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The decomposition of permutations as used in the control algorithm
for a class of rearrangeable switching networks 1s proved. Enumera-
tion studies on permutations related to the network are presented.
Theorems for constructing a set of traffic patterns for diagnostic pur-
poses are also given. Finally, a procedure for detecting and locating
faulty switching elements in the network is described.

I, INTRODUCTION

This part of the paper will cover some of the theoretical considera-
tions related to the rearrangeable switching networks discussed in
Part I. For the general (N x N) network with base-d structure, it is
shown that it can indeed accommodate any of the N! connection
patterns. A thorough study is then made of the (N x N) network
having a base-2 structure. It was pointed out in Part I that the
setting of the B-clement is, in general, not unique for an arbitrary
input-output permutation. Furthermore, the number of 8-elements for
an (N X N) network exceeds (log. (N!)), for N > 4. Some enumera-
tion studies are given to account for this. Finally, fault diagnostic
studies are given in relation to the base-2 network. A method to con-
struet a set of permutations useful for testing the network is developed.
This is then followed by discussing a procedure to detect and/or locate
faulty B-elements in the network.

II. PERMUTATION PROPERTY OF THE NETWORK

In this section it will be shown that the decomposition of the given
permutation into reducible connection sets (as used in the control
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algorithm) is always possible. From Section 3.2.1 of Part I, it is evi-
dent that the decomposition is equivalent to the selection of d sets of
output integers, =(x;), one from each S;, such that all the output
integers in any of the d sets have distinct characteristics, where S;,
as previously defined, is

S, = (w(x) | z. € J(, d)} 1=1=N/d

and there are d elements in each S, .

To show that this selection and, therefore, the decomposition can
always be done, P. Hall’'s Theorem' on Distinet Representatives is
used and is stated as follows:

P. Hall’s Theorem: Let L be a finile sel of indices L = {1, 2, -+ n}.
For each | & L, let T, be a subset of a set T. A necessary and sufficient

condition for the existence of distinct representativest, , 1l =1,2, --+ , n,
e T, ,t: #t; when i # j, 1s that for every kb = 1,2, --- , n and every
choice of k distinct indices 1, , 1, --- , l, , the subsets T, , T,,, -+, Ty,

contain between them at least k distinct elements.
This theorem can be used directly if a mapping ¢ is defined on the
sets S, as follows:

S, = {r(x)} 2T, = (i} 1=1=N/,

where

. [vr(x.-) +d-— 1]*
P .

This simply means that each integer in S, is replaced by its charac-
teristic £, with T, having exactly the same number of elements as ;.
Thus, the selection of d sets of «(x;), one from each S;, such that the
integers in each of the d sets have distinet characteristics, is equiva-
lent to the selection of d sets of N/d distinct representatives, one from
each T, such that in each of the d sets t; = ¢; for 7 #= ;.

By Hall’s theorem, it is sufficient to show that forevery k = 1,2, - - -,
N /d and choice of k distinet indices, , I, - -+, I, thesets T, , T,,, -+,
T, contain between them at least k distinct elements. But this is
clearly the case here, since each set S, , and, therefore, each set T, ,
contains exactly (d — j) elements after j sets have been so selected.
0 < j = d — 1. Thus, there are k(d — j) elements in the sets T, ,
T, , -, Ty, of which at most (d — j) elements are identical (derived
from the fact that there are al most (d — j) output integers belonging

* [2] is the integral value of 2.
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to the same integer set after j sets have been so selected). Therefore,
there are at least & distinct elements. The index j is introduced to show
that the selection of d sets of w(z;) can be made on a sequential basis.

III. SOME RESULTS ON ENUMERATIONS

For the remaining sections, the discussion will be restricted to the
(N x N) network with base-2 structure. Some definitions (in addition
to those in Part I) relevant to the enumeration study as well as the
network diagnosis are given first.

3.1 Definitions

(i) For any given connection set C, C € P, having input-output
pairs (the outputs are denoted as y, instead of =(z;) to simplify the

notations),
[:El Ty e xm] 1
Y Y2 0 UYnm

there exists an inverse of C, denoted by €', which is a connection set

lIA
IIA

m

N,

Vi Yo ot Um|

T, Xy R

(i7) For any two connection sets C, and C; that have the same set
of input (z;) and output (y:) integers, the product C,C7' and its cycle
can be defined in the standard manner, similar to that usually as-
sociated with permutations.”

