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This paper considers the computational capabilities of different
mathematical models of magnetic bubble interactions. A specific model
was studied earlier by R. L. Graham, who showed that there exist
combinational functions of 11 or more variables that cannot be com-
puted by this model. This paper extends his results by introducing
different types of interactions which seem to be practical and enable
the computation of all combinational functions. The problem of
efficient computation from the points of view of time and space re-
quirements and the geometrical requirements imposed by the fact that
interactions can occur only between physically adjacent locations are
also examined. Finally, a model in which computations are carried
out by applying uniform magnetic fields to the entire platelet, with
individual access limited to locations along the periphery, is presented.

1. INTRODUCTION

Cylindrical magnetie domains in certain orthoferrite materials have
been investigated extensively in recent years.'™ These domains, com-
monly referred to as bubbles, have the property that they can be
moved within the material hy the application of suitable external
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magnetic fields. The motion of a bubble is also dependent on other
bubbles in its vieinity. The locations of bubbles can be restricted to
a finite set of possible positions in an orthoferrite platelet. The pres-
ence or absence of a bubble at a particular location may be treated as
representing the values of a binary variable. Thus, magnetic bubbles
seem to have natural applications in performing memory and logic
functions.

In a recent paper, R. L. Graham* considered the computational
capabilities of a particular mathematical model of magnetic bubble
interaction. The only type of interaction allowed in this model is
represented by an instruction of the type (x, y) where x and y are
distinct adjacent locations in the orthoferrite platelet. Application of
this instruction results in moving the bubble in location x to location y
if the latter does not contain a bubble prior to the application of the
instruction. If 2 does not contain any bubble or ¥ already has a bubble,
no transfer of bubbles takes place. Two locations, only one of which
contains a bubble, are used to represent each binary variable and its
complement. Graham has shown that only a small fraction of all com-
binational functions of 11 or more variables can be computed by this
model.

In this paper, we review Graham’s results and extend his model
by introducing different types of interactions which seem to be prac-
tical and enable the computation of all combinational functions. We
then examine the problem of efficient compitation from the points of
view of space and time requirements. The geometrical requirements,
necessitated by the fact that bubble interactions can occur only be-
tween physically neighboring locations, are also examined. Finally,
we consider a model in which computations are carried out by apply-
ing magnetic fields to the entire platelet and individual access is lim-

ited to locations along the periphery.

II: MODELS OF BUBBLE INTERACTIONS

Tet us first consider the model studied by Graham.* All locations are
assumed to be adjacent to one another so that interaction between any
pair of locations is possible. If S is the set of all possible bubble loca-
tions and # is the number of such locations, let ¢ be the set of all 2"
subsets of S. If a subset X £ Q containing bubbles represents the values
of the variables of a function f, then f is a mapping from ¢ onto Q.
The function f is realized by applying a program P to S with bubbles
in locations contained in X, If the set of resultant bubble loeations is
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X7, then X* = §(X) and X" ¢ Q. The program P consists of a sequence
of instructions of the form e = (a, b) such that X* = (X — {a}) \J {b},
ifae X,b¢ X, and X* = X otherwise. The nondecreasing overlap
(NDO) theorem due to Shockley and proven in Ref. 4 points out some
of the limitations of this model of interaction. The NDO theorem is
repeated below in the interest of completeness.
Theorem 1 (NDO Theorem): Let X, and X, be two initial sets of locations
of bubbles and let P be any program (of the type discussed above). Then
| X2 N X5 =2 | X, N X, |, where | X | is the cardinality of the set X.

The NDO theorem precludes the possibility of certain types of
computation using this model of bubble interaction. For example, it is
impossible to have a program P such that {a, b}” = {c, d} and {a}* =
{e}. Another consequence of the NDO theorem is the nonexistence of a
replicating program. That is, there exists no program P* such that if
8 and & are nonintersecting sets of vertices and X C S, P* creates a
set X’ C & without disturbing X, so that there is a one-to-one corre-
spondence between X and X’. In order to be able to compute all com-
binational functions, it may be necessary to do one or both of the
following: (7) Include other types of interactions. (iz) Code the inputs
and the outputs.

