption refers only to the actual loss suffered by the
modes propagating inside of the guides. The loss of the surrounding
medium in which the guides are embedded can be arbitrarily high.
Finally we consider two special cases. If we assume that the two

guides are lossless and assume again B, = O we obtain from equa-
tion (3)
A(z) = A, cos (ABz)e” ™, (11a)
B() = —z‘(%)’Aosin (AB2)e™ . (11b)
1

In the lossless case assumed here AR is real and it is clear that the
two guides exchange power after a distance D) given by

D= -2-1A'—ﬁ- (12)

If, on the other hand, AB is complex, as it would be in the case of lossy
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guides, and if we make z sufficiently large that the exponential factor
exp(1AfBz) is much less than unity, we obtain again for B, = 0 from
equation (3)

A(2) = LA e Frame (13a)
and

B() = %\/f;; A Prame, (13b)

&

Since the absolute value of the ratio c./c; is nearly unity we see that
the power carried by the two guides equalizes in the lossy case pro-
vided that we let both modes travel far enough. This power equaliza-
tion may occur after many power exchange cycles or it may oceur
even before one cycle is completed depending on the magnitude of
the imaginary part of AB. Of course both modes suffer additional loss
because of the complex value of the propagation constant B. The
magnitude of 8 1s much larger than that of AS for this discussion to
be meaningful.

The preceding diseussion shows that the crosstalk between the two
coupled guides 1s determined by the change in propagation constant
AB and not by the individual coupling constants ¢, and e, . It is thus
sufficient to determine AB.

III. MODE COUPLING THEORY

We assume that two dielectric waveguides are positioned parallel
to each other. Each guide is a cylindrical structure with a refractive
index distribution that is independent of the z coordinate (z is the
direction parallel to the axis of the strueture) but which can have an
arbitrary dependence on the transverse r and y coordinates. However,
it is assumed that the index distribution is such that it produces a
dielectric waveguide capable of supporting guided modes. We assign
a refractive index distribution n, to guide one assuming that n; has
the constant value of the refractive index ny of the background ma-
terial in the region occupied by guide two, A similar assumption
applies to the index distribution of guide two. It is assumed to have
the constant value ny of the background in the region oceupied by
guide one. The square of the index distributions n; and n. is shown in
Fig. 1. Since it is the square of the refractive index that enters
Maxwell’s equations we use the following expression

n' = (n; —n;) + (nz — n3) + n; . (14)
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Fig. 1—Distribution of the square of the refractive index used to describe the
two dielectric waveguides.

Owing to the definitions of n.(z, ¥) and n.(z, y) it is clear that (14)
becomes n’* = n? in the region of guide one, n° = nj} in the region of
guide two, and n° = n} outside the regions of either guide. The re-
fractive indices n, , 7, , and n, need not be real quantities but are
allowed to be complex if the media are lossy.

The starting point of the perturbation theory is Maxwell’s equations

V X H = iwen’E (15a)

and
V X E = —iwpH. (15b)

The time dependence of the fields was assumed to be given as exp (iwf).
The constants €, and p, are the permittivity and permeability of the
vacuum and the square of the refractive index is given by (14). Next
we introduce the perturbation assumption that the electric field E
and the magnetic field H are very nearly given by the superposition
of the mode fields of each guide in the absence of the other. We thus
write

E = aE, + bE, + e (16)

and

H = aH, + bH, + h. (17)

The coefficients @ and b are being determined by the theory. The
field E, , H,(v = 1, 2) being a mode of guide » has the z dependence
exp (—1Bs2). It is assumed that the propagation constant is the same
for the modes of either one of the guides in the absence of the other.
As indicated in Section I, such modes are here called degenerate. The
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electric and magnetic fields of the unperturbed modes of either guide
satisfy the equations

Ve XH, — i8¢ XH) — dwee?E, =0 »=1,2 (18a)
and
V. X E, —i6,(¢ X E,) 4+ dwu,H, = 0. (18b)

