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Some Computer Experiments in Picture
Processing for Bandwidth Reduction

By H. J. LANDAU and D. SLEPIAN

(Manuseript received January 4, 1971)

Some computer experiments in processing still pictures for band-
width reduction are described. In the scheme studied, a picture 1s
partitioned into subpictures each of which is encoded separately. A
subpicture is expressed as a linear combination of a finite set of
specially chosen basis subpictures. Quantized versions of the coeffi-
cients of this expansion are transmitted as binary digits. Using this
procedure, we were able to obtain pictures of good quality using ap-
proximately 2 bits per picture-element; we were unable to do so at
lower bit-rates.

Some general comments on the encoding of pictures are included.

I. INTRODUCTION

This paper deseribes some computer experiments in picture process-
ing earried out by us during the winter of 1969 and the spring of 1970.
Our goal was to explore a particular method for the efficient encoding
of typical Picturephone® scenes into binary digits. The experiments
involved still pictures only. We first deseribe the experiments and their
results, then follow with some general comments on the encoding of
pictures. These comments are intended to explain our motivation for
the particular investigation undertaken.

II. THE EXPERIMENTS

By means of the TAPEX unit at Murray Hill,»*# a photograph can
be represented in digital form suitable for handling by the GE-635
computer. Specifically, the picture is scanned from top to bottom
along n; horizontal lines, the light intensity being sampled n. times
along each line; every sample is then quantized to the nearest one
of 2% equally spaced amplitude levels, and recorded on a digital tape
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as a single k-bit integer. Conversely, given the digital tape, each k-bit
integer is replaced by its corresponding amplitude value, which is
then regarded as a sample, taken at the Nyquist rate, of a bandlimited
waveform. The reconstructed waveform controls the beam intensity of
successive lines traced by a scanning cathode-ray oscilloscope. The
oscilloscope face is photographed.

In all our experiments, the values used for the above quantities were
n; = no = 256, and k = 10. Figure 1a is an original photograph; Fig.
1b is the result of converting the picture into binary digits on tape
and reconstructing via TAPEX. Comparison shows that, with the
parameters as chosen, the digital representation is of customary tele-
vision quality. It has, of course, the inevitable raster lines.*

In processing a picture, we first converted each k-tuple of binary
digits into the corresponding integer, and subtracted 2*~*. The result-
ing integers, lying in the range (—2¢=?, 2%~* —1), are called picture
elements, and we denote by X;; the picture element obtained from the
jth sample of the ith line of the picture. For computer processing, we
regard a picture as an n; X n. matrix of picture-elements. In our
experiments, we further partitioned the n; X ns-element picture by a
square grid (as in Fig. 2) into ny X na/m* square subpictures, each
having m picture-clements on a side. These subpictures were encoded
independently, one at a time, by the scheme described below.

We view the M = m’ picture-elements of a subpicture, when read
out row by row from left to right, as the components of an M-dimen-
sional vector Y, which represents the subpicture. For example,

's 7

XH
X12

Xom

X )

is the vector representing the top-left subpicture of Fig. 2. To describe
such vectors, it is natural to introduce a basis. We therefore choose M
orthonormal M-dimensional basis vectors b, , - -+ , by . These remain
fixed, and determine the particular encoding scheme under discussion.

* (Added in proof.) The half-tone method of picture reproduction used in

printing this article of necessity obscures some of the detail visible in the original
TAPEX photographs. Copies of these photographs will be sent on request.
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Fig. 1—(a) Original photograph; (b) Reconstruction of (a) via TAPEX, using
10 bits per picture-element.

We may now expand Y in terms of the basis vectors, to obtain

Ar
Y = Z cl'bi (])

1

where, by orthonormality of the b, ,
¢, =b;-Y, j=1,--- M. (2)

We then quantize ¢; into one of r; different values, denoting by ¢; the

quantized version of ¢; . To transmit these quantized coefficients of a

subpicture in the simplest possible way, i.e., by encoding them in-

dependently without exploiting the statistical distribution of their
. I ) . - .

values, requires r = ZL [logs »,] binary digits. We take the number
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I'ig. 2—Partition of pictures into subpictures.
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R = r/m®, which is the number of bits used per picture-element, as a
measure of the efficiency (or bandwidth) of the encoding scheme.