(777) A loop is a connection set where, for any

"”") cr, r" = f"] and [ . ]EL.
Yi Y; Y = Ui

The number of these input-output pairs in L is called the order of L,
which is necessarily even. Moreover, all loops are distinet, i.e., any
two loops do not have any common input-output pair.

(iv) A proper loop is a loop in which the input-output pairs are
arranged so that both = and £ and y and # are adjacent in a circular
sense, e.g.,
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This can always be done, and any loop is considered to be a proper
loop, unless otherwise specified. Any permutation P on N integers
can be written as

P = (LIJLE!J'"')LM)

and is said to have m loops, 1 < m < N/2.
(v) A loop L, of order 2k, is said to be decomposed into two inde-
pendent connection sets C; and Cs, Cy , C; C L, if for any pair (3}) € €,

[x':f"] and [ T ]ecg.
Yi Y = ¥

(v7) The derived sets @, and Q. (obtained from independent con-
nection sets C; and C, respectively by replacing every integer by its
characteristic) are denoted by (@, , @.). If C, and C, are reducible,
@, and @, are permutations P, and P, respectively, and they are referred
to as derived permutations.

3.2 Enumeration of Permutations by Loops

In terms of the definitions just given, the looping procedure for the
control of the (N X N) network, described in Section 4.2 of Part I, is
equivalent to arranging the given permutation having m loops into
the form

P=(L|,L2,"‘,Lm) 1§méN/2?

and decomposing it to two reducible connection sets C; and C, by
grouping the alternate input-output pairs from each loop into C; and
the remaining into C» . Since the decomposition is not unique if m > 1,
it is readily seen that for any permutation with m loops, there are
2m-1 possible ways of decomposition. This leads naturally to the ques-
tion of how many of the N! permutations have m loops, 1 < m < N/2.

The following lemmas and theorems will establish a natural relation
between cycles and loops. The enumeration of permutations with m
loops (1 < m = N/2) can be expressed in terms of that of cycles,
which have been well studied.?

Lemma 1: The derived sets (Q, , Q;) of a loop L of order 2k have the
same set of integers x; and y, , and the product Q,Q;' has one cycle of
length k.

Proof: Indeed, by definition (v), for every input (or output) integer
in €, , its dual is in C; ; and since they have the same characteristic,
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Q, and Q. have the same set of input (or output) integers. Further-
more, since L is a loop, C, and C; are of the following form

’ ’ ar Aar Al
L I 1 £ & - Iy
C, = [ y C; = ’
! r ’ ’ ! ’
Ue B (/- Y Y2 o Yk

where [(x! + 1)/2] = [(#/ + 1)/2] = z; . Thus, , and @, are of the
form
r, Ty - Ik] Q=[-T: Ty -t xk]
1 2
Yo Yo 0 Ui Yo Y2 ot Uk

Q -1 _ [Il Ty Tk ]
W =
Tk X, P xk*l

and has one cycle of length k.

Q =

and, clearly,

QED.

Corollary 1.1: There are 22 loops that give identical derived sets
(Q, Q).

This is clear from the fact that there are 2k integers (input and out-
put) in Q;, and for each (Q,, @), there are 2%k possible pairs Cy and
C, . For any given pair C; and C., the pair "> and € reduces to the
same (Q,, Q,); therefore, 2°F is divided by two.

From definition (iv), any P with m loops can be written as

P = (LllLZJ"'lL-H)J

where L, , Ly, - -+ , L, are disjoint loops. Applying Lemma 1 repeatedly
on L, , the following important theorem that establishes the relation
between loops and cycles is obtained.

Theorem 2: The product P,P;', where P, and P are obtained by grouping
one Q from each L, has m cycles if and only if P has m loops
(1 £ m = N/2). As defined in Section 8.1, P, and P, thus obtained
are the derived permutations.

Corollary 2.1: There are 25" permutations, having m loops, that
will give the same dertved permutations (Py, P2).