£ is a unit vector in z direction. The symbol V, indicates the transverse
part of the ¥ operator. The electric vector e and the magnetic vector h
appearing in (16) and (17) are assumed to be small perturbations
that are needed to express the change in the field shape resulting from
the close proximity of the two guides. In addition to the changes in
the field shape we must allow for the possibility of a change in the
propagation constant which can be assumed to be small if the coupling
of the two guides is sufficiently loose. We thus assume that the new
fields E and H of (16) and (17) have a z dependence of the form
exp (—18z) with

B =B + 4AB. (19)

We have seen in the last section that the change AB of the propagation
constant determines the coupling of the two guides. It is thus the
quantity we are most interested in.

We substitute (16) and (17) into (15a) and (15b) using (14). After
cancellation of a number of terms with the help of (18a) and (18b) we
are left with the following system of equations:

Vi X h — By X h) — dwe[(n] — n3) + 2 — n3) + nile
= {AB(az X H, + b2 X H,)
+ iwe[(ns — n3)aE, + (] — n)bE,]  (20)
and
V. X e — iBy(¢ X ) + iwuch = iAB(az X E, + bz X E,). (21)

Produets of A8 with e and h have been omitted from (20) and (21)
since they are small of second order.

Since we are interested in obtaining A from our theory we must
eliminate the dependence on the spatial coordinates from (20) and
(21). Concentrating for the moment on the left-hand sides of these
equations we obtain by scalar multiplication of (20) with E, and of
(21) with H, and by subtracting the two equations and integration
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over the entire cross-sectional area
f (E, [V, X h — (¢ X h) — dweo((fy — 13) + (n; — m3) + n3)e]

— H,- [V, X e — if,(¢ X €) + dwph]] dz dy. (22)

The terms inside of the square brackets are small of first order. We
now assume that the field intensity of E, in the region of guide two
has decayed sufficiently to render it also small of first order. Since
n? — n? is different from zero only in a small area in the vicinity of
guide two the product of E, with (nj — mj)e is a term that is small
of second order. In first order of perturbation theory this term can
be neglected. Performing a partial integration on the terms containing
the W, operator and rearranging the terms of the mixed products
allows us to write

[ 1090 X B, + i8(e X B) — iwncHL]

— e[V, X H, + i8¢ X H)) + iwemE]} dzdy.  (23)

Comparison of (23) with (18) shows that this expression would vanish
if instead of E, and H, we had used the complementary fields E7 and
H; that result from the original field if 8, and w are replaced by —B8o
and —w. We have thus shown that by scalar multiplication with E7
and H7, subtraction, and integration over the entire eross-sectional
area the field terms e and h can be made to vanish from (20) and (21).
A similar procedure can, of course, be carried through using E7 and H7 .
We thus obtain from (20) and (21) the following set of equations:

a[ABé-f (H; X E, + H, X E))drx dy
+ weg f (n; — n3)ET-E, dx dy]
+ b[A.Bé'f (H] X E, + H, X E}) dvdy

+ we, f (n; — n3)E7-E; dx dy] =0 (24a)
and

o ape- [ @ X B+ B X B doy
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+ we, f (n3 — n))EL-E, dx dy:l
+ b[Aﬂé-f (H; X E;, + H, X E}) dz dy

Equations (24a) and (24b) still contain a number of second-order
terms. Products of field terms with different indices are small of first
order since the modes of the two guides are supposed to overlap only
slightly. Products of field terms with different indices that are mul-
tiplied by the first-order quantity AB ean thus be neglected as being
of second order. The term (n; — n3)E; -E, is also of second order since
it involves the square of the amplitude of E, at the location of the
opposite guide. Neglecting it and a similar term results in a consistent
equation system containing only first-order terms.

aABé-f (Hy X E, + H, X E)) drdy

+ bwe, f (ni —n3)E -E,drdy = 0 (25a)

and

awes [ (0} = n)EL-E, da dy

+ bA,Bé-f (H; X E; + H; X E3) dr dy = 0. (25b)

The equation system (25) allows us to determine the coefficients a
and b. Since we have a homogeneous system of equations we must
require that the system determinant vanishes. This latter condition
leads to a determination of AB.