To reconstruct a picture, we suppose the quantized coefficients are
known, and obtain a reconstructed subpicture code vector ¥ from the
recipe

? = Z é,‘b,‘ .
The components of ¥ are quantized to the nearest integer value in the
range [—27!, 27" — 1]. These are the picture-elements X; of the
reconstituted picture. A photograph is obtained from these values using
the TAPEX unit in the manner already described.

Fig. 3—(a) 10 bits per picture-element; (b) Reconstruction of (a) by means
of the Hadamard basis, using 2 bits per picturc-clement; (c) Reconstruction of
(a) by means of differential PCM, using 3 bits per picture-element,
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Our experiment consisted of choosing various basis veetors and
various quantization rules for the expansion coefficients ¢;. We also
experimented with making nonlinear transformations on the picture-
clements before and after bandwidth compression processing. None of
the various types of companding we tried yielded better results than
were obtained without companding. In most of yur work, subpictures
of M = 16 picture-elements (m = 4) were used; a few experiments
were run with m = 8.

We were able to obtain pictures of good quality with a rate R = 2
bits per picture-element, but were unable to do so at lower rates.
Figure 3a repeats the 10 bit per picture-element photograph of Fig.
1b. Figure 3b shows a reconstructed picture with R = 2 bits per
picture-element obtained with a scheme using m = 4 and the Hada-
mard basis deseribed below. We also simulated on the computer the
differential PCM scheme employed in Picturephone coding which uses
3 bits per pieture-element.' Figure 3¢ shows the result of this simula-
tion; it compares favorably with Fig. 3b. Two different subjects are
treated analogously in Figs. 4 and 5.

Although the subpicture encoding achieves a one-third decrease in
rate, the differential PCM scheme is far ecasier to instrument. From
our experience, it seems unlikely that good pictures can be obtained
with the subpicture scheme at rates mueh less than 2 bits per picture-
element.

III. COMMENTS ON COMPRESSION

To avoid needless complications, in all that follows we shall think of
a picture in diserete terms, ic., as a finite collection of picture-
elements, each of whieh can assume finitely many different values.

How many bits must one usc to transmit the picture of Fig. 1b?
The answer is, of course, zero. It is a single picture. The question
is not an interesting one. More pertinently, we can ask how many bits
per picture are required on the average to transmit long strings of
pictures drawn from a given ensemble of pictures. Since a picture
source can be regarded as producing sequences of picture elements,
each of which can assume one of K different values, evidently we can
transmit all possible pletures perfectly by using [log K] bits per
pieture-element. For any reduction of the bit-rate below this value,
we must capitalize on one or both of these facts:

(z) mnot all pictures are produced with equal probability by the
source, nor are they produced independently;

(z7) the observer does not require all pictures to be reproduced
exactly.
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Fig. 4—(a) 10 bits per ]_}icture—element;_(b) Reconstruction of (a) by means
of the Hadamard basis, using 2 bits per picture-element; (¢) Reconstruction of
(2) by means of differential PCM, using 3 bits per picture-element.

The question of how to take advantage of such considerations has
been much studied in information theory, and methods are known in
principle for computing the answer. A calculation of the entropy
of the pieture ensemble describes how far it is possible to reduce the
bit-rate, and still maintain perfect reconstruction, by exploiting source
redundancies; this minimum rate is determined solely by the statisties
of the ensemble, and has nothing to do with the nature of pictures,
vision, or the observer.

Determination of the entropy of a picture source does not solve the
problem of real interest to workers in picture transmission; for pie-
tures, as they are usually presented by a source, have more detail and
resolution than the observer can utilize. Thus pictures that are counted
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as different in the source ensemble may be indistinguishable to the
viewer who wishes to reconstruct them only to some set limit of
accuracy, i.e., to achieve some “level of fidelity”. The minimum bit-
rate, given as a function of both the particular fidelity eriterion
adopted and the source statistics, may also be computed, and is called
the rate distortion function. As with entropy, this minimum rate is
achievable only in the limit of more and more complicated encoding
processes.

