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In this paper we compute the change in the energy of a uniformly
magnetized uniaxial platelet produced by the introduction of a cylin-
drical domain. Differentiation of the energy expression yields the
translational force produced by gradients in plate thickness, material
composition, or temperature. The force expressions provide a means for
estimating the effect of gradients in these parameters on the margins of
domain devices. Equating the sum of the gradient produced forces to
the drag force yields a general domain velocity expression. The various
results are presented in both graphical and tabular form.

I. INTRODUCTION

Magnetic memory and logic devices employing cylindrical domains
in uniaxial platelets have recently received considerable attention.!:
The theory of the static stability of these domains® and its application
to cylindrical domain deviees*® have been discussed in previous papers.
This paper is concerned with the translational forces acting on the
domains and their effect on device performance.

* Present address Department of Electrical Engineering, McMaster University,
Hamilton, Ontario.
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In most device applications, eylindrical domains are propagated by
gradients in the applied field."? Cylindrical domains may, however, be
propagated by gradients in any of the independent parameters which
determine the total domain energy. These parameters are: the applied
field, H; the plate thickness, h; the saturation magnetization, M, ;
and the wall energy density, o, . The domain radius, rp, 1s not an
independent parameter for domains in equilibrium but is determined
once the other parameters are specified. The gradients in oy and M,
may be produced by composition gradients, strain gradients or tem-
perature gradients. Composition or thickness gradients may be used to
provide forces which are functions of position only, while temperature
or strain gradients may be used to provide time variable forces.

The translational force is obtained by differentiation of the total
domain energy expression with respect to position, under the assump-
tion that the gradients in the domain parameters which produce the
translational force are sufficiently small that the domain remains
circular and stable; consequently the energy expression remains valid.
Since this method of computing the force is independent of the de-
tailed stress pattern which produces the domain motion, no estimate
of the shape distorting tendency of the various parameters is obtained.
Equating the sum of the translational forces to the drag force yields
the general velocity equation, and eomparing the magnitudes of the
various forces yields their effects on device operation.

II. DOMAIN ENERGY

The energy change produced by the introduction of a single isolated
circular 180° domain into an infinite plate of uniaxial magnetic
material which is otherwise uniformly magnetized along the average
plate normal (the z axis) is now caleulated. Such a domain configura-
tion is shown in Fig. 1. The assumptions and notation of Refs. 3, 4 and
5 are maintained except that the domain parameters h, H, M, , ¢,, , and
7o are allowed to be functions of position on the plate. In particular,
the following is assumed in the model: the wall has negligible width,
the wall is everywhere parallel to the z axis, and the wall energy
density is independent of wall orientation or curvature. The values of
all parameters are assumed to vary sufficiently slowly that they may
be represented by their z-averaged values at the center of the circular
domain. Additionally, the applied field is represented by its z com-
ponent, H, since under the assumptions stated above only this com-
ponent interacts with the magnetization.
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Fig. 1—The cylindrical domain configuration and coordinate system.

The total change in the energy of the system due to the presence of
a cylindrical domain is

B, = 2wrehe, + 2M Hrrih — 20h*(2e M) (2r,/h). (1)

In this expression the first term, the wall energy, is the product of
the wall energy density and the wall area; the second term, the applied
field interaction energy, is the product of the magnetization change,
2M, , the applied field and the domain volume; and the third term,
the internal magnetostatic energy, is the negative of the integral of
the generalized radial magnetostatic force of Ref. 3. The internal mag-
netostatic energy function, I(2r,/h) is therefore defined as

1em = [ FG e, e

where F(z) is the force function defined by equations 33 and 138 of
Ref. 3. The lower limit of the integral (2) is chosen so that when the
plate is uniformly magnetized, r, = 0, the domain energy expression
(1) is zero. Various closed form and power series representations of
I(d/h) are given in the appendix of this paper. This function, which
is plotted in Fig. 2 as a function of the diameter-to-thickness ratio,
d/h, and is tabulated in Table I, has the asymptotic forms
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_Fig. 2—The internal magnetostatic energy function, I, as a function of the
diameter-to-thickness ratio.
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The physical origin of the asymptotic behavior of the I function was
discussed in some detail in Section IV of Ref. 3.
The domain energy per unit wall length is

