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Digital Phase Demodulator

By BERNARD GLANCE
(Manuscript received October 2, 1970)

Injection-locked oscillalors are shown to act as narrow-band tunable
filters for FM signals 1f the modulation rate is much larger than the locking
bandwidth. The filtering action of the injection-locked oscillator for FIM
signals 1s found analogous to that of a high Q passive cavity. The effective
Q of the injection-locked oscillator can be as high as 1 0° if the stability of
the injected signal carrier and oscillator frequencies is better than 10°.

These filtering properties can be applied to a digilal demodulator for
coherent phase detection of a coded FM signal. The local source which s
required for coherent phase detection is provided by using a fraction of the
received signal to lock an oscillator. Sideband suppression and carrier
amplification of the injected signal are achieved simullaneously by using
the filtering action of the injection-locked oscillator.

The simplicity of this digital demodulator makes it appear useful for
repeaters in microwave radio relays.

I. INTRODUCTION

Injection-locked oscillators can perform a wide variety of functions
required in microwave radio relays, such as amplification, amplitude
limitation,! frequency modulation® and demodulation® to mention only
the most important applications.

It is shown in this paper that injection-locked oscillators can also
be used as narrow band tunable filters for angle modulated signals.
These filtering properties can be used in a digital demodulator for
coherent phase deteetion and such a demodulator is deseribed
here. Its configuration, shown in Fig. 1, is similar to the injection-
locked oscillator FM receiver proposed by C. L. Ruthroff.* The
principles of operation, however, are different. For proper opera-
tion of the injection-locked oscillator FM receiver the output signal
of the oscillator contains all of the frequency modulation on the input
signal. This signal is multiplied by a fraction of the input signal to
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Fig. 1—Scheme of the digital demodulator for coherent phase detection.

produce the demodulated output. In the digital demodulator, the filter-
ing properties of an injection-locked oscillator are used to remove the
frequency modulation from the input signal and to deliver a sinusoidal
output at the frequency and phase of the unmodulated carrier; this
carrier is used as the local reference clock signal in a synchronous de-
tector. The mixing of the received signal with the local source gives a
current dependent on the phase of the received signal provided the time
average of the phase modulation stays small over periods shorter than
the time constant of the oscillator.

The first part of this paper includes an analysis of the filtering
properties of the injection-locked oscillator for phase modulated
signals. An approximate analytical solution for the filtering action
is derived from the locking equation. This solution is then compared
with exact numerical calculations and with experimental results.

The second part of this paper deseribes the properties and the
limitations of a digital demodulator which uses the filtering action of
the injection-locked oscillator analyzed in the first section.

II. ANALYSIS OF THE INJECTION-LOCKED OSCILLATOR FILTER

2.1 Locking Equation Analysis

The injeetion-locked oscillator performs two functions in the digital
demodulator: it removes the phase modulation of the input signal and
it amplifies the carrier signal up to the free-running oscillator output
level. The oscillator output signal which is obtained can be used as a
reference signal for synchronous detection.
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The filtering properties can be derived from the locking equation.
These properties can also be obtained from a frequency domain analy-
sis which provides a clearer physical picture of the phenomena.

Let us consider first the locking equation analysis. Assume that the
injection-locked oscillator is driven by an injected signal phase modu-
lated by a function 6(t), thus #(f) = I cos [wt + 6(t)]. Locking occurs if
w is sufficiently eclose to the natural oscillator frequency w, . Within
the locking range, the oscillator output voltage is given by »(f) =
V() cos [wt 4 8() — ¢(t)].* (), called the tracking angle, is the differ-
ence in phase between the input and output signals of the oscillator.
The phases of the input and output signals are related by the well-
known locking equation®"®

de df

%= aq — wo — Awy, sin o(t), (1)

where
Aw, = I/Q2V(D)GL) X w/Q

is one-half the locking bandwidth for an unmodulated injected signal of
amplitude I, G, is the load and @ is the external loaded circuit Q. The
output signal amplitude V(f) is usually nearly constant' and therefore
Aw, may be assumed to be time independent.

Removing the phase modulation from the injected signal requires
that the phase of the oscillator output signal, 6(f) — ¢(¢), becomes
time independent. It will be shown that this condition is approximately
fulfilled if the rate of phase modulation is much larger than the lock-
ing bandwidth.