Tet us consider the following set of instruction types, where the
first type is the one we have discussed above.

Name Notation Resultant Bubble Locations
I. Bubble e=(a, b) X‘={(X —{a) U (b)ifae X, be¢ X;
transfer X otherwise.
II. Bubble e=(a, b)s X‘={X U {blifae X;
splitting X otherwise.
II1. Bubble e=(0,a) X=X — {al.
annihilation
IV. Bubble e=(1, a) X=XV {a}.
creation

In the above set, type II instructions are necessary for replication.
Type III instructions have the property that |X¢| < |X| and are there-
fore necessary to compute {a, b} = {c}. Instructions of type IV are
necessary for performing computations of the type ¢* = {a}, where ¢
is the null set.

Theorem 2: The four types of instructions (viz., bubble transfer,
splitting, annihilation, and creation) are not sufficient for performing
all computations.



1704 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1971

Proof: Consider a program P such that X” = S — X. Let the first
instruction of the program be e, . We show that a program P for comput-
ing S — X using only the four types of instructions discussed above
does not exist, by showing that for each type of instruction there exist
two sets X; ## X, such that X;* = X;*. Since § — X; =# § — X,,
the program cannot compute 8§ — X for all X.

Case 1: Let e, = (a, b).

Let X, = (X, — {a) VU {b}; X,, X, C S;aeX,;b¢ X,. Then
X'=Xy=X, and X7 =X}.

Case 2: Let e; = (a, b)s .
LetaeX,,b¢X,,and X, = X, Y {b}. Then

Xt =X=X, and X} =X}.

Case 3: Let e, = (0, a).
Tetae X,, and X, = X; — {a}. Then

Xi'=X;' =X, and X}

[

1
g

Case 4: Let e, = (1, a).
Let a e X;, and X, = X, — {a}. Then

X=Xy =X, and X7 = X5.

Thus there exists no program P using only the four types of instrue-
tions that can compute 8 — X for all X C 8. This implies that comple-
mentation cannot be done (using only these types of instruetions)
if the value of a Boolean variable is represented by the presence or
absence of a bubble in a particular location.

The other approach mentioned earlier for improving the computa-
tional capabilities of magnetic bubbles is the use of suitable codes.
Graham* has used two bubble locations z, and z; to represent the
value of a binary variable . x = 0 is represented by zp = 1, 2, = 0
and x = 1 by 2, = 0, x; = 1. However, Graham has shown that this
representation and the bubble transfer instruction are not sufficient
for realizing all Boolean functions. By enumerating the number of
distinet programs, he has proven the following theorem.

Theorem 3: There exists a Boolean function of 11 variables which
cannot be realized by a program of bubble transfer instructions.

It is not known whether there exists some coding of the variables
which permits the realization of all Boolean functions using only the
bubble transfer instruction. However, the four types of instructions
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together with a coding of the type used by Graham are sufficient for
realizing all Boolean functions.

Theorem 4: All combinational functions can be computed using the
four types of instructions and a suitable coding of inputs.

Proof: Any combinational function can be realized using the following
method. Let the set of all possible bubble locations be denoted by M,
where M = S\J T and SN T = ¢. As before, values of the input vari-
ables are represented by bubbles in subsets of S, and let each variable
be represented by two locations x, and x, . Let T be the set of possible
bubble locations that serves as temporary storage. Any given combina-
tional funetion f and its complement f are expressed in the sum of prod-
ucts form. The following procedure is used to realize the function f:

(7) Clear the output locations f, and f, by (0, f0)(0, f.).

(77) Clear temporary storage by (0, ¥:0)(0, y:,) for all ¥, yir e T.

(777) Copy the values of the input variables into temporary storage
using bubble splitting instructions (x.0, ¥iw)s(zi, yi)s for
all 0, ziv e S.