Er/nd = eM)R(I/h — J(d/)], (4)

where | = o,/4wM? is the characteristic material length, where the
applied field has been eliminated using the equilibrium condition®™*®

i H d
+ b i, F(H) =0 )

h

o8)=2810) - )

and where
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TaBLE [—MAGNETOSTATIC ENERGY, FORCE AND STABILITY FUNCTIONS

d/h I Fy=F So 82 Fy=3J Fyr
0.00 0. 0. 0. 0. 0. 0.
0.10 0.0048 0.0939 0.0059 0.0007 0.0060 0.0979
0.20 0.0184 0.1765 0.0215 0.0028 0.0225 0.1915
0.30 0.0398 0.2493 0.0442 0.0063 0.0474 0.2809
0.40 0.0680 0.3137 0.0716 0.0111 0.0787 0.3662
0.50 0.1023 0.3708 0.1017 0.0172 0.1149 0.4474
0.60 0.1419 0.4216 0.1332 0.0243 0.1544 0.5246
0.70 0.1864 0.4672 0.1648 0.0323 0.1962 0.5980
0.80 0.2352 0.5083 0.1960 0.0411 0.2394 0.6679
0.90 0.2879 0.5455 0.2262 0.0505 0.2832 0.7343
1.00 0.3442 0.5794 0.2552 0.0603 0.3271 0.7975
1.10 0.4037 0.6104 0.2829 0.0705 0.3708 0.8576
1.20 0.4662 0.6390 0.3093 0.0809 0.4139 0.9150
1.30 0.5315 0.6655 0.3343 0.0914 0.4564 0.9698
1.40 0.5993 0.6901 0.3579 0.1020 0.4980 1.0221
1.50 0.6694 0.7130 0.3804 0.1126 0.5386 1.0721
1.60 0.7418 0.7345 0.4016 0.1231 0.5783 1.1200
1.70 0.8163 0.7547 0.4218 0.1336 0.6169 1.1660
1.80 0.8927 0.7737 0.4410 0.1439 0.6546 1.2101
1.90 0.9710 0.7917 0.4592 0.1541 0.6912 1.2525
2.00 1.0510 0.8087 0.4765 0.1642 0.7268 1.2933
2.10 1.1327 0.8249 0.4931 0.1741 0.7615 1.3326
2.20 1.2160 0.8404 0.5089 0.1838 0.7952 1.3705
2.30 1.3008 0.8551 0.5240 0.1933 0.8280 1.4071
2.40 1.3870 0.8692 0.5385 0.2027 0.8599 1.4424
2.50 1.4746 0.8827 0.5524 0.2119 0.8910 1.4766
2.60 1.5635 0.8956 0.5657 0.2209 0.9212 1.5098
2.70 1.6537 0.9081 0.5786 0.2297 0.9507 1.5418
2.80 1.7451 0.9200 0.5909 0.2383 0.9794 1.5729
2.90 1.8377 0.9316 0.6028 0.2468 1.0074 1.6031
3.00 1.9314 0.9427 0.6143 0.2551 1.0347 1.6325
3.20 2.1221 0.9639 0.6362 0.2712 1.0872 1.6887
3.40 2.3169 0.9837 0.6566 0.2866 1.1374 1.7420
3.60 2.5155 1.0024 0.6759 0.3015 1.1853 1.7926
3.80 2.7178 1.0201 0.6940 0.3158 1.2310 1.8407
4.00 2.9235 1.0368 0.7112 0.3295 1.2749 1.8867
4.20 3.1324 1.0526 0.7275 0.3428 1.3170 1.9306
4.40 3.3445 1.0678 0.7430 0.3556 1.3574 1.9727
4.60 3.5595 1.0822 0.7578 0.3679 1.3962 2.0130
4 .80 3.7773 1.0960 0.7720 0.3799 1.4337 2.0518
5.00 3.9978 1.1092 0.7855 0.3914 1.4698 2.0891
5.20 4.2209 1.1219 0.7985 0.4026 1.5047 2.1250
5.40 4 .4465 1.1341 0.8109 0.4134 1.5383 2.1596
5.60 4 6745 1.1458 0.8229 0.4239 1.5709 2.1931
5.80 4.9048 1.1572 0.8345 0.4341 1.6025 2.2255
6.00 5.1374 1.1681 0.8456 0.4439 1.6331 2.2568
6.20 5.3721 1.1787 0.8564 0.4535 1.6628 2.2872
6.40 5.6088 1.1889 0.8668 0.4629 1.6916 2.3166
6.60 5.8476 1.1988 0.8769 0.4720 1.7196 2.3452
6.80 6.0883 1.2084 0.8866 .0.4808 1.7468 2.3730
7.00 6.3310 1.2177 0.8961 0.4894 1.7733 2.3999
7.20 6.5754 1.2268 0.9053 0.4978 1.7991 2.4262
7.40 6.8217 1.2356 0.9142 0.5060 1.8242 2.4518
7.60 7.0696 1.2442 0.9229 0.5140 1.8488 2.4767
7.80 7.3193 1.2525 0.9314 0.5218 1.8727 2.5010
8.00 7.5706 1.2606 0.9396 0.5295 1.8960 2.5247
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The function J has the asymptotic forms