AB = Hwe

3
| [ -mEEay [ o -oe Ry |

U ¢-(E, X Hy+E; X H) do dy [ 2B, X Hi+ B X H) do dyJ

(26)
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The ratio of a/b is of no interest to us so that we do not need to write
down the solution of (25).

Equation (26) is the final result of our coupling theory. In the general
case of lossy dielectric media A8 is a complex quantity. Equation (26)
is very general and holds for any two dielectric waveguides carrying
degenerate modes. The field expressions E7 and H7 are obtained by
changing the sign of 8 and w in the regular expressions for E; and H; .
In the special case of lossless media E7 and H7 become simply the
complex conjugates of the original fields.

E. = E"‘*}, for real n, . @7)
H; = H*

Equation (26) can be simplified in another special case. If both wave-
guides are identical, carrying the same mode, the two types of integrals
appearing in the numerator as well as in the denominator of (26)
become identical for reasons of symmetry. The expression for identical
modes of two coupled identical waveguides can thus be written more
simply

f (ny — n3)E3-E, dz dy
AB = we - (28)
[ @ x B + B X H) dsdy

For real refractive indices the denominator of (28) is equal to 4P, P
being the power carried by the mode of one of the guides. It is neces-
sary to normalize the mode fields of each guide so that field 1 as well
as field 2 carry equal power P. This normalization was already
implied in converting (26) to (28). Even if the medium surrounding
the two waveguides is lossy it is possible to use the relations (27) and
the identification of the denominator of (28) as 4P provided that the
surrounding medium has a very small influence on the mode fields
carried by each guide. It is thus permissible to use (28) in the form

AB = :!:;’—;3 f (n; — n3)E%-E, dx dy (29)
in the special case of lossless dielectric media or, at least approxi-
mately, even in the case that the surrounding medium is lossy if
only the fields are so well guided that only a very small amount of
power reaches the lossy surrounding medium.
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IV. APPLICATION TO CLADDED SLAB WAVEGUIDE

The dielectrie slab is the simplest type of dielectric waveguide.
Because of its simplicity much insight into the performance of dielec-
tric waveguides can be gained by studying the slab waveguide. We
consider two identical cladded slab waveguides as shown in Fig. 2a.
Instead of solving the mode problem of the cladded slab waveguide
exactly, we assume that the cladding is thick enough so that only a
small amount of power reaches the surrounding medium. This assump-
tion allows us to obtain approximate field solutions that are much
simpler than the exact solutions. This case is, moreover, of the most
practical interest since the cladding is meant to protect the guided
mode from the disturbing influence of the surroundings. Our approxi-
mation thus coincides with the case of real practical interest. Without
going into the details of the calculation we state only the results. The
field of one of the two guides can be expressed as follows: (For
simplicity the field of one guide is expressed in the coordinate system
shown in Fig. 2b.)

JA COS KT 0==x=d
E, = 3Be™ + Ce 7° d=<xz=D
L?‘e"" D=zx 0, (30)

The field is continued symmetrically for z < 0. Equation (30) gives
the E' component of the symmetric TE modes of the slab waveguide.

/nm\ CORE .- CLADDING
¥ Ne Loy
e N Yoy
N3 N3 Na
/“”""“‘R"“"‘d
—
2d
>

<20~
(a)

Fig. 2a—S8ketch of two coupled cladded slab waveguides.
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Fig. 2b—Sketch of a single slab waveguide used for equation (30).