(i) If z* is a variable appearing in a product term, where r* rep-
resents z, or #;, the term ] z* is computed by the set of
instructions (y,,, y;,) for all j # ¢ such that z* is contained
in the product term and a = 0if z* = &, ,a = 1if 2% = 2,
b=0ifz%* =g;,,and b = 1if «* = &;.

(v) (¥ia, i) puts the or of all terms computed so far in f, .

(vz) If there are additional terms, go to step ¢ and repeat for next
term.

(vi?) If there are no more terms in f, repeat steps iz through vt for
J; replacing step v by (44, fo).

The above procedure merely shows that all combinational funections
can be computed using the four types of instructions and the par-
ticular type of coding used. Both the program and the coding could
be made more efficient.

The property of the code that made the computation of all com-
binational functions possible is the elimination of the need for com-
plementation, which was shown to be impossible to perform with the
four types of instructions used. A more general code which has this
property is an m-out-of-n (m/n) code® where n bubble locations, out
of which exactly m contain bubbles, are used to represent each input
combination. A procedure analogous to that given above may be used
for computing any combinational function using this code. The case
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discussed above, where each variable is represented by two bubble
locations, is a special case of the m/n code and is referred to as the
autosynchronous code.®

The m/n code is more efficient than the autosynchronous code in
terms of the number of bubble locations required for encoding a given
number of binary variables. Whereas 2k locations are necessary to
represent & binary variables, the number of locations required with an
m/n code is such that () = 2*. Since m = [n/2], where [z] is the integral
part of z, gives the largest value of (), we have (%) = 2°. Using
Stirling’s approximation, we have [n — } log, n] = k. For large values
of k, the [n/2]/n code requires fewer locations than the autosynchronous
code as the following sample values indicate:

Ik n([n/2]/n code) 2k (autosynchronous code)

14 16 28
29 32 58
61 64 122

A given type of instruction is said to be computationally complete
if all combinational functions can be computed using programs con-
taining only instructions of the given type, assuming that any loca-
tion may be initially cleared and a bubble may be initially inserted in
any location. That is, instructions of the type (0, ) and (1, z) may be
used for initialization, prior to the application of the program. Note
that the bubble transfer instruction discussed earlier is not computa-
tionally complete under our definition, although bubble transfer and
bubble splitting together are sufficient to compute any combinational
function. (The need for clearing locations within the program in the
procedure discussed earlier can be eliminated by using a sufficient
number of temporary locations.) We shall now consider some com-
putationally complete instruction types that may be realizable by
bubble interactions.

Consider an instruction e = (z, y)q, defined by

X =X - {y} fz,ye X
=X - {z2)) Uiyl ifzreX,y¢gX

= X otherwise.

If the presence or absence of a bubble in a location is treated as the
value of a binary variable, and if the value of a variable after the
application of an instruction (z, ¥)q is denoted by the corresponding
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primed variable, the instruction can be represented by the following
equations:

 =2xy and ¥ =Py
where @ represents exclusive-oR.

We prove that the instruction (z, y)s is computationally complete
by showing that we can perform duplication and also realize the NAND
funetion using only instructions of this type. It is well known that any
combinational function ean be realized using only two-input NAND
gates if duplication (fan-out) is allowed. Denoting locations that initially
contain bubbles by lower-case letters with the subscript 1, the NanD
of two variables z and y can be realized by the sequence of instructions
(z, y)alz, @;), ; which results in, o' = ay, y' = 2Dy, af = 1@ zy = 7y.
Duplication can be performed by the sequence (z, b,)a(b: , ¢1)q, resulting
inz' =2, =1@r=4%c¢ =1@& = r. Thus all combinational
funetions ean be computed without special encodings.

A timing problem associated with this instruction® must be noted.
Two applications of the instruction (z, y), results in zy(z P y) = 0
in location z and zy @ » @ y = r + y in location y. Physically, if
z = y = 1 when the instruction (r, ), is applied, the bubble in y is
destroyed. If the field effecting the execution of the instruction is still
applied, the bubble in location x is transferred to y. Thus, this instruc-
tion requires application of the field for a fixed interval of time. We
may say that the instruction is pulse-width dependent. For each of the
other instruction types considered, application of the same instruction
a second time does not result in any further change in either location.