This is proved by repeatedly using Corollary 1.1, and it leads to
another enumeration on the number of permutations P that have m
loops.
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Lemma 3: Define R to be the set of all the derived permutations (P, , Ps)
which have the same product P, P;"'. Then there are (N/2)! (P, , P,) in R.
This is true because both P, and P, are permutations on N /2 integers.

Let C(n, m) denote the number of permutations on n integers that
have m cycles. Then there are C(N/2, m) distinet products P,P;*
that have m cycles. As a direct consequence of Corollary 2.1 and Lemma
3, the following theorem is established.

Theorem 4. There are exactly 25"(N/2)! C(N/2, m) permutations
P which have m loops.

Thus, the enumeration of permutations by loops is related, in a
simple manner, to the enumeration of permutations by cycles. The
latter problem has been well studied,® and the enumeration is gen-
erally expressed in terms of the Stirling numbers* of the first kind,
8(n, m), as follows:

C(n, m) = (_1)“+ms(ﬂs m),
where s(rn, m) can be evaluated from the following generating
function

Sosn,mit" =4t —1) - (t —n + 1)

m=0
and ( —1)™ms (n,'m) is always positive. For the interesting case m = 1,
the number of permutations with one loop is

(N/2)W(N/2 — 1)12¥ ",

3.3 An Example
This enumeration is illustrated with the case N = 8, If the number
of permutations P that have m loops is denoted by D (N, m), Table I

TaBLE I—THE NuMBER oF PErMuTATIONS D(N, m) TaHaT HAVE m

Looers
m C(4, m) D(8, m)
1 6 27 41.6 = 18,432
2 11 26.41.11 = 16,896
3 6 28 416 = 4,608
4 1 24.41.1 = 384
Total 8! = 40,320
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accounts for all the permutations. Wherever m > 1, there are more
than one setting of the 8-elements in the input and output stages that
will satisfy the same permutation. This applies to all the stages as
each subnetwork is taken into consideration, and, thus, the total num-
ber of states provided by all the B-elements exceeds (logz (N ).

1V. CONSTRUCTION OF TEST PERMUTATIONS

It has been pointed out above that for any P having m loops, cer-
tain m B-elements at the input and output stages can be arbitrarily
set. To detect faulty B-elements, one must find a class of input-output
permutations, or test permutations which are realized by a unique
setting of the B-elements. The property of such a permutation is that
it and all its derived permutations, at every level of the network,
have exactly one loop. To show that they do exist and can be gen-
erated, one proceeds as follows:

Lemma 5: If a loop L is given, then any loop L’ formed from L by
taking the dual of one or more of the integer pairs ( tnput or output)
in L will give the same derived sets (Q1, Qs), (Q2, Q1) being con-
sidered the same as (Q., Q2) for the remaining discussion.

This is obvious from the fact that the characteristic of an integer is
not changed by taking its dual.

Theorem 6: Let L and L’ be two loops having the same (Qy, Q).
Then the product L(L’)™ has one cycle if and only if L’ is obtained
from L by replacing every integer except one integer pair (input or
output) in L by its dual.

Proof: That L and L' do have the same (@, , @.) is a direct consequence
of Lemma 5. Moreover, the loops L and L’ have the same set of x;
and v, , since z, , £ , ¥: , ¥ are all in L. Thus the product L(L)™"is
defined. Now, let L of order 2k be written as follows:

I = oz & T o,
Vi D Y2 o T Uk B
and
= B £y 2y o o om £ ,
Do Yo P 0 Yk Y B

where, without loss of generality, the only unchanged pair is ¥, and @ ,
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since the ordering of subscripts is immaterial. The transformation from
L to L’ can be expressed in terms of the input-output pairs, namely,

#) is replaced by f:] and [,;fil} by [,"‘1] except [j:J isreplaced by [::]
and (3:) by (). The input-output pair for L(L')™" will be, in general,
(5 )for1 <4 < kand (7 )for 1 < i < kwith the exception of (%)

and [;;]. Therefore,
L(L’)—l = (fliﬁz cee By e 1),

where the product written in the familiar cycle form has one cycle of
length 2k.

