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We determine the spreading resistance for a sheet of homogeneous ma-
terial of uniform thickness with a disk contact source on one side and with
current collected (i) over the entire back plane, and (¢7) at a corresponding
disk on the back plane. A constant driving potential is assumed over the
source resulting wn mized boundary conditions in the plane of the source.
For each case, a closed form integral solution is derived and then numeri-
cally infegrated for a range of geometric ratios resulting in a universal
spreading resistance curve. The results are used to evaluate the spreading
resistances encountered in a typical (1 © cm) semiconductor material.

I, INTRODUCTION

The resistance associated with the nonparallel current flow between
a spacially separated source and sink is referred to as spreading
resistance. Calculation of spreading resistance is often required in the
analytical treatment of semiconductor devices. In particular, elec-
trical current flow in a slice of silicon between a surface contact and
a back-plane contact involves the calculation of the ohmie spreading
resistance. The heat flow between an active transistor or integrated
circuit and an external heat sink involves a calculation of the thermal
spreading resistance in the device carrier. Also, for a given structure,
the capacitance including fringing is directly related to the conduect-
ance including spreading.

Two cases are considered in this paper. The spreading resistance is
determined for an infinite sheet of homogeneous material of uniform
thickness with a disk contact source on one side and with current
collected (i) at a completely metallized back plane, and (i) at a
corresponding disk on the back plane. D. P. Kennedy analyzed
these cases for finite cylindrical volumes but with nonmixed boundary
conditions.! He assumed a constant flux over the source region and
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defined spreading resistance in terms of the maximum temperature (or
potential) on the disk. In this paper, we assume a constant driving
potential over the source. This assumption results in a mixed boundary
condition in the source plane because the potential is specified over
part of the surface, and the normal derivative is specified over
the rest of the surface. In the limiting case of a cylinder of infinite
radius, there appears to be some difference between Kennedy’s results
and those presented herein. This appears to be associated with Ken-
nedy’s definition of spreading resistance in terms of the maximum
disk potential. However, the comparison is based on the extrapolation
of curves given by Kennedy.

A. Gray, et al,, considered certain special cases of the infinite region
problem with mixed boundary conditions in the source plane.? How-
ever, they imposed one of two constraints. Either (i) there was
sufficient separation between source and sink so the flux distribution
at the disk could be taken equal to the limiting half-space case or
(77) the disk was small enough to be considered a point source.
In essence, these constraints again reduce the problem to one with a
nonmixed boundary condition in the source plane. Neither constraint
is imposed in this paper.

In this paper, for each case, a closed form integral solution is
derived which is numerically integrated for a range of geometric
ratios resulting in a universal spreading resistance curve. For both
cases, the ecurves approach the half-space limit for thick sheets, and
the curves asymptotically approach the nonfringing limit for very
thin sheets, "Finally, the results are used to evaluate the spreading
resistances typical of those encountered in semiconductor technology.

II. ALGEBRAIC SOLUTION

The geometry and system of coordinates are given in Fig. 1. Solving
La Place's equation in cylindrical coordinates when the potential ¢ is
independent of # gives®

8p2) = [ 1BC cosh ke + Cysinh ) Tulke) dk, (D)

where f(k) must be determined by the boundary conditions at z = 0.
For nonmixed boundary conditions at z = 0, f(k) can be found by
inverting the Hankel transform.! In the present case, however, the
mixed boundary condition must be imposed at the z = 0 surface. Thus,
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v = [ iwcdika dk, 055

< q;
(2)
%) - f {(k)(C, sinh kz + C; cosh ke)Jo(kp) dk|so = O.
z=0 V]
This results in a dual set of integral equations.
V= [ f®CTke) dk, 05 p S0
’ (3)

0= [ 10CTEa dE, b2

J. D. Jackson observes that the solution of this set of equations is®

10 =2C, ha @
Thus
2Va [*sink C, .
o(p, 2) = T“ fﬂ S‘;ﬂ‘a a (cosh ke + G sinh kz).]u(lcp) dk.  (5)

2.1 Case 1—Back Plane Grounded

In the first case considered, the second electrode is a completely
metallized or grounded back plane. The boundary conditions are
given in Fig. 2. This situation is representative of heat flow from
an integrated circuit through an insulated header to a can acting as

DISK AT CONSTANT
POTENTIAL, V

Fig. 1—Physical geometry and coordinate system for caleulating spreading
resistance.
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Fig. 2—Spreading resistance 1 between disk and grounded back plane.

a thermal radiator.