Conceptually, rate distortion theory formulates carefully and an-
swers completely the foremost question in the TV coder’s mind: “How
many bits do I need?” In actuality, it doesn’t do very much for him

Fig. 5—(a) 10 bits per picture-element; (b) Reconstruction of (a) by means
of the Hadamard basis, using 2 bits per picture-element ; (¢} Reconstruction of
(a) by means of differential PCM, using 3 bits per picture-element.
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at all. To see why this is so, we must look just a bit closer at the for-
malism of rate distortion theory.

The general theory presupposes a source that produces infinite
strings of symbols, each symbol being drawn from a K-letter alphabet.
The “values” of the letters play no role in the theory, so for conven-
ience we suppose that they are the integers 1, 2, ---, K. Denote a
typical string produced by the source by - XN, Xy, Xy, Xy -ee
where each X is one of the integers from 1 to K. A measure is placed
upon the set of such infinite strings in such a way that we can regard
the Xs as random variables and meaningfully ask and answer such
questions as “What is the probability that X, =3 X, =1, and
X, = 5?7 There are many technicalities involved in specifying this
measure, but they need not concern us here. We are also given a
numerical-valued distortion function 8(j, k) = 0 whieh gives the dis-
tortion when a transmitted letter j is reconstructed as letter k.

Tet us now consider transmitting the strings produced by the source
by encoding them in the following manner. We break the source strings
up into blocks of n successive symbols. Since each block is composed of n
source symbols and each symbol can be one of K different integers,
there are B = K" different blocks possible. We suppose that a dictionary
is provided, which lists for each one of these B blocks a special block
called its representative block. As successive strings of n source letters
are produced by the source, each is looked up n the dictionary and
encoded into its representative block. If the letters of a block are x, ,
Ty, -+, x, and the letters of the corresponding representative bloeck
taken from the dictionary are y,, ¥z, *-- , ¥a, Wwe take the quantity
D = >t é(x;, y.) as the distortion per block. We take d = average D/n
as the level of distortion achieved with the given code book, where
the average is over all source strings.

Let us now fix the number of representative blocks in the dictionary
at 2% Some code books translating the B blocks into 2" representative
blocks will yield smaller values for the distortion d than will others.
We denote by d(L, n) the smallest distortion obtainable by any such
code hook. Note now that since there are only 2" representative blocks
in these code books, we could use L binary digits to transmit each rep-
resentative block name to a destination. We would achieve distortion
d(L,n) and be transmitting at a rate

R = (L/n) bits/(source symbol).

Now fix B and write d(R) = lim,.. d(nR, n). This funetion gives

the smallest distortion obtainable for a fixed binary rate R that can be

had in the limit of arbitrarily large code books. The inverse function
R(d) which gives the smallest binary rate per source letter that will
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yield a given distortion d is called the rate distortion function. Information
theory shows how R(d) can be calculated in principle from the symbol
distortion function 8(j, k) and the measure assigned to the source. We
do not display these complex formulas here.

How can we apply this to picture transmission? There are two obvious
different methods of identifying the source symbol X with a quantity of
interest in picture coding. The method most satisfying conceptually is to
identify the random variable X with an entire picture. This is possible
since there are only finitely many different pictures, due to our assump-
tion that a picture is composed of n, X n, picture elements, each taking
one of 2° values. We number the possible pictures and take the picture
numbers as the values of X. The distortion funetion (j, k), which we
must now deseribe to apply the theory, measures our dissatisfaction at
having picture j reproduced as picture k. Conceptually such a measure
exists, but we know little about it. In our experiments, we would have to
preseribe it for (2'7**%**)* hairs of values of j and k.