To show the converse, it is sufficient to show that the loop L’, ob-
tained by either taking the dual of every integer in L or taking the
dual of every integer except two or more integer pairs, will not satisfy
the second property. Referring to the above, it is seen that if every
integer is replaced by its dual, then the product

L(L')_l = (fljg = :ﬂ,‘)(x,,x;‘_l e :51)

has two cycles, each of length k.
If there are more than two integer-pairs unchanged, one can always
write
L' = 2, £ x - x; £y v E o &
H
o G ¥ B Y U e

where the first other unchanged integer pair is y; and 4; , 7 < k. Then,
by the same argument given above, the product L(L’)™"' has at least
one cycle of length 27, namely,

(-'flfeg T £,-:U,-x,-41 T 31) Zj < 2k. Q.E.D.

Corollary 6:1: If L is a loop of order k, k = 4, there are k such loops
L’ where L and L’ give identical derived sets (Q,, Q2) and L(L')™
has one cycle.

This is obvious since there are k/2 input integer pairs and k/2 out-
put integer pairs. The case &k = 2 is a degenerate one, since taking the
dual of the input pair only yields the same loop as the one obtained by
taking the dual of the output pair only. Hence, only one L’ is possible.

By repeatedly using the above theorem, one can show the following.

Theorem 7: IfP = (L,, L., -+, L,) and its dertved permutations
are (P, , Pz), then another permutation P’ will have the same derived
permutations and P(P’)-* wtll have m cycles if and only if P’ 1s ob-
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tained by taking the dual of every teger except one integer pair
(input or output) i each L;, 1 =1 = m,in P.

Corollary 7.1: There are kiks - -+ k. ways of deriving P’ such that
P and P’ give identical derived permutations (P, P.) and P(P’')?
has m cycles, where k; is the order of L and k; = 4. If ki = 2 for some
L; , it will be taken as unity.

The following example illustrates what has been discussed. P has
two loops, and the derived permutations (P, , P;) have the property
that P,P;' has two cycles.

P=(12345 6 7 89101112)
8 5 1 97 11 3 12 2 10 4 6

=<156871112239104)_
8 7 11 123 4 6 5 1 2 10 9
~ -

a loop a loop

The decomposition of P yields:

P1=(134625); P2=(346152);
462315 462315

and P,P;' = (1 3 4 6) (2 5) has two cycles. P’, which gives the same
pair (P, , P,), is obtained from P, and one of the 32 possibilities is

P,=(26578121114109 3)
781211 4 3 651 2910

(The underlined integers are the unchanged ones in each loop.)
Furthermore, P(P') = (1 6 7 12 11 8 5 2) (3 4 9 10).

The permutations for which m = 1 can be used in the generation
of the test permutations. This is achieved, for any N, by starting with
any permutation on 4 integers that has one loop and applying Theorem
7 repeatedly in an iterative manner. One can show that there are

O(EN—3+(lnn, N(logy N—3))/2)
-

such test permutations by repeatedly using Corollary 2.1 and Corollary
7.1, with m = 1. The construction of one of these, based on Theorem 7,

is illustrated as follows.
In order to clarify the following discussion, test permutations on N
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integers and their derived permutations are denoted as T'(N) and
(T1(N/2), T2(N/2)) respectively. If it is desired to construet a T(16),
then the first step is to select a T;(4) and generate T'>(4) such that
T1(4) (T2(4))* has one cycle. There are 16 T'(4) that have one loop;

one of these is
1 2 3 4
T.(4) = ( )
1 4 2 3

T,(4) is obtained by taking the dual of every element except one
integer pair (by Theorem 7). One of the four choices is

T2(4)=(1 2 3 4)_
2 3 4 1

Any permutation that decomposes into 7, (4) and T'»(4) can be used
for T,(8) ; one of the 128 possible permutations (by Corollary 2.1) is

Tl(8)=(12345678)’
1385476 2

where the connection set corresponding to T;(4) is taken as

[1 3 5 7] _
1 8 4 6
There are eight choices for T2 (8), and one of these is

1 2 3 4 5 6 8
T,(8) = ( 7 )
2 4 6 7 8 31 5

Similarly, one of the possible T'(16)’s is

1234 5 6 6 8 910111213141516)‘

14581216 131015 7 614 211 9 3

It will now be shown that a permutation that is realized by com-
plementing every setting of the B-elements that realizes T (N) except
the one corresponding to inputs 1 and 2 (see network structure) is
also a test permutation, T°(N), and that it can be generated parallel
to T(N). These two permutations are used for fault detection in a
manner to be described later.