The other field components are obtained from E, by the relations

1 aE,
H,. = _Hw#u % (31)
and
i1 0E,
H, = o 0% . (32)

The dependence of the field on time t and on the z coordinate is,
as always, given by the factor

ei{wt—ﬁz) (33)

which is being omitted from the equations. The parameters appearing
in (30) are defined as follows: (k = w0V €eopto)

k = Mk — g0}, (34)
v = (8 — nakH, (35)
p = (8 — nik)t. (36)

Ne, N, and ny are the refractive indices of core, cladding, and outer
medium. The boundary conditions lead to relations between the
constants 4, B, C, and I:

__4 K Y — P —yd —2y4(D-d)
Boa@ et @n

C = Ae" cos«d, (38)
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_ 2ky A pD —y(D=d)
=T+ G8)

The coefficient A can be related to the power P carried by the mode,

2wuP *.
g+ 5
Y
The coefficient F depends exponentially on the factor —y (D — d). For
increasing cladding thickness this factor becomes very small. However,
the factor B vanishes even more rapidly since it depends on the square
of the same exponential decay factor. This shows that the field inside
of core and cladding is altered only very slightly if the cladding is
sufficiently thick. The eigenvalue equation differs from the eigenvalue
equation for infinite cladding only by a term that also vanishes as
the square of the aforementioned exponential decay factor. To a good
approximation we are thus justified to use the eigenvalue equation
for the infinite cladding guide.

A= (40)

tan kd = ~- (41)

= 1=

Once the mode fields are known it is an easy matter to evaluate
the coupling coefficient (29). We obtain

_ 4K2'YSP —27(D-d) —p(R-2D)
RO o s L
(R is the distance between the core centers of the two slab wave-
guides.) In case that the cladding material is identical to the sur-
rounding medium we have p = y and (42) reduces to the expression for
coupled slab waveguides to be found in N. S. Kapany's book.*
The same mechanism that is responsible for the coupling between
the two slab waveguides also causes loss to the modes in each of the
guides. Coupling occurs hecause some of the field in one guide reaches
the region of the other guide. However, fields reaching out into the
lossy medium between the guides also cause power loss to the mode
traveling inside of the guide. Only if the surrounding medium is truly
lossless ean there be no additional loss to the guided mode. I ealeu-
lated the mode loss contributed by the surrounding medium assuming
that it is infinitely extended and also ignoring the presence of the
other guide. The power loss can be obtained to a good approximation
by computing the power flow in transverse direction to the guide
axis at the boundary between the cladding and the surrounding
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medium. The validity of this approach hinges again on the fact that
most of the power is carried inside of core and cladding. The approxi-
mate caleulation leads to the following expression for the power loss
2« of the mode (& is the amplitude loss coefficient).

_ 8!(2‘73 Im (p)e—ﬂ-y(n—d) ‘
T+ DK+ v+l
It is assumed that n. and n, are both real; ny is allowed to assume
complex values. This loss expression has two interesting features. It
shows that the loss decreases exponentially with increasing cladding
thickness. It also shows that the loss is dependent only on the imagi-
nary part Im(p) of p. For p to be real, two conditions must be satis-
fied. First of all, the refractive index of the surrounding medium, n,,
must be purely real. This means that the mode suffers loss whenever
the surrounding medium is lossy. However, even if the surrounding
medium is lossless, it is still possible for p to be purely imaginary.
This happens when nyk > B. In this case there is no total internal
reflection between the cladding and the surrounding medium and the
evanescent field tail reaching into the surrounding medium does no
longer decay exponentially but begins to radiate. Power is thus lost
from the guided mode even though all the materials of the guide and
the surrounding medium are lossless.

Finally, we state the result of the coupling calculation and mode
loss for the cladded slab waveguide carrying the symmetric TM mode.
For the details of the field distribution of this mode in an infinite
cladding guide see Ref. 5. The result of the evaluation of (29) in this
case is

(43)

2a

2. 22 2 (y—p)(D—d) —2y(D-d) —p(R-2D)
Nl 2e — 1le e
AB = KFY-;[z iz ]z 2,32 z (44a)
Bl + niy*)yd + nenn(c’ + v7)]
The power loss caused by the lossy surrounding medium is
8ninh, | ny |%™* Im (ﬁg)e'“w"”
2a . (44b)

= Bldmid + niy) + ninalé + ] [ nap + niv [
It is apparent that the coupling expression (42) for the TE mode
differs from that for the TM mode. The coupling as well as the loss,
thus turn out to be polarization dependent.

