# On Beneš Rearrangeable Networks

# By F. K. HWANG

(Manuscript received July 31, 1970)

V. E. Bene's considered a class of multi-stage switching networks<sup>1</sup> and proved that if the linkage pattern between two stages is chosen in a specific way, then the resulting networks are rearrangeable. We offer a simpler proof by pointing out the relation between Bene's class networks and the Slepian-Duquid Theorem on three-stage Clos networks.

### I. INTRODUCTION

V. E. Beneš<sup>1</sup> considered the class, denoted here by  $B(n_1, n_2, \ldots n_{t+1})$ , of all connecting networks  $\nu$  with the following properties:

(i)  $\nu$  is two sided, with N terminals on each side where  $N = \prod_{i=1}^{l+1} n_i$ .

(ii)  $\nu$  is built of an odd number s=2t+1 of stages  $\zeta_k$ ,  $k=1, \cdots 2t+1$  connected as specified by permutations  $\varphi_1, \cdots, \varphi_{2t}$ . In the notation of Beneš,

$$\nu = \zeta_1 \varphi_1 \zeta_2 \cdots \varphi_{2i} \zeta_{2i+1}.$$

(iii)  $\zeta_k$  consists of  $N/n_k$  identical square switches of size  $n_k$ .

(iv)  $\zeta_k = \zeta_{2t+2-k}$  for  $k = 1, \cdots t$ .

Beneš proceeded to prescribe a specific way of choosing  $\varphi_k$  (See

page 113 of Ref 1):

"Order the switches of each stage; to define  $\varphi_k$  for a given  $1 \leq k \leq t$ , take the first switch of  $\zeta_k$ , say with  $n_k$  outlet and  $n_k$  a divisor of N, and connect these outlets one to each of the first  $n_k$  switch of  $\zeta_{k+1}$ ; go on to the second switch of  $\zeta_k$  and connect its  $n_k$  outlets one to each of the next  $n_k$  switches of  $\zeta_{k+1}$ ; when all the switches of  $\zeta_{k+1}$  have one link on the inlet side, start again with the first switch; proceed cyclically in this way till all the outlets of  $\zeta_k$  are assigned."

Beneš also specified  $\varphi_k = \varphi_{2t+1-k}$  for  $k = t+1, \cdots 2t$ . We call a network  $\nu \in B(n_1, n_2, \cdots n_{t+1})$  constructed in this manner a cyclic

Beneš network.

Beneš proved that a cyclic Beneš network is rearrangeable. The proof given by Beneš in Ref. 1 is, however, quite lengthy and involved. In the present work, we offer an alternate proof by pointing out the links between cyclic Beneš networks and the Slepian–Duguid Theorem on three-stage Clos networks. It is hoped that the simpler proof will lead to new insights into the problem of constructing rearrangeable networks.

## II. MULTISTAGE REARRANGEABLE NETWORKS

We show a way to construct  $\nu \in B(n_1, n_2, \dots n_{t+1})$  from  $\nu' \in B(n_2, n_3, \dots n_{t+1})$  such that if  $\nu'$  is rearrangeable then  $\nu$  is rearrangeable. We construct a three-stage network by having the first stage and the third stage each consist of  $N/n_1$  copies of  $n_1 \times n_1$  square switches,  $A_1 \cdots A_{N/n_1}$ ,  $C_1 \cdots C_{N/n_1}$  say, where the second stage consists of  $n_1$  copies of  $\nu'$ , say,  $B_1$ ,  $\cdots B_{n_1}$ . Each switch in the first stage and the third stage is then linked to every  $B_i$  in the second stage. (It does not matter which inlet or outlet of  $B_i$  is linked to which  $A_i$  or which  $C_i$ .) This gives a network  $\nu \in B(n_1, n_2, \dots n_{t+1})$ . Now if  $\nu'$  is also constructed in this manner and so on down to the three-stage network, we then call  $\nu$  a Beneš network. That a Beneš network is rearrangeable will follow from a multistage version of the Slepian-Duguid Theorem on three-stage Clos networks. To be complete, we state this multistage version and give a proof.