T(16) = (

Theorem 8: Let T,(N) be a test permutation that has (T,(N/2), T.(N/2))
as the derived permutations. And if there exist two other test permutations
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T:(N/2) and T5(N/2) such that the product TS(N/2) (TN /2))"" has
one cycle, then one can construct a fest permutation which will have
(T5(N/2), T5(N/2)) as the derived permulations.

Proof: Let T.(N) be decomposed into two reducible connection sets,

C, and C, , where C, can be written as

0, = 221:1 Ty - Tny2

=
Wi Y2 = Ynse

(z, = 1 is arbitrarily defined by the network structure).

The connection set ¢ is formed by replacing each input and output
integerz € T:(N/2), except x; = 1, by z (ory) that has the characteristic
2 and has its dual # = z, , for some 7, belonging to C, , 1 < i = N/2
(orj) = y: € C,,1 =7 = N/2). Clearly, this can always be done because
every z € T:(N/2) has two integers with z as their characteristic, and
only one of them is in C, . Similarly, a connection set C: can be formed
from T5(N/2), based on C; . The permutation, obtained simply by
combining C¢ and Cj , has the derived permutations (T:(N/2), T5(N/2)),
and it has only one loop. Furthermore, it results in the complementary
setting of B-elements by the looping algorithm, since any integer in C}
is the dual of some integer in C, . Q.E.D.

Theorem 9: One can construct a test permutation T3(N) from T;(N)
in the same way as T2(N) is oblained from T ,(N) as given in Theorem 7,
and the product has also one cycle.

Proof: Let To(N) be obtained from T,(N) by taking the dual of
every integer except one pair, say, (z., £.). The permutation, obtained
from T:(N) by taking the dual of every integer pair except the same
pair (z; , £), is indeed a test permutation by Theorem 7. Using the
same argument as in Theorem 8, it is easily seen that the setting of
B-element to realize this permutation is complementary to that for
T,(N). Hence it is T5(N). Q.E.D.

Since the permutations 7,(2) and T,(2), and the corresponding
T:(2) and T:(2), can always be constructed, one can, by induction
on N, construet the two test permutations T(N) and T°(N) for arbitrary
value of N. One can, in fact, generalize Theorems 8 and 9 to establish
arbitrary relations between two permutations in the g-element settings
in addition to T'(N) and T"(N) for which the settings are complementary.

The construction procedure for 7°(N) is illustrated by determining
the T°(16) as related to T'(16) given in the previous example. In that
example, C, = (13)and C, = (33). Also T.(2) = (} 3) and Ta(2) = (2 1);
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therefore, T5(2) = (G 3) and T5(2) = (i 3). All elements except input 1
in C¢ must have their dual in C, ; also T;(2) and T;(2) must be satisfied;
therefore,
czz{l 3], and c;=[2 4]
4 2 ) 1 3
and

Tr(4)=(1 2 3 4)_
4123

Keeping the input integer pair (1, 2) unchanged, one has

¢ 1 2 3 4
T2(4) = ( )
3 2 4 1

Repeating the procedure, one obtains

. 1 2345678

T1(8)=( )

76 428315

. 12 4 5 6 8

T2(8)=( 3 7)1

8 513476 2

and

Tcuﬁ):(l 2 3 45678 910111213141516).
131610128 14515 7 614 211 9 3

V. INVERSE CONNECTING EQUATIONS FOR BASE-2 STRUCTURE

The looping procedure for setting the B-elements to realize a given P
is described in Part I. The inverse problem of defining P from the
states of the B-elements is also of some interest. If P can be derived
from the B-element setting, then it is not necessary to store the con-
nections in another memory. Also the inverse connecting equations
are used in the location of faulty B-elements.

In the control algorithm for the base-2 structure, the states of
the B-elements are derived in an iterative manner from the outside
(first) level to the center (logsN)™ level. Therefore, to obtain the
inverse connecting equations, the states of B-elements in the center
stage are considered first.