V. COUPLING OF THE HE;; MODES OF ROUND CLADDED FIBERS

In complete analogy to the cladded slab waveguide we now proceed
to a discussion of coupling between HE;; modes in two round cladded



COUPLING OF DEGENERATE MODES 1805

Y

Fig. 3—Cross section of two coupled cladded fibers.

fibers, Fig. 3. Again, we assume that the cladding is sufficiently thick
to allow us to treat the field inside of core and cladding as being
affected only very little by the presence of the surrounding medium.
With this approximation in mind, we state the relevant equations for
the mode field of a cladded fiber.
The field inside of the fiber core is described by the set of equa-
tions®
E, = AJ,(xr) cos ¢
H. = BJ,(kr) sin ¢
the field inside of the cladding is given by

E. = [CH{"(iyr) + DH\" (iyr)] cos ¢
H, = [FH{"(iyr) + GH{" (zy7)] sin ¢

and the field in the surrounding medium is

Il

} 0<r<a, (45)

} a =r=<b, (46)

E, = MHV(ipr) cos ¢
H, = NH"(ipr) sin ¢

The parameters «, y and p are given by the equations (34), (35), and
(36). The other field components are obtained from the longitudinal
components by differentiation

JL b=r< w, 47

i (. 9K, 144,

E. = _F(B P a¢>)’ 48)
) 10E, aH,

E, = _fi(ﬁ;?‘#“—@’#a ar), (49)
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_ i (goH. _ nﬁﬂ)

H, = —rz (ﬁ ar wWep r d¢ ’ (50)
1 10H, 2 0E.

H, = —?(ﬁ;a‘“ﬂoﬂ ar)' (51)

The symbol T stands either for «, iy, or zp depending on the medium
in which the field is evaluated. The same is true for n, it represents
either ., m, , or ng. The boundary conditions establish the following
relations between the amplitude coefficients:

B _ (3)* _kay* {g [L B Ju(xa)}
A Mo 1'3('(2 + “Yz) K KQ J 1(1((;)

na [ 1 mﬂwﬂ}
* a [w T G ) O

C_F_ _Jika
A~ B~ H Ga (53
D~Gd=0, (54)

{C[(g)z(l — %:)2(% - 1) - 72k2(1 + l;)(nﬁ. + ni%;
+ 1; (nm — n§))] + 2apofy % (1 - Z—:)}

{[g (- 1_)] — (14 )t 4 'ﬁ)} (55)

2
2Fk”~,"(n?,, +nd %) + 2wn’ ey % ("# — 1)0

3
CA 1) e s
b P P P

The symbols J, and J; indicate Bessel functions of zero and first order;
Hy™ (iya) and H,V (iya) are Hankel functions of zero and first order
and of the first kind. We use here the notation of a Hankel function
with imaginary argument used by Jahnke and Emde.” The coefficients
M and N given by (55) and (56) do not contain any Hankel functions
because the approximation for large arguments was used. The relation
between the power P carried by the HE;; mode in the waveguide and
the amplitude coefficient A is given by the equation

(56)
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P = g{’“‘% (@) (T3) + Jiea)) — 2736 (n? + 22 2 )

+ I-c_yg [(a"’)z{l - (}ﬁ‘—_%t;_)) } + Z]Jf(xa)(n + Ko i2)

3} 2 212 2 212
+ 2(&) g I:ﬁa +4nck _ ﬁu —i:y-inmk ]JZ( )}( ) A2 (57)

€0 K

For sufficiently large cladding radius b the propagation constant of
the mode can still be obtained from the eigenvalue equation for a rod
embedded in a medium with refractive index n,, .

ot (Jld _ L) o ) o () _ 1)

(o D [ Bk ]

This collection of formulas is sufficient to calculate the coupling term
(29) for the coupling of the HE;; modes in two parallel cladded
optical fibers. We distinguish two cases. We assume that the modes
are either both polarized perpendicular to the plane connecting the
two fiber core centers or that they are polarized parallel to this plane,
The coupling is different in the two eases, corresponding to the dif-
ference in coupling between the TE modes and the TM modes of the
slab waveguide treated in the preceding section. It must be pointed out
that a perpendicularly polarized mode does not couple with a horizon-
tally polarized mode. The two-mode assumption is thus still valid.