Another type of computationally complete instruction is the condi-
tional transfert denoted by ¢ = (2, y)z and defined by

X' =X - {z)) Yyl ifz,ze X, y¢ X
= X otherwise.

Duplication ean be performed by the instruction (a,, a,)x where a,
and a, denote an empty location and a location with a bubble respec-
tively. After the application of the instruetion, locations a, and z will
contain the variable x. Similarly, the sequence (x, ¥)b., (b, bo)z,

* In practice, there exists an interaction involving three locations z, y, z, such
that if y = 0, ' = £ @ z; 2’ = 2’ = rz. The timing problem mentioned above
does not occur in this case.

t The interaction involving three loeations, mentioned in the previous footnote,
may be represented by the following sequence of conditional transfer instructions,
if y = 0 initially: (x, ¥)Z; (z, y)&. The order of execution of these two instructions
is immaterial.
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yields the funetion Zy in location b, . All combinational functions can
be computed using only conditional bubble transfers without special
encodings.

III. TIME AND SPACE CONSIDERATIONS

In the preceding section, we showed how any combinational function
can be computed using magnetic bubble interactions, assuming that
interactions are possible between any pair of bubble locations. Since
interactions can occur only between bubbles in physically adjacent
locations, this implies that bubbles that are required to interact are
brought into adjacent locations prior to the application of the instruc-
tion. The time taken for computing a function depends not only on the
number of instructions in the program but also on the layout of the
bubble locations. It is also necessary to be able to move a bubble from
any arbitrary location to any other location without affecting the
bubbles in other locations. We shall examine these problems in this
section.

3.1 Bounds on Memory Requirements

Consider the layout shown in Fig. 1. If the locations in the shaded
area are used as bubble locations for a program, the locations in the
unshaded part can be used as transit points. These memory locations
are initialized so as not to contain bubbles. Denoting the shaded and
unshaded regions by S and T respectively, an instruction of the form
(a, b) a, b e S will be replaced by a sequence of instructions

| (@, 2) (@i ) Tiva) + (1':'—1 , w2z, b)<5'5; y @im1) o (T, @) (2, @)
where
Liy Tiv1, *°° Ty

are adjacent locations in 7 so as not to affect any other location in 8.
With this layout 3n/2 — 1 locations are required for n locations which
are useful for computation. (We shall refer to these as data points.)
If p is the total number of locations, the maximum number of data
points can be shown to approach 2p/3 asymptotically (K. C. Knowl-
ton, private communication).

The maximum path length (one-way) between two data points is
n/2. The maximum path length can be greatly reduced at the expense
of a slight increase in the required memory (i.e., total number of loca-
tions) by the layout shown in Fig. 2a. The total number of locations
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S
7 //4n/a— 1

7

n/z2-1
’,

Fig. 1—Memory layout.

is (n/2k — 3)-3k + 12k = 3n/2 + 3k, and the number of data points
is 2.3k + (k — 1)-(n/k — 6) + 2(n/2k — 3) = n. The maximum
path length (one-way) is n/2k + 3k — 1. [By changing the corners
as shown in Fig. 2b, the maximum one-way path length can be reduced
by 2, and the total number of locations can be reduced by 4
(M. D. Mecllroy, private communication).] The maximum path length
is dependent on k. Since k must be an integer and 2k must divide n,
the maximum path length is minimal when k = VvV m if this is an
integer. Thus if » = 6k’ the maximum path length for the layout of
Fig. 2a is (V6 v/n — 1). Some typical values of n and the minimum
maximal path length for various values of k are shown below:

k n path length
2 24 11
3 54 17
4 96 23
5 150 29

. Y N
03N ks (b)
o ol clx LClx \
c . &
MR
\
& N L

T I L, I
AN

(a)