The B-elements in the network are numbered (see Fig. 1) such that
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INITUT QUTPUT
1

NTH STAGE 2ND STAGE IsT STAGE 2ND STAGE NTH STAGE

Fig. 1—The numbering of g-elements in an (N X N) network.

the defining equations for each input-output pair appear in a simple
form. py and vy, are the input and output B-elements respectively.
They are located in the jth stage (counting from the center stage),
the kth (2/ x 2/) network, and the Ith position at the input (or out-
put) stage. The center stage is considered as the first output stage,
and the B-elements are denoted by w1z - They are defined as ‘0’ or ‘1’
when set to straight-through state or crossover state, respectively.

The code for the input and output integers is the same as given in
Qection 4.1 of Part I. For any input integer x; (or output integer Vi),
the normal binary representation is its coded form, having a code
length of n = logaN. And it is expressed as follows:

T, = TiTiz * " Tin «

The inputs to the center stage are designated by @, @ = 1,2, .-+ , N,
as shown in Fig. 1, and the input-output pairs are ordered according
to «. For each input-output pair [’;:], the code words for z, =
TarTaz " Tan AN Yo = Yarlaz **° Yan CAN be calculated from the
following inverse connecting equations:

To = (@ + 1) mod 2,
Tap = e 1 <j=m;

* 21 = z and 20 = 3, the complement of z, and z = O or 1.
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and
Yar = Vf[?n:if)/zn ) 1)
Yaij = V?t?:“ 1<j=n;

where

Il

«— 14 2 p+ 1
e D

and I. and [, are the integers represented in the coded form by
TarZaz " " Tagi—n aNd Yarlaz " Yaqi—n Tespectively. The equations
for z,; (or y.;), 1 < j £ n, can be obtained in a recursive manner
from the following Boolean equations:

If o and j are such that p is even,

Taj = Farfaz *** Tag-0)binn T Earfaz = * TaGi-n)iea + +
T+ (TarZaz * - Ta(i-n)ikzi-n -
And, if p is odd,
Toj = (fmjuz e -fa(i—n)l-_"im + ('f'ulw_uﬂ e xu(i—l))ﬁ:‘kn + e
F+ (TarZoz *** Tai-n)Eir@i-y -

The following example of the (8 X 8) network shown in Fig. 2
illustrates the inverse procedure. For each « = 1,2, - , 8, the coded

Pan oy Vit Van LT

01234567

Fig. 2—p-element setting for P = (17203528) -
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inputs and outputs are calculated. If « = 5, then

25 = (5 + 1) mod 2 = 0;

3 mod 2

Ts2 = Pajasnsen = ponn = 0
and

Tsa = Hai(ssnsen = Han = L.
Also

Ys1 = ”fl‘?gif)/ﬂl = = 1;

Ysz2 = vgru(l;i?)/z!z = vy = 1;
and

Ysa = Vatean/ma = Pas = L.

[ = [ = [ .

[’“] @=1,2,34,6,7,8)
Ya

are determined in the same manner, and they are:

_ [000} _ [xz] _ [111] _ {:ca _ [010] :
001 Ya 110 Ya 100
xa] _ 110] ; x,] _ {011] . and

Ya 010 Yz 000
Then the input-output permutation is
P=(01234567)_
17 4035 26

VI. DIAGNOSIS OF FAULTY B-ELEMENTS

The remaining

T,

Ty _ 1001
y.] [011} ’
:cs] _ 101]_
Ys [101

W

The physical design of the g-element is the major factor in deter-
mining the method of detecting and locating the faulty elements in the
network. For example, the detection of a faulty B-element which



1616 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1971

either opens or shorts to ground is trivial. If one has access to the
actual state of each B-element, then the location of faulty elements is
also trivial. In this paper it is assumed that the individual B-element
is not accessible, and it is considered to fail when it remains in one of
the two states.

6.1 Detection

By using the test permutations T(N) and T¢(N), each B-element
is checked for the two possible states. Failure in any number of
B-elements will be detected by the fact that either T(N) or 7¢(N) or
both will not be realized. It is to be noted that any permutation having
more than one loop cannot be used because the setting of some two or
more 8-elements is arbitrary, and, therefore, failure of these elements
in certain states may not be detected.