The integral oceurring in (29) cannot be solved generally for two
coupled HE;; modes. However, if we assume that the distance R
separating the two cores is large compared to the core radius “a,” we
are justified in expanding the expression for the radial coordinate r
(reaching from the center of guide one to the vicinity of guide two)
in the following way (Fig. 3),

= VR 474+ 2nRcos 8 ~R +r, cos 6. (59)

The angle 6 describes the departure of the direction of r, from the
line connecting the core centers, r, is the distance from the center of
guide two to the endpoint of r;. When the expansion (59) is used,
the angular integration can be performed leading to Bessel functions
of the imaginary argument ipr.. The remaining integration over ra
now involves only products of cylinder functions and can be carried
out. We obtain the following result for the case of horizontal polariza-
tion:
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For the case of vertically polarized modes we get

so. = s Gl i () 5 (o #57)
- 56 - gy

+ ipJ;(ipa)[ka(—”—”)!g ( Jolka) + 1 *g(‘(‘:((?ﬁ;) 7 l(xa))

Lo (- ke )J.(«a)]}- (61)

Finally, we plesent also the expression for the power loss 2a of the
HE,; mode caused by the lossy surrounding medium. The calculation
follows the idea deseribed in connection with the slab waveguide.

2= () 577 AT {ﬁ oy ™ [(”?Z)qMN G "2)]
k| M Im(%g) — MNP Im(%)} 62)

The coefficients M and N are given by (55) and (56), p, is the real
part of p, and the symbol Im( ) indicates the imaginary part of the
expression in parenthesis (or brackets).

VI. NUMERICAL RESULTS

To illustrate the consequences of the theory presented in this paper
a few sample cases have been computed. For comparison purposes
I have checked the results of my theory against the curves for the
coupling of uncladded fibers published by Jones.! The agreement
between his theory and similar curves obtained from (60) and (61) is
excellent.

The amount of coupling between two optical fibers depends on the
type of mode they are earrying, on the separation between the fiber
cores, and on the loss of the surrounding medium in which the fibers
are embedded. Figure 4 shows a set of curves describing the coupling
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parameter a |AB| as a function of the loss in the surrounding medium.
The abseissa labeled “loss” measured in db indicates the plane wave
loss in going through the surrounding medium for a distance R — 2b;
that means it is the loss that is encountered in going perpendicular
to the fiber axis from the cladding boundary of one fiber to the other.
There are two curve parameters in Fig, 4. The two sets of curves differ
by the cladding thickness normalized with respect to the core radius,