Atz = w, ¢(p, 2) [.cw = 0

and thus

Sinee this must hold for all w,

G, sinh kw = — cosh kw.
C,
Thus,
2V
(p, 2) = :—Irﬂ f ""? ka s (ip)(cosh kz — coth kuw sinh kz) dk.
0
Now,
J=0oE=—0V¢ at z=0,
27 a
I= f f Tp dp do,
[i] [i]

(6)

@)

®)

(9)

(10)
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and
_ ¢
z2=0 az lz=0

Combining the last three equations and carrying out the indicated
integrations, vields

V¢

a1 e
= =2V [ in kal (k) coth kw dk. (1)
m™ Jo

I = 4Vea [ coth kw 31;.1 kaJ,(ka) k. (12)
Jo -
Thus
1 _ 1 _ f" coth kw sin kaJ,(ka) ,, .
REV ™ aa ; 2 dk (13)
and finally,
1
Rioa = — : (14)

4 f SILT 70 coth ("-‘l) dr
0 £ i

2.2 Case 2—Disk on Back Plane (irounded

The case where the sink consists of a disk of radius a coaxial with
the source ean be derived by image theory from Case 1. A drawing
of this configcuration is shown in Fig. 3. The values of spreading resist-
anee in Case 2 ean be derived from Case 1 hy setting

Ryoa = Ii?)g(—l (15)
and
E 9, |
a | 2a |
— | = == |
w !cnsr 1 w Ecnsg 3. (16)

The resulting spreading resistance equation is
1
Rpoa = ———— . (17)
2 [ P () coth (w)—;) dx
Jo =

T '

III. NUMERICAL EVALUATION

3.1 Numerical Integration—Universal Curves
The integrals in equations (14) and (17) can be evaluated numer-
ically for various a/w ratios if the upper limit is finite and the
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Fig. 3—Spreading resistance R; between disk and grounded disk on back plane.

integrands behave well at the lower limit. Investigation of the be-
havior of the integrands over the entire range of integration, indicated
the range could be split into three ranges: 0 to 0.1, 0.1 to 300, and
300 to oo, For the 300 to =« range, and a/w > 1, the integrals for both
cases reduce to

f ST oy dr =1, . (18)
so0 T
But
“sin z ‘ 800 gin x

I, = f 22 @) de - f 02 J,(@) d (19)
or*
- 300 _:

I3=1—f ML ) de = 1~ I, | (20)

o

I, was evaluated numerically on a digital computer and found to be
0.96439. Thus I; = 0.03561 and is independent of a/w for a/w = 1.

For the 0 to 0.1 range, the integrands were replaced by their small
argument approximations. For z < 1,
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x/z _z
sin x
- 1, (22)
coth 2% & s (23)
a wzr
and,
wr 2a
cot! % wr (24)

It follows that the small argument approximations for the integrands
are a/2w, and a/w for Cases 1 and 2, respectively, and the values of
the integrals over the range 0 to 0.1 are a/20w and a/10w, respectively.
This is a good approximation because the integrands are very flat
functions of = near x = 0.

Thus for numerieal purposes,

Ri,oa = — o (25)
a
4[m + ‘/;. ( ) dr + 0 03561]
and
Ruoa = 1 (26)

[IOw + f ST 7 2) coth ( )da: +0 03561]

These results hold for a,/w 1. For a/w = 0, the half-space limiting
case for finite ¢ and infinite w can be used to find values for R; and
Rs . The resultant values are } and % for cases 1 and 2, respectively.
This result follows directly from Jackson's work.?

Using the half-space limits and carrying out the numerical integra-
tions for various values of a/w results in the universal spreading
resistance curves given in Figs. 2 and 3. .

3.2 Asymplotic Limils for Cases 1 and 2

As the ratio a/w becomes larger, the components of R, and R, due to
fringing become progressively smaller. Neglecting fringing, the resistance
for either case is

w
omra

B =

@)
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or

Roa = 2. (28)

The results given in this section can be presented more clearly in
terms of conductances because the fringing and nonfringing components
are in parallel and B™' = @ is a linear function of a/w. Let the con-
ductances corresponding to R, and R. be designated G, and G, re-
spectively. For a given a and w, there should be more fringing in Case 1
than in Case 2, and no fringing for B. Thus for any a/w,

G > G, > G (29)

Also G, and G, should asymptotically approach G as a function of a/w.
These observations are supported by the curves of G, G, and G
versus a/w given in Fig. 4. The differences of fringing components for
Cases 1 and 2 are given in Fig. 5. G, , G, and G are within one percent
for a/w = 10.

3.3 Typical Example

The results given above have been used to evaluate spreading resis-
tances typical of those encountered in semiconductor technology. A

25

&—4 ws'ﬂJ (x) coTH (l"— )d::
- . ! a

Ga_ ,[Tsmz o
=2 = (%) coTH s5 % dx
o
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Fig. 4—Spreading conductances with and without fringing between disk and
grounded back plane and between disk and grounded disk on back plane.
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Fig. 5—Spreading conductance fringing components.
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Fig. 6—Spreading resistances R: and Rs for 1 £ cm material.
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1 Q em slice of silicon with circular contacts was considered. Figure 6
gives the calculated R, and R, for such a configuration.

IV. SUMMARY AND CONCLUSIONS

An investigation was made to determine the spreading resistance in
a sheet of homogeneous material of uniform thickness with a disk
contact source on one side and with current collected (i) at the entire
back plane, and () at a corresponding disk on the back plane. These
cases were analyzed and evaluated exactly by solution of a dual set
of integral equations. The method represented the boundary conditions
as they physically exist. In contrast to previous work, a single, uni-
versal, spreading resistance curve was presented for each case. These
curves should be useful in designing devices and analyzing materials.
In particular, the curves could be used to determine conductivity of
a sheet of semiconductor material if its thickness is known. Also, the
curves could be used directly in the calculation of total capacitance
and fringing capacitance by relabeling the ordinates with ea/C instead
of Roa and C/ea instead of G/oa.
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