Fig. 2—Memory layout to reduce maximum path length.
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In order to obtain a lower bound on the maximum path length for
a memory with n locations, allowing interactions between any pair
of locations, consider the closest packing of these locations in two-
dimensional space, which is a cirele, If the radius of the circle is 7,
m’ = mnorr = V/n/r. The maximum distance between two points
is 2r = 4/4n/x. Clearly, this bound cannot be attained because all
points in the circle are treated as data points in deriving the bound.
Thus the best we can hope to do is to obtain a maximum path length
of C V/n where C > +/4/r. The coding of Fig. 2 has maximum path
length < 4/6 4/n and hence requires approximately twice as much

time as the lower bound.
The memory layouts discussed above allow interactions between

all pairs of data points and are therefore suitable for realizing any
arbitrary program. For realizing any specific function, interactions
would be necessary only between a subset of these pairs of data points
and consequently a smaller memory would suffice. The maximum path
length can also be reduced in general. In this case, the memory require-
ments and maximum path lengths derived above serve only as upper
bounds.

3.2 Number of Instructions for Realizing a Function

The number of instructions and bubble locations required for realizing

any given function using any given type(s) of instructions may vary
over a wide range depending upon the realization, as shown in the
following examples.
Ezxample 1: Consider the computation of f = 2 @ y, using bubble
transfer instructions and bubble splitting, if necessary. Let two loca-
tions x, and x, be used to represent each variable z, as discussed earlier.
Using the canonical realization in the sum of products form discussed
earlier, four minterms (two each for the function and its complement)
have to be computed. Each minterm is computed using four bubble
splitting instructions and one bubble transfer instruction. Finally,
two bubble transfer instructions are required to compute the sum of
two minterms. Thus the total number of instructions in the program
willbe 5 X 4 4+ 2 X 2 = 24. The total number of data points required
is 10 (4 for = and y, 2 for f, and 4 temporary storage). Using the layout
of Fig. 1, 14 bubble locations are required in the memory.

The following program containing only six instructions also com-
putes this function, if f, and f; are both initially empty:

P = (z1,y1) (@, ¥o) (21, fo) (%o, fo) W1y yo) (1, fo).
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Six data points are necessary, and these can be obtained using eight
locations and the layout of Fig. 1. Since interaction between all pairs
of data points is not required by the program, it can be shown that
seven locations are necessary and sufficient to permit the required
interactions. However, the following program which also contains six
instructions and requires six data points can be realized with only six
bubble locations:

P = (z1, y) (@0, Yo) (@1, 20)(Zo 5 fo) Wo » Y1) Wo » f1).

Figure 3 shows the memory layout for this program.

This example shows that the canonical realization may be inefficient
in the number of instructions, computation time, and also memory
requirements. The inefficiency of the canonical realization becomes
even more apparent if we compare the canonical realization of f =
2@ 2, @ - @ z, with the realization in the form [(z, @ z.) D
23 -+ @ =), where each exclusive-or operation is performed by a
program of the type given above.

The above example points out several open problems associated
with the design of efficient programs for computing combinational
functions. One problem is that of obtaining a program with the
smallest number of instructions for computing a given funection. For
a given program, the assignment of locations so as to minimize the
total number of locations required for its implementation is also an
important problem. Since the number of memory locations required is
dependent not only on the number of instructions, but also on the
specific program, another open problem is that of obtaining a program
with minimum memory requirements.

The problem of minimizing the number of instructions in a program
for computing a combinational function corresponds to that of finding
a realization of the function using the smallest number of modules of
given types. For example, the bubble transfer instruction can be repre-
sented by the module shown in Fig. 4a. The bubble location at which
each output appears is given in parentheses. Note that fan-out is not

T Lo fo

Y, Yo f,

Fig. 3—Memory layout for program P
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allowed in the realization. Bubble splitting is represented by the
module of Fig. 4b. Instructions of the type (x, ¥)4 and the conditional
transfer (x, ¥)z can be represented by modules of Fig. 4c and d
respectively. Creation and annihilation of bubbles can be represented
by appropriate constant inputs (0 or 1). If a realization of the func-
tion can be obtained using a subset of these module types, then the
realization can be readily translated into a program which computes
the funetion. All bubble locations used in the program will correspond
to inputs of the ecircuit. Although efficient realizations of funetions
using only modules representing the allowed bubble interactions lead
directly to efficient bubble programs, there are at present no known
algorithms for the former. The following example shows how a pro-
gram is obtained from a modular realization of a function.