6.2 Localion

With any test permutation T'(N), failure of one 8-element will result
in a permutation different from T'(N) by only two input-output pairs,
that is, the input-output pairs (:;’J and [:j] become {:j] and [ﬁ:] for
some 7 and j. The inverse connecting algorithm discussed in Section V
can be used to locate the particular (or the faulty) g-element common
to (z¢) and [:j] with their associated o’s which are stored in the memory.

The following example illustrates this procedure. If the test permuta-
tion for an (8 X 8) network is

T(8)=(01234567),
0 27 43651

then, using the same coding scheme as in Section V, the setting of the
B-elements for it is shown in Fig. 3. Also, the &’s corresponding to each
input-output pair are calculated by using the inversing connecting
equations, and they are given as follows: a1 , @2, a3, a4 , a5 ag, a7, and
and ag correspond to input-output pairs

R

Assume that g-element vu1y is faulty, and it is fixed in the crossover
position. Then the actual permutation realized is

(01234567)
P = ,
02543671

010

and the incorrect pairs of 7'(8) are (2) and (°) or in coded form (219)
and (11°). The o’s for these pairs are 3 and 2 respectively. By using
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Fig. 3—p-element setting for T'(8) = (g;f,%::: .
the inverse connecting equations (1), the g-elements through which
(2) and (%) are connected are found to be paiz , ma11 s Vior s V212, and vy,
and paiz , Piir , 212 , and vas respectively. It is seen that B-element
Ya12 18 common to both input-output pairs; therefore, it is the faulty
B-element.

If two B-elements are faulty, there are either three or four pairs in
T(N) not realized. If four input-output pairs are wrong, the locations
of faulty elements can be determined in the same manner as described
above. Three pairs are incorrect when one particular (] is connected
through both of the faulty elements. For this case, it is necessary to
change T(N) so that one of the faulty elements is in the proper state,
and then the other one can be located. This is achieved by having
2 logs N — 1 test permutations with each one constructed (using a
generalized form of Theorems 8 and 9) to complement different stages
of input or output -elements, one stage at a time. The same procedure
as above is used to locate the faulty $-element.

If the faulty B-elements are restricted to one stage of the network,
then this stage can be located in a manner similar to the above. For
this case, a set of T'(N), log. N in number, is used to complement the
B-elements on each stage (input and output) of the network. The o’s
corresponding to the incorrect (2¢)’s will remain the same until the
faulty elements are complemented. Therefore, the stage containing
the faulty B-elements is determined.

6.3 Adaptive ‘‘Looping” Algorithm
In the looping algorithm as given in Part I, the derived permuta-
tions P, and P. are always routed through the upper and lower
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(N/2 X N/2) networks respectively. This is because in the most
efficient network structure (see Fig. 1 of Part I) one 8-element in the
first stage of each subnetwork (i.e., pj1,1 < j=logN ,1 =k = N/2))
is fixed in the straight-through state. However, by introducing re-
dundant. B-elements uj;1, (as in Fig. 1) one can change (or adapt) the
control algorithm at certain stages to realize a particular permutation
if there is one faulty B-element per subnetwork at each stage.

VII. CONCLUSION

Important relationships between the loops of input-output permuta-
tions and cycles of permutations are established. These properties are
used to enumerate the input-output permutations in terms of loops
and to construet special test permutations which require unique
B-element settings. Also, inverse connecting equations which define the
input-output permutation from the states of the p-elements are
derived. These ideas are utilized in the diagnosis of faulty B-elements.

It is clear that network failure due to any number of faulty elements,
which may be distributed over many stages, can be easily detected
by using only a pair of test permutations. If these faulty elements
are limited to only one stage of the network, this stage can be located
by employing the inverse equations and a set of test permutations.
Furthermore, if only one or two elements fail, their exact positions in
the network can be located by employing a similar procedure.

If the faulty elements are limited to only one in the first stage of
each subnetwork, then any input-output permutation can be realized
correctly by adding a redundant B-element in the first stage of each
subnetwork and adapting the looping algorithm at the appropriate
subnetworks.

The fact that this type of rearrangeable switching network has some
attractive diagnostic properties should enhance the possibility of it
being used in some practical switching systems.
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