Let us consider an input signal with a sinusoidal phase modulation
given by

(i) = 6, sin QL. (2)
Substitution of equation (2) into equation (1) gives
Ld_ga__ _ Aoy o —w :|
q dt 6y cos Qt = = [—Aw,_, sin (1) 3

With a rate of phase modulation @ >> Aw, , the right side of equation
(3) remains much smaller than unity as long as | 0 — wo | £ Awy .
Equation (3) can therefore be approximated by

1d

adi [e(t) — 6()] =~ 0 )
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which gives for the output signal a phase approximately time inde-
pendent, thus

o(t) — 0(t) = oo - (5)

The constant of integration, ¢, , can be obtained from the locking
condition which is obtained by taking the time average of equation (1)

yielding
< > < >+ @ — wy — Aw(sin o(1)). (6)

From equations (2) and (4),
(& =o
(6a)

<d_<o
dt

(sin (1)) = (sin (po + 6 sin Qf))

= Jo(au) 8in ¢, )

and

where J, is the Bessel function of order zero. Substitution of equation
(6a) into equation (6) gives the locking condition

W — Wy = AUJLJD(G{)) sin @Yo - (7)

The frequency range of locking is determined by the condition
| sin ¢y | = 1. Therefore the locking bandwidth is, from equation (7),

2(w — wo)max = 2 AwrJo(6)- (8)

The maximum locking bandwidth is reduced by the factor Jo(6p)
compared with the unmodulated case; in particular, it becomes equal
to zero for 4, = 2.405 radians.

These results have been obtained from a first-order solution of
equation (3). The magnitude of the filtering effect, resulting from the
residual phase modulation €(t) — ¢(¢) of the oscillator output signal,
can be calculated by solving equation (3) to the second order.

Before calculating the magnitude of the filtering effect, it is interest-
ing to give a physical picture of this phenomenon through a frequency
domain analysis. Experimental results observed with a spectrum
analyzer will be compared with the results of this analysis.
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2.2 Frequency Domain Discussion

Let us consider as before an oscillator locked by an injected signal
with a sinusoidal phase modulation, thus

i(t) = I cos [l + 8 sin Q). (9)

The current expression, expanded in Bessel series, can be written as’

i(t) = I{J.,(B.,) cos wt + ;\;‘: J.(8,) cos (w + nﬂ)t}- (10)

If one assumes that the carrier frequency w is within the locking band-
width Aw, and that © > Aw, , the spectral components at
w+ nQ (n = &1, £2, --- ete) have a small effect on the oscillator.
It can be expected in a first approximation that the oscillator is locked
by the injected current component 7.J,(8) cos wt corresponding to the
carrier frequency. The locking bandwidth, which is proportional to the
effective driving current amplitude IJ,(8), is reduced by the factor
Jo(8,) as found previously in Section 2.1. The locking bandwidth de-
creases with inereasing index of modulation and becomes equal to zero
for 8, = 2.405. This particular case corresponds to an injected FM
signal with a suppressed carrier.

The sideband suppression effect, of the injection-locked oscillator,
can be seen clearly in this analysis as an inereasing funetion of the rate
of phase modulation. Furthermore it can be expected from this analysis
that locking can also occur for any of the spectral components at
w+ n® (n = x£1, £2, ---). Locking can be obtained by tuning the
oscillator natural frequency to w + 7nf. The locking range for each
frequency w + nf is proportional to the spectral line amplitude, IJ,(6).

2.3 Ezxperimental Verification

The validity of the assumptions made in this analysis has been
checked by locking a 35-MHz oscillator with an FM injected signal.
The index of modulation, the rate of modulation and the locking band-
width were adjusted to be about /2, 100 kHz, and 10 kHz, respectively.

Stable locking was obtained by tuning the injected signal frequency
such that the main speetral lines, Jo(7/2) cos wt, J.,(7/2) cos (w £ D)t
and J ,.,(r/2 cos (w & 2Q) lie consecutively in the locking range. Figure 2
shows the locking obtained with the three first spectral components
and also shows the characteristic beat modulation which occurs just
before locking. The largest locking ranges correspond as expected to the
spectral components J.,(7/2) cos (w == @)t which have the largest
amplitudes. )
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100 kHz fem

Fig. 2—Spectra of the injected signal and the oscillator output signal: (a)
injected signal spectrum, (b) output signal with locking at w, (¢) output signal with
locking at w — 2, (d) output signal with locking at « 4 @, and (e) output signal
just before locking. (f =~ =/2 sin @, @ = 2x X 100 kHz, Aw, =~ 27 X 10 kHz,
Fy = 35 MHz)