Ezxample 2: Consider the function f = aé + bed + béd, which is to
be computed using the bubble transfer instruction only. Let each
variable be represented by two locations. Thus, we wish to realize f
and f using only modules of Fig. 4a, with no fan-out. The inputs to
the circuit consist of the variables and their complements. [ =
ed + be + aéd + abé = ¢(b + d) + aé(b + d). We obtain the circuit
of Fig. 5 (by trial) which realizes both f and f. Translating each module
of Fig. 5 to the corresponding instruction, we obtain the following
program:

P = (b, do) (do, c1) (by, dy) (a0, co) (di, ao) (do, dy)
(1, b1) (ba, ao) (ca, ar) (bo, ca) (c1, o).

At the end of the program f and f will be in ¢, and d, respectively.
In translating the ecircuit to the program, no module should be trans-
lated to the corresponding instruction until the modules connected

(x) (x)
L —e — Ty L i —_— I
y—= & Tty Y —— Hﬁ- Tty
(a) (b)
(x) (x) =
T — xy x o xY+xZ
() y 2) TZ+Y
Y —— — ::@g Z A
(c) (d)

Fig. 4—Modules representing instructions; (a) Bubble transfer, (z, y). (b)
Bubble splitting, (z, ¥)s. (¢) Type (=, y)a. (d) Conditional transfer (z, y¥)z.
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d ibcd

al|lg

b -
aj‘ ks

—1

I c(b+d)

c 2 +c+d

—] —o0

bd 6 -
b — f
d- ? [_b*d at(b+d)

5 ac+b+d bcd

5 . §6_| T, 11 f
- +
L ac az+bed

a — ° 1 L 0

Fig. 5—Circuit for example 2.

to its input terminals have been translated. It is also important to
observe the proper correspondence between bubble locations and the
output terminals of a module. After applying an instruction (z, ¥),
xy appears at location x, and z 4 y appears at location y.

The other types of modules shown in Fig. 4 can be used in a sim-
ilar manner for deriving programs using other types of instructions.
However, there are no known algorithms for realizing any arbitrary
function using only modules of a given type, so as to minimize the
number of modules used. When such algorithms become available they
can also be used for obtaining efficient programs of magnetic bubble
interactions.

3.3 Speed-up of Computations

We have seen how a combinational function ean be computed by
different programs having different numbers of instructions and
memory requirements. If the instructions in a program are executed
one at a time, as was implicitly assumed so far, then the time for
computing a function depends on the number of instructions in the
program. However, it may be possible to speed up the computation
by executing several instructions simultaneously.

An obvious method of obtaining parellelism in a program is by
executing independent instructions simultaneously. Instructions that
may be executed simultaneously can be determined from the circuit
corresponding to the program, discussed in the preceding section. The
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modules in the circuit are arranged according to levels as follows:
Modules whose inputs are only input variables (or their complements)
are assigned to level 1. The level of any module is defined to be the
smallest integer greater than the levels of the modules connected to its
input terminals. With levels assigned to all modules in the circuit in
this manner, the instructions corresponding to these modules are
executed in the order of the level numbers, and the instructions cor-
responding to all modules in one level may be executed simultaneously.
However this may necessitate a further restriction on a valid memory
allocation scheme.

Ezample 3: Consider the realization of the function f = a¢ + bed + béd
in Fig. 5. The modules can be arranged according to levels as follows:
level 1-(1, 3, 4); level 2-(2, 5, 9); level 3—(6, 7, 8); level 4-(10); level
5-(11). The program P can be executed in five steps as follows:

(1) (bo , do) (b1, d1) (a0, co).
(i) (do, c1) (d1, ao) (co, a1).
(1%5) (do , d1) (1, by) (bo , o).
() (b, €o).

(@) (e, co).

