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Error Probability of a Multilevel Digital
System With Intersymbol Interference
and Gaussian Noise

By E. Y. HO and Y. S. YEH
(Manuseript received October 16, 1970)

In a previous paper a series expansion method for calculating the error
probability of a binary digital AM system in the presence of intersymbol
interference and additive gaussian noise was derived.' In this paper those
results are extended to the multilevel case. In the examples calculated for a
four-level system, this method is 10* times faster than the exhaustive method
and is 10 times more accurate than the Chernoff bound. The actual compu-
tation time with an 11-sample approximation to the real syslem impulse
response is only 1.3 seconds with the GE Mark II time-sharing system.

I. INTRODUCTION

In a recent paper' we have developed a new method to calculate the
error probability of a binary digital data system in the presence of
intersymbol interference and additive gaussian noise. A similar method
has also been reported by M. I. Celebiler and O. Shimbo.? The purpose
of this paper is to extend the previous results to multilevel systems.

The existing methods for the estimation of the error probability are
the Chernoff bound or the worst case bound,** the results of which are
generally too loose. Another alternative is the time-consuming exhaus-
tive method.’ For example, it would require 4'°(=2 10°) calculations of
the error funection to find the error probability of a four-level digital
system where intersymbol interference resulted from ten nonzero
samples of the channel impulse response.

1I. DERIVATION OF THE EXPRESSION FOR ERROR PROBABILITY

For a 2m-level digital AM system, the corrupted received sequence at
the input to the receiver detector is
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@

() = X an(t = IT) +n(), (1)
where
n(t) is additive gaussian noise,
a, = =1, 3, .-+, +=(2m — 1) with equal probability,
and

r(t) is the given noiseless system impulse response.

At the detector, y(t) is sampled every T seconds to determine the
amplitude of the transmitted signal. At sampling time ¢, , the sampled
signal is,

y(to) = agr(ts) + IZ ar(ty — IT) + n(ty). (2)

1#0
The first term is the desired signal while the second and the third terms
represent the intersymbol interference and gaussian noise respectively.
The set of slicing levels are,’

0, £2r(ty), £4r(ty), -- -, £(2m — 2)r(t). (3)

Given a particular transmitted signal level, a,, the conditional error
probability is,

P.(e/a,)
Plyts) 2 —2(m — Drta)}, @ = —(2m — 1),
P{y(ty) = 2(m — Dr(ty)}, a = 2m — 1,

)
P{(y(to) 2 (a0 + Dr(t))Uy(k) = (a0 — Dr(k))},

(2 = :‘:(2m - 1),

where AUB is the union of the events A and B.
Substituting equation (2) into (4), we obtain

P.(e/a,)
P{ ;: ar(to — IT) + nlte) = r(t)}, a = —(@2m — 1),
P{Y ar(ty — IT) + nlty) = —r(le)}, @ = 2m — 1,

= ) 170 (5)
P{(lz ar(te — IT) + n(ty) = r(t) U,

(Z ar(lo — IT) +n(t) £ —r(l)}, @ # £(2m — 1).

I#0
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Since E,,o a,r(ta, — IT) and n(f,) are equally likely to be positive or
negative, equation (5) reduces to

P,(e/a0)
P{ Y ar(ly — IT) 4+ n(te) 2 r(t)}, @ = +(2m — 1),

— 1#0 (6)
2P{ 3 ar(ty — IT) + n(ty) = r(fo)}, @ = £(2m — 1).

1#0
The error probability of the system is,
Pe = E Pr(e/aﬂ)Pr(aD)}

all as

=2 = p S gt — 1) 4 () 2 1)) (D)

m =0

We note that equation (7) is similar to equation (7) of Ref. 1, with
the only exception that the a; can now assume multiple values. Accord-
ing to equation (9) of Ref. 1, we obtain the following expansion for P,,

P, = 2m — 1 erfc (—T—(g’) )

2m V2o
om—1¢ 1 (1Y 1 [ A
S ,;(216)!(202) Valp [* 2.:’]
r(t))
‘sz—n(\/g E)Mzk ) (8)

where

o* is the noise power,

Hg;._1 is the Hermite polynomial,

erfc is the complementary error function,

M, is the 2kth moment of the random variable X,

and
X=Yar(t,—IT, a==1%3 - ,£2m—1. (9
=0
The moments can again be obtained through the characteristic function
of X without the explicit evaluation of the distribution function. The
characteristic function 1is,

Pw) = H{ i exp [jo(2k — Dr(te — lT)]/Q'-’n},

I#0 \k=-m+1

=11 {ﬁ sin [2moer(t, — IT)]-ese [wr(t, — IT)]}' (10)*

=0
* See Ref. 6, equation (1.342).
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Therefore,