2.4 Sideband Attenuation

The filtering effect of the injection-locked oscillator suppresses the
sidebands of the output signal. This effect is shown in Fig. 2 where
the spectra of the input and output signals of the oscillator can be
compared.
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Sideband attenuation can be defined by

(Sideband Power) / (Sideband Power)
Carrier Power /,uipu Carrier Power /;.ou

This ratio is related to the residual phase modulation 8(t) — ¢(t)
which can be calculated by solving equation (3) to the second order.
The calculations are given in Appendix A for 6, = =/2. The steady-
state solution is

e(f) = Jsin Q1 + ¢,

73)
+ 2 ASL IJI(%) COS @, cos O — B sin ¢, sin QQtJ , (11)
where from equation (7)
sin g, = — 0 (12)

J O(E)Aw,n
For simplicity let us assume that w = w, , thus the injected current is
i(t) = I cos [wgt + gsin Qt] . (13)

The tracking angle becomes
o) g%sin Qt 4+ 2 %’—‘ J,(%’) cos Q, (14)

and the osecillator output voltage is

Awg T

v(t) = V cos I:wnt — 2 o JI(Q) cos Qt]- (15)

The expressions of the input and output power, expanded in Bessel
series, yield for the ratio of sideband power to carrier power:

a) Input signal

Sideband Power 1= Jg(%r)
(ﬁ) = ————" = 3.484, (16)

Carrier Power 2(11')
Jn §
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b) Output signal

i)
(Sideba,nd Power) _ 11— ':2 Ty 2
Carrier Power / o 2[‘ Awy, ( ):|
ol 2 J,

The calculated sideband attenuation, in the present case, is about
27.4 dB.

In order to verify these results, equation (3) has been solved nu-
merically for the following parameter values: 8, = 7/2, (w — wo)/2 =
—0.01 and (Awz)/Q@ = 0.1. Results of this eomputation are shown in
Fig. 3 and are compared in Table I with the second-order approxi-
mation given by equation (11).

=0.0064.  (17)

2.5 Comparison Between the Active and Passive Resonators

In the case of an injected current phase-modulated by a sinusoidal
phase excursion, the filtering properties of the injection-locked osecillator
characterized by a single-pole resonator with a negative resistance
can be compared to the filtering effect of the same passive eircuit.

Assuming an injected current equal to I cos (wit + 7/2 sin Qf) the
power ratio between the spectral component at w, + @ and the carrier
at w, 18, for the passive resonator,

[l T
)+ O]

,~OUTPUT PHASE H(L) —o(L)

DA D TAADAAA
ST

-1.6|-
A -INPUT PHASE 9(t)——slN Qt

-2.4 ] 1 1 I | L I |
0 5 ‘|O I5 20 25 30 35 40 45 50 55 60 65

at

(18)

Fig. 3—Phase of the oscillator output signal for an injected signal phase modulated
by 8(t) = =/2 sin QL. [(Aw;)/Q = 0.1, (@ — w0)/Q2 = —0.01, 8o = =/2.]
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TaBLE I—COMPARISON BETWEEN THE ANALYTIC APPROXIMATION
SoLuTiON AND THE COMPUTED SOLUTION

Analytic Second-Order
Approximation Solution Numerically Computed Solution
sin go ~ ‘—,ﬁ —0.212 sin gp = —0.199
]
lo = @0 = Olmax = 0.112 e — @0 — Olmax = 0.160
Sideband attenuation = 27.4 dB Sldeband attenuation = 23.7 dB

Taking into account that Aw, = wo/Q(P./Po)"* the same ratio for
the locked oscillator gives, for @ >> Aw, ,

s ]

where P,/P; is the locking gain. For an FM injected signal having a
sinusoidal phase excursion of amplitude =/2, the locked oscillator acts
as a singly resonant filter with an effective @ given by

Q. = Q(Ff)* ) J:(,r) =~ Q(ﬁ)% - [iw] 20)

2

The maximum effective Q which can be obtained depends on the mini-
mum-locking bandwidth achievable. The minimum-locking bandwidth
1s limited by

(7) minimum frequency offset w — wo ,
(#7) oscillator free running frequency stability 8wo/w, ,
(77) injected signal frequency stability dw/w.