Another situation where simultaneous execution is possible becomes
obvious by considering the instructions (a, b)(a, ¢). If these instructions
are executed simultaneously, the location a will contain abe, whereas
the contents of locations b and ¢ are indeterminate because they depend
on which of the two instruections is actually executed first. However,
if we are interested only in the product term abc, the two instructions
may be executed simultaneously. In general, all (n — 1) instructions
for forming a product of n variables can be executed simultaneously.
Similarly, the simultaneous execution of the instructions (a, s) (b, s) - - -,
leaves the sum @ + b 4+ --- 4+ s in location s with the contents of
a, b, - - - indeterminate. Using this technique, the program of Example 3
can be executed in four steps by replacing the instructions of steps
w and v by (b , co)(c; , ¢o), executed simultaneously. Instructions of
the type (z, ¥). can also be executed simultaneously with similar results.
For instance, the simultaneous execution of (a, b), and (a, c); leaves
the product abc in location @, with the contents of locations b and ¢
indeterminate. Similarly, if (e, c); and (b, c¢); are executed simul-
taneously, the location ¢ will contain a @ b P ¢, but the contents of
locations @ and b will be indeterminate.
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It may also be possible to speed up computations in a manner sim-
ilar to the use of completion signals in asynchronous eireuits.”” A
combinational function f can be expressed as a sum of disjoint
minterms. The function can be computed by computing these min-
terms, one at a time. As soon as a 1 is generated, the computation is,
in effect, complete because the value of the function is known to be 1.
The computation can be terminated if the presence of a bubble in
the output location can be detected by the control circuitry. The con-
ditional transfer instruction (z, )z discussed earlier may be useful
for this purpose.

3.4 Iterative Array Realizations

Our discussions so far have been restricted to realizations which
minimize the number of instructions or the computation time. In this
section, we shall consider some techniques for obtaining regular strue-
tures, which are capable of performing computations by the applica-
tion of uniform magnetic fields. In such a structure, the same type
of instruction is executed simultaneously in all parts by the applica-
tion of a uniform magnetic field, the type of instruction being con-
trolled possibly by the direction of the magnetic field.

Since regularity of interconnections is a highly desirable feature in
integrated circuits also, a great deal of effort has been directed toward
the realization of functions as iterative arrays.®® Such arrays may
be classified as uniform cell function arrays (in which the function
realized by each cell is identical and different functions are realized
by the array by changing the inputs to some cells) and nonuniform
cell function arrays in which different cells realize different functions,
depending on the position of the cell in the array. The operation of
uniform cell function arrays can be simulated by magnetic bubble
interactions with uniform magnetic fields.

The rectangular array shown in Fig. 6a may be used for realizing
any combinational function of n variables by merely changing the
connections to the last row of cells. A typical cell in the array is
shown in Fig. 6b. It can be shown that the vertical outputs of the n*
row consist of the 2" minterms of n variables. Since at most one of
the minterms will be 1 at any time, the last row will ecompute the
sum (or) of all minterms connected to it. Any function can be realized
by connecting to the cells in the last row only those vertical outputs
of the ntt row that correspond to 1-points of the function.

Note that the number of cells in the array is (n + 1)2" The longest
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Fig. 6—(a) Rectangular array. (b) Typical cell in array.

path in the array is 2" + n + 1. Therefore, the time required for
computing a funetion of n variables is proportional to 2" + n + 1.
The operation of this array can be simulated by magnetic bubble
interactions as follows: Let each cell in the array be replaced by two
bubble locations as shown in Fig. 7. Let the application of a magnetic
field to a cell cause the execution of the instruction (z, ), and transfer
of the resultant bubbles as shown by the arrows in Fig. 7. (It may be
necessary to apply a magnetic field in one direction followed by a field
in a different direction to accomplish this.) Let the cells in the #th row
and jth column be denoted by C;; . If the left and right locations in
C;; represent r and y respectively, application of the field to C';; results
in zy in the right location of C;., ; and z @ ¥ in the left location of
C;,i+1 . Initially, we set the left locations of all cells in the first column,
except the cell in the last row, to correspond to the values of the =
variables. The left location of the first cell in the last row should be
empty. The right locations of all cells in the first row initially contain
bubbles. Paths from the nth row to the (n 4 1)st row which correspond
to minterms for which the function is 0 are inhibited. At ¢t = 1, the
field is applied to €'\, . At ¢ = 2 the field is applied to €, and C,, ;
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at £ = 3to Cy3, Cys, and Cy, ; and so on. That is, at t =k, 1 = k <
2" + n, the field is applied to all cells C;; such that 7z + j = k 4+ 1. At
t = 2" 4+ n 4+ 1, the value of the function will be in the right location
of Cn+1.2“ .