B'(w) = Bw)[2m 3 rte — IT) cot [2me(t, — IT)]

I=0
— Doty — IT) cot [wr(ty — IT)]}. (11)
10
Since My, = (—1)*®*%(0) and M., = 0, we obtain a recurrence
formula for Mo by successive differentiation of equation (11),

- k 2]{: - 1) izﬁi[(zm)Zi _ 1]
MW‘ = = ; (2?‘ _ 1 ﬂf{ﬂ(}c*i)(_l) 2?: 132"

'[§ r(te — IT)1], (12)
where B,; is the Bernoulli number obtained by series expansion of
cotangent function about the origin. Knowing that M, = 1, all the
My's ean be calculated successively through equation (12) for an
N-sample approximation of the channel pulse response. The N-sample
truncation is equivalent to the approximation of El,go r{t, — IT)* by
(N — 1) summation terms.

The error probability of a 2m-level system can thus be obtained by
equations (8) and (12). In the special case m = 1, equations (8) and
(12) agree with the results of the binary system, i.e., equations (9)
and (15) of Ref. 1.

III. TRUNCATION ERROR BOUND

The error incurred by truncating the series expansion of equation (8)
at a finite term n — 1 is,

oot [ T_r
R = = X o [202] o e"p[ 2&&

-Hz,ﬂ(’:%—“)a)Mn . (13)

Let

A = maximum {| Y a;(t, — IT) |},
=0

(2m — 1) Z | #(to — IT) |. (14)
=0
It can be shown that the moments satisfy the following inequality,

bfﬂk-ﬂp = Mﬁkkﬁll P = 01 1: 2: e (15)
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For (2k — 1) > z, the Hermite po]ynomié.ls are upper bounded by,
| Hyeoo() | < 2°73(2k — 3)!1V/2k — 1 exp [2°/2]. (16)

Substituting equations (16) and (15) into equation (13) and grouping
the terms into geometric series, we obtain an upper bound for R, .

_22m—=1_1 (1) /g
l R,. l < 6@, = m ‘\/ﬂ (exP [ T (%)/4 ])
. M;"“ 1_ 1 . (17
(26")" n1v/2n — 1{ [@m — 1) X | rto — IT) n’}
1 — 1#0 5
2ne

IV. EXAMPLE

We have calculated the error probability of a four-level digital AM
system with the received pulse given by

() = %sin et/ T).

4
CHERNOFF BOUND 1.88 X 10°

SERIES EXPANS]ON\\
N

N\
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8 ERROR BOUND
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NUMBER OF TERMS IN EQUATION (B) K —

Fig. 1—Comparison of Chernoff Bound and series expansion method. Sin
[n-t/T]/(:r/T)l pulse, 11-pulse truncation approximation, to = 0057, (§/N) =
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CHERNOFF BOUND 8.83%10°%
1078
sl , EXHAUSTIVE METHOD
6 ¥ . 5.2 x10~7
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Fig. 2—Comparison of series expansion method with Chernoff Bound and
exhaustive method. [SIN t/T1/(x/T)¢ pulse, 5-pulse truncation approxima-
tion, ¢t = 0057, (S/N) = 24 dB. .

With an 11-sample approximation, a S/R of 24 dB and a sampling
time of t, = 0.05 T, the error probability obtained by the Chernoff” *
bound is 2 X 10-* The result obtained by our method is 3.4 X 10-°
indicating an improvement of two orders of magnitude. The conver-
gence of equation (8) is presented in Fig. 1. Reasonable accuracy is
achieved after eight terms of the series are calculated. A check of the
aceuracy of our method by comparison with the exhaustive method is
impossible in this case because the latter requires 10* times more com-
putation time as compared to the series expansion method. Instead, we
checked our method with the exhaustive method for the case of a five-
sample approximation. The results agree well and are presented in

* 11-sample approximation to the channel response is used in calculating the
Chernoff bound.
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Fig. 2. The computation time spent on GE Mark II time-sharing sys-
tem is approximately 1.3 seconds for the series expansion method in
both the eleven-sample and the five-sample approximations. The
truncation error bounds are also presented in both figures.

V. CONCLUSIONS

We have extended the series expansion evaluation of the error prob-
ability of a binary digital AM system in the presence of intersymbol
interference and additive gaussian noise to the 2m-level systems. The
results are extremely encouraging. For the case examined the series ex-
pansion method was calculated several orders of magnitude faster
than the exhaustive method, and it was more accurate than the Cher-
noff bound by two orders of magnitude.
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