The slow variation of the frequency offset w — wo , between the injected
signal frequency and the oscillator free-running frequency, can be made
approximately equal to zero with a low-frequency feedback loop as
shown in Ref. 3. In that scheme, the mixer output signal contains a
current proportional to @ — w ; the oscillator natural frequency w, can
be kept tuned to w by using this current to control a suitable oscillator
parameter.

If one assumes a frequency stability of 107° for w and w, and takes a
safety margin Aw;, = 10 éw, one obtains a maximum effective @ given by

NL Awy, _1_ 5
lenx'_'lo[w] "104
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III. DIGITAL DEMODULATOR

3.1 Coherent Phase Detection

Coherent phase detection involves multiplication of the PM received
signal by a loeal source which has a constant phase and the frequency
of the carrier associated with the received signal. The local source, which
is needed to achieve coherent phase detection, can be obtained by using
the filtering properties of the injection-locked oscillator for phase-
modulated signals.

A block diagram of the digital demodulator is shown in Fig. 1. The
oscillator, in this configuration, is locked by a fraction of the received
signal. The filtering properties of the injection-locked oscillator are
used to remove the phase modulation from the input signal and to
deliver a sinusoidal output at the frequency and phase of the un-
modulated carrier; this carrier is used as the local reference signal for
synchronous detection. The mixing of the received signal with the local
source gives a current dependent on the phase of the received signal.
Correct demodulation is obtained if the time average of the phase
modulation stays small over periods shorter than Aw;'. This restriction
results from the impossibility of maintaining the phase of the reference
signal constant if the phase of the injected signal has an average value
different from zero. This problem arises for instance with a long pulse
sequence of plus ones made by binary digital encoding using polar
pulses.

3.2 Demodulation of a Binary Polar Signal

Let us consider an unmodulated carrier given by cos wt. Starting at
t = 0, the phase is modulated by a pulse train of plus ones made from
raised cosines of maximum amplitude equal to 7/2. The phase of the
received signal ean be written for { = 0

8(t) = %sinz ot

= Z—[l — cos 2Qt] (21)

where 2Q is the signaling frequency equal here to the rate of phase
modulation. The phase modulation of the received signal has an average
value equal to w/4. The phase of the local source () — (¢) at ¢t > 01is
obtained by the transient solution of the equation

d?_;;t) = 2 sin 201 - A;Lsin (D), (22)
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where @ — wp has been set equal to zero in order to simplify the analysis.

The filtering condition Aw,/@ < 1 suggests that the time constant
associated with the transient solution of equation (22) is large com-
pared to 27/Q. An equation giving approximately the transient effect
can be obtained by taking the time average of equation (22) over a
Jarge number of periods of sin 2Q¢. Equation (22) then becomes

% = — Aw(sin ¢). (23)

Equation (23) can be solved approximately by replacing (sin ¢) by (¢)
which yields

() = exp (—Awyl). (24)
The transient solution of equation (22) is therefore approximated by
o(l) ~ E [exp (—Aw,l) — cos 201], (25)

where — /4 cos 20t is the first order steady state solution of equation
(22). The phase of the local source is given for ¢ = 0 by

0 — ¢(t) =7 [1 — exp (—Aws)]. (26)

An exact numerical solution, shown in Fig. 4, agrees well with the
analytical solution given by equation (26). This result shows that the
phase of the filtered signal used as a local source increases exponentially
from zero to /4 with a time constant equal to about Aw?'.

Correct demodulation requires that the magnitude of the phase of the
reference signal remains small compared to =/4. The maximum number
of consecutive pulses of the same polarity, which can be decoded with-
out error, increases with the ratio @/ Aw, . It is important to note that
the sideband suppression effect improves by the same factor.

In general, the pulse polarity varies in a nearly random fashion from
pulse to pulse. The phase of the reference signal is then a function of the
random processes which give the pulse polarity distribution. Its maxi-
mum magnitude variation can be equal to Z=7/4. It will remain smaller
than | =/4 | if the probability of having positive or negative pulses is
about the same over periods shorter than Aw;'. This condition Intro-
duces some restriction on the coding.

3.3 Demodulation of a Signal Symmelrically Phase Modulated

The problem of the reference phase discussed in the previous section
disappears in case the average phase deviation is equal to zero for each
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Fig. 4—Tracking angle and phase of the oscillator output signal for an injected
signal phase modulated by 8(t) = (x/2) sin? Q¢ with (Aw,)/? = 0.1. (a) Phase of
the input signal, (b) tracking angle, (c) phase of the oscillator output signal.

pulse. A simple example of such a pulse shape is a sine wave starting
from zero and limited to one period. The phase of the received signal
can be written in this case?