To compute a value for the rate distortion function, we require in
addition a measure on the source symbols: at a minimum, this involves
assigning a probability distribution, bearing some relation to what will
be observed in practical transmission, to the 2'0%230x26 — 1(197.283
different possible pictures, This task seems quite beyond us now. For to
obtain a histogram empirically is out of the question: at 30 frames per
second, one sees only 10" frames per year, and if the different possible
pictures were run off in sequence at this rate, it would take 10'7*™
years to view them all. On the other hand, to specify the distribution theo-
retically requires more understanding of the situation than we now have.

Indeed, being able to deseribe a reasonable distribution for the pos-
sible pictures goes a long way towards solving the problem of efficient
coding. We suspeet that a reasonably good deseription would assign
probability 1/N to each of N of the pictures, and zero to the rest, with
N small indeed compared to 107, If we could deseribe this set well,
we could encode using log N bits/picture. But which are the “likely”
pictures? For Picturephone serviee or commereial hroadeast television,
mtuition suggests that chaotie pictures, in which adjacent picture-
elements jump about between extreme values, would be classified as
unlikely. Likely pictures are, roughly speaking, made up of regions of
nearly constant brightness. The hrightness might change considerably
from one region to the next, but there cannot be too many small re-
gions, or we are back to unlikely chaos, nor ean the boundaries of the
region be too wild or fast-turning. However, the enormous number of
possibilities invelved prevents an accurate deseription.

A more tractable application of the general theory comes from asso-
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ciating the source symbol X with a picture-element. Now, however, the
distortion function 8(j, k) measures our displeasure at having the jth
level of brightness for a picture-element reproduced as the kth level of
brightness. This is an excessively local measure of picture fidelity and
is probably quite remote from the criteria used by human observers.

In summary, rate distortion theory tells us that to encode efficiently
we must pay attention to the more likely pictures (or sequences of
pictures), and that we must replace these in groups by representative
values which yield an acceptable distortion. The theory tells us how
to caleulate the minimum bit-rate needed to achieve a given level of
fidelity, but to carry out the calculation we need to know the distor-
tion function 8(j, k) and the measure that gives a statistical descerip-
tion of the source. In picture coding we have at present very meager
knowledge concerning these quantities. Any new understanding of
either will undoubtedly lead to improved practical coding schemes. It
will take a great deal of understanding, however, to know these quanti-
ties well enough to allow a caleulation of a rate distortion function in
which one can have much confidence.

IV. MOTIVATION FOR THE EXPERIMENTS

As we have argued, we lack the information required to bring the
full force of rate distortion theory to bear on picture coding. Neverthe-
less, it was the general approach of rate distortion theory that led to
the encoding scheme of our experiments. We wanted an encoding pro-
cedure that also would derive from considerations of likelihood and
fidelity, but that would be manageable in practice. Accordingly, we
began by focusing on subsections of the picture.

Although we cannot characterize adequately those entire pictures
that are likely, perhaps we can do so for subpictures. How large must
a section of a TV picture be before we can describe it as a likely sub-
picture or an unlikely subpicture? If we look at a single picture-ele-
ment, every value is “likely.” If we look at two adjacent picture-ele-
ments, again we must say that any pair of values 1s “likely.” If we
consider square subpictures of m X m picture-elements, most observers
feel that for m = 4 they can already classify some subpictures as likely
parts of the Picturephone or TV ensemble and others as less likely.
The 4 x 4 checkerboard pattern, where adjacent picture elements
oscillate between extreme values, seems unlikely: the uniform 4 X 4
subpicture seems highly likely.

We decided then to break a picture into m X m subpictures and to
encode each subpicture independently. If m is large enough, not much
compression potential will be lost by neglecting the correlation between
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subpictures, for the chaos of structure that we intuitively feel to be
unlikely in the TV ensemble is of a within-subpicture scale. The factor
driving us to choose a small value of m is the need for a reasonable
number of pictures to distinguish among on a probabilistie basis.

Even with m = 4 and k = 10, there are 2'° * % = 10* different sub-
pictures, so that it is out of the question to use a Huffman-Fano code,
or other dictionary-like code, to take advantage of the unequal proba-
bilities of the various subpictures. We seek some other scheme. A
natural idea here is to represent the subpicture in terms of some coordi-
nates that ean be treated independently and that are related to the
probability measure on the subpictures.