1p=10

1o-12

10”4

{o-1e

10-18

alagl

10-20

1o-22

10”74

10-26

10-28

o] 20 40 60 80 100
LOSS IN DECIBELS

Fig. 4—Coupling of round fibers. a/A8| is the coupling parameter of equations
(60) and (61), the abscissa indicates the loss (in db) that a plane wave would
experience in going from the boundary of one fiber to the boundary of the other
fiber. The solid lines hold for horizontal polarization, equation (60), while the
dotted lines apply to the case of vertical polarization, equation (61). nwka = 16,
~va = 1594, n./nm = 101, Re(ns) = nm .
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(b — a) /a. The coupling is, of course, reduced for increasing cladding
thickness since the fiber cores are farther removed from each other.
The second parameter is the separation between the fiber claddings
normalized with respect to the fiber core radius, (R — 2b) /a. Increas-
ing values of this parameter again cause the fiber cores to be sepa-
rated farther from each other. The loss values that form the abscissa
hold regardless of fiber separation, always indicating the total loss
that exists between the fiber claddings on their closest approach. The
curves show clearly the decrease in coupling with increasing loss in
the surrounding medium. The solid curves apply to the horizontal
polarization of the two modes and are obtained from (60). The dotted
curves apply to vertical polarization and were computed from (61).
Figure 4 holds, of course, only for one particular pair of round optical
fibers. It was assumed that n,.ka = 16, and that the ratio of core index
to cladding index is n./n, = 1.01. For simplicity, it was furthermore
assumed that the real part of the index nj is identical to the index 7.,
of the cladding material. The imaginary part of ng is varied in order
to obtain the variable loss values of the abscissa. The absecissa can
be expressed by 8.68 Im (ng) k(R — 2b).

With the help of (10), Fig. 4 can be used to evaluate the crosstalk
between the two optical fibers to which the conditions of Fig. 4
apply. Let us assume that we can tolerate a power ratio V = 107 at
the end, z = L, of the two fibers. If we use, for example, @ = 1 pm and
allow L = 1 km we find that we must not exceed

alAg| =107 (63)
Any value appearing in Fig. 4 below this line thus leads to acceptable
crosstalk levels. It is apparent that all curves with (b — a)/a = 10
are acceptable. For (b — a)/a = 5 a certain amount of loss is re-
quired to reduce the coupling and consequently the erosstalk below the
desired level.

Figure 5 presents the same data as Fig. 4 applied to two identical
slab waveguides. It was assumed that the refractive indices as well
as the guide dimensions of the slab waveguides correspond exactly
to the round optical fibers of Fig. 4. (e = d, b = D). However, the
two slab waveguides are less tightly coupled than the corresponding
round fibers. The reason for this behaviour is the difference in the
decay parameter ya (or yd). For the round fibers, we obtained from
the eigenvalue equation (58) the value ya = 1.594 while (41) results
in yd = 1.997 for the slab waveguides. A larger value of the decay
parameter indicates that exponential decrease of the field amplitude
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outside of the fiber core is more rapid. The more rapid decrease of the
field of the slab waveguide leads to less coupling. The solid and dotted
lines have the same meaning as in Fig. 4. The solid lines apply to the
TM: mode which is polarized horizontally while the dotted lines apply
to the vertically polarized TE mode, For simplicity we have assumed
that the values of yd are identical for the two modes which, strictly
speaking, is not quite true. However, we see from Fig. 4, as well as
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10—22

jp-24

jp~28

10-28

o} 20 40 60 80 100
LOSS IN DECIBELS

Fig. 5—Coupling of slab waveguides. Coupling parameter and loss have the
same meaning as in Fig. 4. The solid lines indicate the TM mode (horizontal
polarization) while the dotted lines apply to the TE mode (vertical polarization).
nmka = 16, ya = 1.997, n./nm = 101.
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from Fig. 5, that the horizontally polarized modes are coupled more
tightly than the vertically polarized modes.

Figure 6 presents a comparison between the coupling strength of
round fibers and slab waveguides. Since equal geometry does not lead
to identieal values of the decay parameter we have arbitrarily used
equal values of ya = yd = 1.594 for both types of waveguide. The
solid lines indicate the results for the round fiber while the dotted
lines apply to the slab waveguides. It is apparent that the slab wave-
guides are more tightly coupled when the conditions are such that
both guides have equal decay parameters. This appears reasonable if
we consider that the slab waveguides have constant distance from
each other over an infinite length while the round fibers have a point
of closest approach so that the total amount of field overlap is less
in this case.