+o

o) = > a(k) Izsin ot — kT), 27

=—00
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where a (k) takes, for example, the value 0 or +1 according to a binary
code. The phase of the received signal becomes, for a pulse train of +1s

o(t) = gsin Qt. (28)

This case has been solved in Seetion II, equation (11); it gives, if
(w — wo)/Aw;, K 1, a local source with a phase equal to

8(t) — o(f) & = + 2 %ﬁ Jl(g) cos 9. (29)
Jn(g)AwL

This result is shown in Iig. 3.

The phase of the local source can be made nearly constant and ad-
justed close to zero by making (w — wo)/Aw, and (Aw,)/Q very small.

This phase shift is also caleulated for other types of pulse distribu-
tions. Its effect is shown in Fig. 5 which gives the tracking angle ¢(f)
and the demodulated signal sin [¢(f)] for an injected signal phase
modulated by a pulse train of alternate ones and zero. These curves are
calculated for the parameters (Aw;)/Q = 0.1 and w — wo/Aw, = =+0.1.
Figure 6 shows the same functions for a random phase modulation
with the same parameter values. In these two cases, the distortion due to
the phase shift of the loeal source is minimum for (w — wo)/Aw = —0.1.
Partial compensation is then obtained between the phase shift resulting
from the frequency offset and the phase shift due to the residual of the
filtering effect. In all cases the distortion can be minimized by setting
(Awg)/Q and (w — wo)/Aw, small compared to unity. Correct de-
modulation ean then be obtained without an encoding restriction.

IV. CONCLUSION

Injection-locked oscillators can be used as filters for sideband sup-
pression of FM signals if the modulation rate is much larger than the
locking range. These filtering properties can be summarized as

(1) high effective @),
(1) power amplification for the carrier, and
(#17) circuit simplicity.

The filtering properties of an injection-locked oscillator ean be used
in a digital demodulator to provide a local source for coherent phase
detection of a particular class of digitally modulated signals. In partie-
ular, correct demodulation is obtained for pulse shapes which give an
average phase deviation equal to zero for each pulse.
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Fig. Sg—Tracking angle and demodulated signal for an injected signal phase modu-
lated by

. si /2
B{£)=1§rsinm|:%+?r%ﬂ1%_ll)_f/]

which corresponds to a pulse train of 1, 0, 1, 0, ---. (a) Input modulation, 8(t) =
(w/2) sin Qt{1/2 + 2/7 }? [sin (2p + 1)(Qt/2)]/(2p + 1)}. (b) Tracking angle

¢(t) and (c) output mixer sin ¢(f), (Awz/Q) = 0.1 and (w — wo/) = 0.01. (b")
Tracking angle ¢(t) and (c¢’) output sin ¢(t), (Awr/Q) = 0.1 and (0 — wo/Q) =
01.
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A binary digital coding using polar pulses requires a coding which
gives a small average phase deviation over periods shorter than Aw;’
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APPENDIX

Second-Order Solution of the Locking Equation
The locking equation (3), obtained fer an injected signal phase
modulated by #(¢) = »/2 sin Qf, can be written as:
de _w

d$=§cosx+,8—asinqo (30)
where n = Qf, 8 = (0 — wo)/Q and a = (Aw.)/Q.

Equation (30) integrated for § < « << 1 has a solution in the first
approximation given by

¢ = 5sinz 4 ¢ (31)

(S|

with

B=al u(g) sin g, . (32)

The second-order approximation is calculated by putting ¢a = ¢; +
n, with n ~ o < 1. Substitution of these results into equation (30)
gives, keeping the first-order terms in «,

g—: + O’-T.'{[Jo(%) + QJE(%) cos 2.1:] COS ¢y — 2-]1(%) sin x sin qpo}

= —-2a{J ,(:—,;) cos gy sinx + J 2(3) sin ¢, €os 23:}- (33)

The approximate solution of equation (33) is

JZ(E) l
= 2a|J (1_r) COS @ COS T — 2 sin ¢, 8in QIJ
n 1\ S ©o 9 o

+ C exp Ii—a{.].,(g)z + Jz(g) CoSs ¢,

.sin 2z + 2Jl(g) sin g, sin x}] . (34)

which gives for g, after the initial transient
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@2 = 58N T + @

[

m

J 25)

+ 2a|J 1(%) COS ¢y COS T — sin ¢, sin 2z |- (35)
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