We begin by interpreting the subpicture as a veetor, in the manner
described in Section II. Suppose that an M-dimensional subpicture
vector Y is to be expanded on 1/ linearly independent basis vectors b, as
in equation (1), but that only J < M of the es will be used (exactly) to
reconstruct an approximation ¥ to Y. Thus

M

J
Y= > ch:, = Zcmbai .
1

1

where «, , a,, ..., @, are distinct integers from the list 1, 2, .., M.
What basis vectors should be used, and which J coefficients retained, in
order to minimize the mean squared error between Y and ¥? The
answer to this problem is well known. Let Y = (y,, ¥, -+, ya) and
denote the covariances of the components of ¥ by p;; = Ey.y; . Let p be
the A7 X M matrix with elements p;; . The basis vectors that solve
the above problem are the eigenvectors of p having the J largest eigen-
values. Basis vectors chosen in this way are known as a IKarhunen-
Loéve basis. The fidelity eriterion implicit here is that of mean-square
error—one not very adequate when applied to pictures.

We began our experiments with finding the Karhunen-Loéve basis
for the picture of Fig. 1, by determining empirically the 16 x 16
covariance matrix for the 4 x 4 subpictures, We discovered, as ex-
peceted, that the pi; were all extremely close to 1, expressing the high
likelihood of uniform brightness over so small a square. When each
pii = 1, the eigenvalue problem is degenerate: the first eigenvector has
all components equal and an eigenvalue of 1, while the remaining
eigenveetors are indeterminate and correspond to an eigenvalue of
0. Thus we felt no great confidence in our determination of the Kar-
hunen-Loéve veetors, believing that it was probably unstable, and
turned instead to the following intuitive justification for introducing
another basis, which we eall the Hadamard basis,

Intuitively, o subpicture with eonstant brightness for all picture-
elements is a very likely subpicture. Part (1) of Figure 6 depicts a
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4 % 4 array of picture elements all having value + 1/4. Another likely
subpicture has a vertical edge running down its middle. Part (2) of
Figure 6 depicts such a case, where the picture elements on the left
have value + 1/4 and those on the right have value — 1/4. If now we
form a basis vector, b, , from Fig. 6(1) and b, from Fig. 6(2), we see
that linear combinations Y = ¢,b; + eb, give all possible subpictures
having a center vertical transition between two regions of uniform
brightness.

Continuing this train of thought, we are led to seek 16 linearly
independent subpictures of decreasing likelihood that will serve as a
basis on which to expand an arbitrary subpicture. Such a basis, chosen
so that the vectors are orthonormal, is shown in I'ig. 6. If each sub-
picture Y of a large picture is expanded on this basis, so that

16
Y = Zcibl‘ ]
1

we would expect frequently to find the higher coefficients, say ¢, €11,
ete., to have values near zero. The coefficient ¢, , which gives the average
brightness of the pictures, would be expected to have a large variance—
higher coefficients, a much smaller variance. Table I lists the ratios
£, = ¢°/o?, where ¢® is the variance of c¢;, as determined empirically
from all the subpictures of Fig. 1b. The results agree remarkably well
with intuition. That ¢, , which has more than ten times the variance of
any other coefficient, does indeed contain a great deal of the essence
of the original picture is seen from Fig. 7b, which shows the picture
resulting from the reconstruection ¥ = ¢,b,, next to the original photo-

.(5]‘._.

) (8) o T2)

=11/
[]=-va

— : : - o ._.(__16)

Fig. 6—The Hadamard basis.
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TABLE [ —CoOEFFICIENT VARIANCES

i i £

oee

1 1.00 | 9 0.024
2 0.008 10 0024
3 0.087 11 0.020
4 0.035 12 0.022
5 0.038 13 0.019
6 0.051 14 0.015
7 0,048 | 15 0.016
8 1

0.03 | 6 0.014

graph 7a. Figure 7b allows one to see clearly the size of the subpictures
used in the experiments.