The lossy medium does not only serve to reduce the coupling be-
tween the waveguides but it also has the adverse effect of increasing
the loss of the modes traveling in the guides. Figure 7 is a plot of
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Fig. 6—Comparison between the coupling of round fibers and slab waveguides
(¢ = d, b = D). The parameter value ya = 1.594 is correct for the round fibers.
1t has also been used for the slab waveguides to enable a realistic comparison.
nmka = 16, no/nm = 1.01.
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mode power loss versus plane wave power loss 2k[Im (ny)e] in the
surrounding medium obtained from (43), (44h), and (62). Both types
of waveguides are represented in this figure. The loss values of abscissa
and ordinate are both expressed in db. The decay parameters ya and
yd (we use a = d and b = D in Fig. 7) are solutions of the respective
eigenvalue equations and are not adjusted arbitrarily. We have seen
that the coupling of the slab waveguides was weaker than the coupling
of the fibers under these conditions. It is thus not surprising to see
from Fig. 7 that the losses of the fiber are larger than the slab wave-
guide losses. It is interesting to see that the symmetric TM mode of
the slab waveguide is slightly lossier than the symmetric TE mode.

Assuming again that a = d = 1 pm and limiting the allowable loss
caused by the lossy surrounding medium to 1 db/km, we find that we
can accept those curves with losses of less than 2aa = 10-° db. Since
the loss curves are nearly independent of the actual value of the loss
in the surrounding medium (after an initial rise from zero mode loss in
a lossless surrounding medium) we can exclude all eurves above the
10-° line as unacceptable in case of a lossy surrounding medium. We
thus see that the slab waveguide works well under all conditions shown.
For the more important round fiber we must exclude the case of a
cladding with (b — a)/a = 5. This means that the curves of Fig. 4 that
lead to excessive coupling in the absence of sufficient loss in the sur-
rounding medium are also unacceptable from the point of view of
additional mode loss. We see that additional mode loss and mode
coupling have similar trends. When the coupling between the fibers
is too large we also have to contend with additional mode loss in
excess of what we want to tolerate. A guide with low mode loss on
the other hand is also sufficiently protected by its eladding so that
coupling between adjacent fibers is not eritical.

The two remaining curves, Figs. 8 and 9, show the coupling param-
eter and the additional mode loss for the case of a guide with lower
core-to-cladding ratio. Only the case of the higher coupling for hori-
zontally polarized modes has been plotted in Fig. 8. The remarks about
coupling strength and additional mode loss hold true also for these
conditions as can be seen from the figures.

VII. CONCLUSIONS

We have presented a perturbation theory for the coupling between
two arbitrary dielectric waveguides made of lossy materials and
embedded in a lossy environment. Only the case of two degenerate
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Fig. 7—Additional mode loss caused by the lossy surrounding medium. The
abscissa indicates the loss (in db) that a plane wave would suffer by traveling
a /distance equal to the core radius in the surrounding medium. nmka = 16,
Ne/nm = 1.01.

modes has been treated. The general theory has been applied to eladded
slab waveguides and cladded round optical waveguides (fibers) with
lossless cladding material but in the presence of lossy surroundings.
We have found that the coupling between fibers depends very strongly
on the separation between the two fiber cores. Far separated cores
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result in loose coupling. The coupling between the fibers can be re-
duced by increasing the losses of the surrounding medium. However,
a lossy surrounding medium introduces losses to the waveguide modes
to such an extent that the mode losses are unacceptably high if the
loss in the surrounding medium is necessary to uncouple the fibers.
From this point of view it appears as though losses in the surrounding
medium are unsuitable to achieve uncoupling or reduction of cross-
talk between optical fibers. However, the coupling mechanism dis-
cussed in this paper is not the only contributor to crosstalk. Imperfec-
tions in the fibers cause light scattering that can also be a source of
crosstalk.® This mechanism is less strongly dependent on the separa-
tion of the fiber cores so that it may not be possible to uncouple fibers
sufficiently simply by protecting them with a cladding of sufficient
thickness.
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Fig. 8—Coupling of round fibers. Only the case of horizontal polarization is
shown. nmka = 21, ya = 0.857, n./nm = 1.003.
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Fig. 9—Additional mode loss caused by the lossy surrounding medium. nnka =
21, 7o/nm = 1003
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