=t 50 [0 o o

and
d\ . 2 (d ‘1 (4)3 d
J(h) ~ 3r (h) 8 \n/'’ h <1 (6e)

The function J(d/h), the normalized total magnetostatic energy per
unit wall length, is plotted in Fig. 3 together with the force function,
F(d/h) and the stability functions S,(d/h) and S.(d/h) which have
the asymptotic forms

)@+ [0 b o

and
d\ ., d_ 2(ay 1(4)“ d
F(h)"‘h w(h) +31\) R &b (7b)
dy _1]_1_ 13(rY _Q(h)“] {g} h
S°(h)_1r{ 2+2d)+|:1 8 \d lnh ) d<<1 (8a)
and
_ 2(ay 1(@)“ d
_w(h) —s\n) &l (8b)
and
dy_1/_1 _17(nY §(@)’] '4_:1’} h
S’(h)"w{_ﬁ_%(d) +[1+3 ) |l g <t ©a)
and
_ 2 (dy _1(dy d
= or (h) 18 (h) PANRE (9b)

Numerical values of all these functions are given in Table I.

Since from the figure and the asymptotic forms of the functions,
(6), (8) and (9), J(d/h) lies roughly midway (with respect to diam-
eter) between S,(d/h) and S2(d/h) and since the condition for domain
stability is*% So(d/h) > I/h > Sz(d/h), then a platelet of arbitrary
thickness may always be biased such that the introduction of a domain
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Fig. 3—The magnetostatic energy per unit wall length function, J, the mag-
netostatic force function, F, and the magnetostatic stability functions, 8, and S,
as functions of the diameter-to-thickness ratio.

produces either a positive, or negative, or zero change in the total
energy. The force function, F(d/h), was included in the figure so that
the bias fields yielding these conditions may be determined. The values
of the diameters and bias fields of zero energy determined using Fig. 3
or Table I together with (4) and (5) are found to agree with those
obtained previously.® In the case of a domain having the preferred
dimensions,*® I/h = 0.2500 and d/h = 2.000 (corresponding to an ap-
plied field of H/4=M, = 0.279), then J(2.000) = 0.2422. Since J is
nearly equal to I/h the total energy is nearly zero. Under the preferred
conditions and in a platelet in which 4=M, = 100 Gauss and d = 10
microns, the absolute value of the wall energy and the total mag-
netostatic energy change are cach approximately 0.2 times the rest
energy of the electron. [Note that the terms in (4) may not be identi-
fied as wall energy and magnetostatic contributions because the
equilibrium condition was used to eliminate the applied field.]

III. THE TRANSLATIONAL FORCE

The translational force is given by

F = _VET,

aET) (BET)
= (L2 h— (22 H
( ah H.M..cw.rnv BH k.M.,u.n.r.v
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5o (29
(aM. hH,qw, 7o vH, da,, h.H.M.,rnvaw

on.)
— (arﬂ — M!Vru. (10)

In this expression », H, M, and ¢, are considered to be independent
variables (functions of position on the platelet) and 7, is a dependent
function of these variables determined by the equilibrium condition (5).
Since the fundamental equilibrium condition is (0E /7o) s, #.6u. 2. = 0,
the last term in equation (10) may be dropped. Evaluating the remain-
ing terms using equations (1) and (2) yields

F = —[2mry0., + 2M Hrry — 6xh®(2e M) 1(2r0/h)
+ 4nroh(2e M2F (2r,/h)]Vh — [2M argh|VH
— [2Hmh — 4xh@xM )I(2ro/R)]V M,
— [2rrh]V o (11)

Eliminating the applied field using the equilibrium condition (5) and
rearranging yields

F =z dh*@2e M| —[l/h — F.(d/R)]Vh/h + [I/h — Fu(d/h)VH/H
+ [UI/h + Fyuld/R)IV M. /M, — 2[l/kVo,/e.},  (12)
where

A 8) = o) - w®) - 1)
-0 [+ 30)]

| =

In {ﬁ’}, :—i‘« 1, (13b)

%)a, %« 1, (13¢)
Fyu(@/h) = F@d/h), (14)

and
ru(f) = SG03) - #(5). as)
~Hog 0+ [ QT G om
=§—§—T§2+i(%)ﬁ, %«1. (15¢)
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Figure 4 shows plots of F;,, Fyy and F = Fy as functions of the norm-
alized domain diameter. Numerical values of these functions are in-
cluded in Table I. From the figure and the asymptotic forms of (7),
(8), (13) and (14), it is seen that the functions are positive and that
both Fj and Fy are greater than S,(d/h). From these properties and
the stability requirement Sy(d/R) > I/h > S.(d/h), it is seen that for
any stable domain the thickness gradient and magnetization gradient
contributions to the force are in the direction of the gradient while
the field gradient and wall energy gradient contributions to the force
are in the direction opposite to the gradient.