Instead of applying fields to successive diagonals, the fields may be
applied to the entire platelet. Now, the right locations of all cells in
the top row should be connected to “bubble generators,” so that they
always contain bubbles. The values of the n variables, contained in
the left locations in the first column, may be changed every n units
of time. The output corresponding to any input combination will
appear at the output location 2" + n + 1 units of time after the
application of the input combination. If input changes occur n units
of time apart, the correct outputs will also appear n units of time
apart. However, the contents of the output location will not be correct
between these fixed instants of time. Therefore, it is necessary to read
the output at the appropriate instants of time.

The preceding discussion shows how a uniform cell function iterative
array can be simulated by magnetic bubbles by applying identical
sequences of instructions to successive sets of bubble locations. This
provides us with a systematic way of realizing all combinational func-
tions. If conditional operations are permitted, nonuniform cell fune-
tion arrays can also be simulated. Such arrays can be made smaller
than uniform cell funection arrays. The number of cells required for
realizing any arbitrary function of n variables is proportional to 2"
with nonuniform arrays compared to n-2" required for uniform cell
arrays.® However, the cells of the nonuniform array are likely to be
more complex than those in a uniform array.

It is interesting to compare the size of array realizations to the size
of realizations without any restrictions on the interconnection struc-
ture. Bounds on the latter will provide us with an indication of the
space and time requirements for computing an arbitrary combina-

T Y T®yY

e Q Q
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Fig. 7—Simulation of array by magnetic bubble interactions.
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tional function with magnetic bubbles. D. E. Muller*® has shown that
for any set of elements capable of realizing all combinational func-
tions, the number of elements N for realizing any arbitrary function
of n variahles satisfies the inequality

<N &%
n

c.2"
n
where C; and C, are constants whose values depend on the set of
elements used. The proof of the upper bound is constructive and uti-
lizes only one type of cell. It is outlined below because of its possible
applicability to magnetic bubble computations.
The cell used realizes a function of three inputs ab + dc. Any function
of k variables can be expressed as

f(Il,Iz, "',Ik) =$;¢f(171,$2, "',:.17;;71,1)
+5fkf($1’-7721 ,1‘;,_.1,0).

If all functions of k¥ — 1 variables are available, every function of &
variables can be realized using exactly one cell. There are 2* functions
of k variables (which also include all functions of £ — 1 variables,
k — 2 variables, ete). Thus 2% cells are sufficient for realizing all func-
tions of & variables.

By expanding about any variable, the output function can be formed
from two functions of n — 1 variables. Repeating the procedure, it
may be formed from 2"* functions of k variables, using 2"* — 1 ele-
ments. Since 2% elements are sufficient for realizing all functions of
k variables,

N =292% 4 2% 1,

The value of k may now be chosen so as to minimize N. An approximate
minimum is N < C,(2"/n), for some constant C; . Thus the bound
on the number of cells required is greatly reduced for nonregular
structures.

1IV. SUMMARY

Three different mathematical models of magnetic bubble interac-
tions were studied and each of them was shown to be sufficient for
computing all combinational functions. Some methods of speeding up
computations were presented. Geometrical patterns in which it is
possible to move bubbles between any pair of data locations and also
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minimize the maximum path length were examined. A uniform strue-
ture for computing arbitrary functions was also presented. These
structures have the advantage that computations can be carried out
by the application of uniform magnetic fields to the entire platelet.
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