Our choice of the Hadamard basis is thus dictated by plausible
guesses about the probabilities of subpictures. Furthermore, it is not
inconsistent with the Kahunen-Loéve procedure, since the correlation
matrix is so nearly singular. Finally, it has an important practical ad-
vantage: sinee its components each have value = 1/4, the computation
of the coefficients can be carried out by simple switching. In our ex-
periments, we found the results of processing with the Karhunen-Loéve
basis to be no better than those obtained with the Hadamard basis,
and so, for reasons of simplicity, judged the latter to be superior.

Since our object is to reduce the bit-rate, we must adopt some scheme
of quantization for the coefficients. This will lead to an approximate
reconstruction of the subpicture, and considerations of fidelity must
guide us In our choice of rules. One sueh quantization scheme—keep-
ing some of the cocfficients exactly and dropping the remainder alto-
gether—gives rise to the Karhunen-Loéve problem. We adopted a
different procedure, based on quantizing successive coefficients more

Fig. 7—(a) Original photograph; (b) Reconstruction of (a) by means of e, only.



1538 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1971

TasLE II—QuanTizaTION OF COEFFICIENTS

i ri ) Ti
1 64 9 4
2 16 10 4
3 16 11 0
4 8 12 0
5 8 13 0
6 8 14 0
7 8 15 0
8 4 16 0

and more coarsely. Two arguments led us to this. Firstly, since the
lower coefficients have more variability, reproducing these more accu-
rately helps reduce the mean-square error for the more probable pic-
tures. Secondly, the higher coefficients tend to be large mainly when the
subpicture has a very “busy” or chaotic nature; we guessed the detail
of that chaos to be less important to the viewer than the existence of
chaos. Thus the fidelity criterion behind our encoding contains an ele-
ment of the characteristics of observers, in addition to considerations
of mean-square error.

Much experimenting bore out the general truth of these suppositions.
Table 11 gives the number of quanta, r;, used for ¢; in Figs. 3b, 4b, and
5b. The quantization of a given ¢ was carried out by dividing its range
into disjoint intervals whose endpoints are called cut points and by
associating with each interval a representative value. The quantized
value of ¢ is the representative value associated with the interval in
which ¢ lies. Table III lists the cut points and representative values
used to obtain Figs. 3b, 4b, and 5b.

We carried out over 100 experiments in whieh the r;, the cut points,
and representative values were varied over considerable ranges; details
are available on request. Although we ultimately settled on the con-
figuration described in Tables 1T and III, the number of possibilities
to be explored is so large that we have no great confidence that we
have found the best values for the parameters. On the other hand,
based on our experience we would judge it unlikely that significant
improvements can be made with this scheme by further changes of
parameter values.

V. PICTURE REPRODUCTION AND QUALITY JUDSMENT®

The development of ordinary photographie film, as well as the
characteristics of analog deviees such as scanners and picture tubes,
* (Added in proof.) The comments of this section refer to the original TAPEX

photographs, rather than to their reproductions in this article. See footnote on
p. 1526.
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are sensitive to many parameters and can vary noticeably over time.
The result is that in processing and reproducing photographs it is
extremely difficult to maintain rigid control of contrast and average
gray level. Yet these two quantities strongly influence the viewer’s
judgment of the quality of a picture.

In our subpieture encoding scheme, information about overall con-
trast and gray level is contained almost entirely in the values of ¢; .
We are convinced by experiments performed that the quantization of
this coefficient, as deseribed by Tables IT and III, is sufficiently
fine to render these characteristies faithfully. We therefore believe that
what variation in contrast exists on Figs. 1, 3, 4, 5, and 7 is attributa-
ble to vagaries of the reproduction process and not to failures of the
encoding, which are evidenced by inaccuracies in edges and texture.
Accordingly, the reader should attempt to subtract out the differ-
ences in contrast among the photographs and should judge the quality
of our scheme by examination of detail in Figs. 3b, 4b, and 5b.

VI. RELATED WORK

At about the same time that the present experiments were carried
out, rather similar investigations were independently conducted else-
where by other workers.®*" While related to our work, these studies
differ from it somewhat in detail of execution and very much in the-
oretical approach.
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