The absolute value of each of the terms in equation (12) is small but
measureable. If H, and H, are defined as the collapse and elliptical run-
out fields respectively, then in the case of a gradient in the applied field
where the stability limits are known roughly (see Ref. 5), the force pro-
duced on a domain for which d/h = 2, h/l = 4, VH = (H, — H:)/d,
d = 100 microns and 4=M, = 100 Gauss is approximately 6 x 10-°
dynes. While such absolute force measurements could possibly be
carried out, a more relevant experiment for device applications is the
balancing of field gradients against gradients in the other quantities.
At the present time, no such measurements have been completed. How-
ever, the directions of the applied field gradient force, the wall energy
gradient foree, and the thickness gradient force have been verified. The
sign of the H gradient force is verified in everyday device operation.
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Fig. 4—The transverse magnetostatic force functions, Fu , Fi, and Fu (F = Fa)

and the magnetostatic stability functions S; and S:, as functions of the diameter-
to-thickness ratio.
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The sign of oy, gradient force was checked using a temperature gradient
in a sample of 8Sm; 55Thy4sFeQ;. According to the data of F. C.
Rossol,” at room temperature the wall energy temperature coefficient
is approximately +1.5%/C° and the magnetization is only a slightly
decreasing function of temperature. The o, gradient force thus domi-
nates in this material, and we observed that the domains move
away from heated regions towards cooler regions as predicted. The
sign of the M, gradient force was verified using a temperature
gradient in a sample of Gds3Tby ;Fe;0;» garnet. In this material M,
increases at 3%/C° at room temperature while the wall energy is
approximately constant. The M, gradient foree thus dominates, and we
observed that the domains moved towards heated regions as predicted.
The force direction measurements were completed in tapered platelets
of orthoferrite in which we observed that the domains move towards
the thick end of a platelet when restraints were removed.

It should be noted that in carrying out these experiments it is
important to obtain low coercivity materials. This is especially true
in measuring the thickness gradient force when Vh/h 1s small.

The drag force acting on a domain propagating with uniform
velocity v, from equation 58 of Ref. 5 is given by

F, = gg dh M[ H, + = ml] (16)

Tval’

where H, is the wall motion coercwlty and g, is the wall motion
mobility. Equating to zero the sum of the gradient force (12) and the
drag foree (16) yields the velocity equation for an otherwise freely
propagating domain. In order to avoid the vector sum in this equation,
it is convenient to assume that all the gradients lie in the same direc-
tion and are positive. It is also convenient to assume that the gradients
are uniform =o that their magnitudes may be expressed in terms of
the maximum parameter difference across the domain divided by the
domain diameter, VX = AX/d. Under these assumptions the velocity
equation is

8 H, 2|vel . AR AH AM, Ag,
r4rM, podrM, = Ch CH + CM M, C‘, v (17&)
where

B—L - F,i(%)] , (17b)

h
d
Cp = —g [% —~ FH(%)] , (17¢)
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_h[lL (d)]
Cu = d [h + Fy K (17d)
and
hl l
C,—Zaﬁ—r—ﬂ (178)

are called transverse force coefficients and are all positive.
For a domain having the diameter d = 8l in a plate of thickness 4,
the velocity equation becomes

8 H.  2lvl
T 4xM, podrM,
Ah AM,

Ac,
= 0.238 T 0. 279 — + 0.772 —— M, — 0.250 .. (18)

If the magnitude of the sum of the gradients is not sufficiently large,
no motion takes place. For example, when a domain having dimensions
such that equation (18) applies is subjected to a field gradient, the
magnitude of the field difference across the domain must satisfy the
condition AH/H > 9.1 X H./4x=M, before any motion can take place.

The transverse force coefficients are plotted as functions of the
normalized thickness h/l in Fig. 5 for the bias condition d = (dyd.)?
where dy, and d. are the collapse and elliptical runout diameters
respectively. For small thicknesses the asymptotic forms of Cy, Cy,
and C, are proportional to (I/h) exp (—=l/h) and the asymptote of Cy
is proportional to exp (—=l/h). For large thicknesses Cy and Cy
approach unity, and C, and C; approach the asymptote (8/3x)*(l/h)}.

Some caution must be exercised in interpreting equation (17) and
Fig. 5. First, the stability of moving domains has only been investi-
gated for the case of gradients in the applied field and then only
incompletely (see Ref. 5). Another problem is that drive gradients
which are applied from the surface and which must obey Laplace’s
equation, such as field gradients and temperature gradients, decrease
exponentially into the platelet. (This does not apply to volume heating
such as laser heating.) For any given value of these gradients at the
surface the maximum z averaged value of these gradients which may
be applied thus decreases according to the inverse first power of the
plate thickness in thick plates. This consideration shows that the use
of platelets having a thickness no greater than the preferred thickness
of 4l is thus more strongly preferred for achieving a high domain
velocity than is indicated by inspection of Fig. 5 alone.
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Fig. 5—The transverse force coefficients C'a, Cw, C'ar, and C' for the bias condi-
tion d = (dvda)?, as functions of the normalized thickness, h/l.

IV. SIGNIFICANCE FOR DEVICE APPLICATIONS

Equation (17) and Fig. 5, when properly interpreted, show again
that there is a preferred plate thickness for achieving high bit rates in
devices and that this thickness is again 4l. Equation (18) shows that,
for plates of this thickness, wall energy, magnetization and applied
field gradients produce transverse forces of similar magnitude. Figure
5 shows that this is also true for plates having a thickness in the
neighborhood of 4l. There is therefore no preferred thickness with re-
spect to favoring applied field gradients over temperature or com-
position gradients.

In temperature dependent materials in which the domain tends to
move towards the high temperature direction the domain will tend to
follow a laser beam initially placed at its center. In materials having
the opposite temperature characteristic, the domains may be pushed
by a laser beam. Gradients in thickness or composition may be used
to define domain tracks in order to increase margins with respect to
spurious field or temperature gradients. An immediately useful ap-
plication of equation (18) is in the ealculation of the effect on device
margins of the heat produced by domain generators and detectors.



CYLINDRICAL MAGNETIC DOMAINS 723

APPENDIX

The Internal Magnetostatic Energy Function

Various representations of the internal magnetostatic energy func-
tion, I'(d/h), are given in this appendix. Since F(d/h) is non-negative
(Ref. 3, Fig. 3 and equation 138), the integral definition of I(d/h) (2)
implies that I(d/h) is positive and monotonic increasing as can be
seen in Fig. 1. (Neither function is defined in the present case for
negative values of the argument.) The definition of I(d/h) also
implies the differential equation, dI(z)/dz = F(x), with the boundary
condition I(0) = 0. The internal magnetostatic function may be
written as

()= et [2f+ (-0 - (20 ()] oo

where as in equations (84) and (85) of Ref. 3

Ulr) = 2 + 1)*E(1 i x) , (202)
and
V@) = 2@ + 1)**1((1 jr a:) , (20b)

where K(m) and E (m) are the complete elliptic integrals of the first
and second kind respectively and the argument is in the m of Ref. 8.
Differentiation of equation (19) with respect to d/h and combining
terms using equations (86) and (87a) of Ref. 3 verifies that the
derivative of I(d/h) is indeed F(d/h) (equation 138 of Ref. 3). Sub-
stitution of the series expansions of U and V (equations 96 and 97 of
Ref. 3) verifies that I(0) = 0.

Writing I(d/h) in terms of the L, function (Ref. 3 Sec. A.4) elimi-
nates the negative power of d/h,

- 0T -3 ). e

and the expression in terms of F(d/h) and Sy(d/h} (equations 138
and 139 of Ref. 3) is also sometimes useful,

Q-3+ s@l+5)-3 e
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The power series expansions of I(d/h) may be determined either
by substituting the power series expansions for U, V and L, (Ref. 3,
Sections A.3 and A.4) into equation (21) or by term-by-term integra-
tion of F(d/h) with the integration constants being determined from
the lowest order terms of the power series expansions of U and V. The
result is

() =HI 0+ 50 556 - 8% 6 + -]

[0+ 50 - () + g + ][}
(23a)

dy 2 (dV , 1 (d} 1 (d\°, 5 (dY*
(ﬁ)_s_w(ﬁ)’*"l_a(ﬁ)_ﬁﬁ(i) m(h)+“'

(23b)

1
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