Theorem 1: Let  $\nu \in B(n_1, n_2, \dots, n_{t+1})$  be a Beneš network. Then  $\nu$  is rearrangeable.

**Proof:** For t = 0, we have a special case of a  $n_1 \times n_1$  square switch which is clearly rearrangeable and no construction is needed. Supposing that Theorem 1 is true for  $t' = t - 1 \ge 0$ , we prove Theorem 1 for t' = t.

A maximal assignment between each inlet terminal and each outlet terminal is a permutation  $\varphi$  of the set of numbers  $\{i:i=1,2,\cdots N\}$  where  $N=\prod_{j=1}^{t+1}n_j$ . (Following Beneš, we need only consider maximal assignments.) A given maximal assignment can also be viewed as a set of defining relationships between each switch in the first stage and each switch in the third stage (treating the set of  $\nu'$  as the second stage). Set  $N_2=n_2\cdots n_3\cdots n_{t+1}$ , note that  $N=n_1N_2$ . Let  $A_i$  be the *i*th switch in the first stage,  $A=\{A_i:i=1,2,\cdots N_2\}$  and  $C_i$  be the *j*th switch in the third stage,  $C=\{C_i:j=1,2,\cdots N_2\}$ . Consider a particular first stage switch  $A_i$ . Suppose the  $n_1$  inlet terminals of

 $A_i$  are assigned by  $\varphi$  to third-stage outlet terminals,  $y_{i1}$ ,  $y_{i2}$ ,  $\cdots$   $y_{in}$ . Denote by  $Y_{ik}(Y_{ik} \in C)$  the third-stage switch that contains  $y_{ik}$ ,  $k = 1, 2, \dots, n_1$ , and let  $S_i = \{Y_{ik} : k = 1, 2, \dots, n_1\}$ . Since  $\bigcup_{i=1}^z S_i$  has a total of  $x \cdot n_1$  elements and since each distinct element has only  $n_1$  repetitions, there are at least x distinct elements in  $\bigcup_{i=1}^z S_i$  for each  $x = 1, 2, \dots, N_2$ . Hence the condition of P. Hall's Theorem<sup>2</sup> on distinct representation of subsets is satisfied and there exists a set  $Z = \{Z_i : i = 1, 2, \dots, N_2\}$  such that  $Z_i \in S_i$  and Z = C. Then  $x_i$ ,  $i = 1, \dots, N_2$  can be chosen such that  $x_i \in A_i$ ,  $\varphi x_i \in Z_i$ . Now we may choose to route the  $n_1$  calls  $x_i \to \varphi x_i$  through the first second-stage switch  $B_1$ , which by induction hypothesis is rearrangeable. The problem is then reduced to that of a maximal assignment in a network of type  $B(n_1 - 1, n_2, \dots, n_{t+1})$ . By repeatedly applying the same argument, we obtain subassignments on each  $B_k$ .

## III. CYCLIC BENEŠ NETWORKS

Theorem 2: Every cyclic Beneš network is a Beneš network, hence is rearrangeable.

*Proof:* A single stage cyclic Beneš network is a  $N \times N$  square matrix, which is a Beneš network. Suppose Theorem 2 is true for (2t-1) stage network where  $t \ge 1$ . We prove a (2t+1) stage cyclic Beneš network is a Beneš network.

Let  $\nu = \zeta_1 \varphi_1 \zeta_2 \cdots \varphi_{2t} \zeta_{2t+1}$   $\varepsilon$   $B(n_1, n_2, \dots, n_{t+1})$  be a cyclic Beneš network. We shall show that the complex  $p = \zeta_2 \varphi_2 \zeta_3 \cdots \varphi_{2t-1} \zeta_{2t}$  can be decomposed into  $n_1$  copies of  $\nu'$  where  $\nu'$   $\varepsilon$   $B(n_2, n_3 \cdots n_{t+1})$  is also a cyclic Beneš network. Furthermore  $\varphi_1$  and  $\varphi_{2t}$  are such that each switch in  $\zeta_1$  and  $\zeta_{2t+1}$  is linked to each  $\nu'$  as is required by the definition of a Beneš network. By our inductive hypothesis,  $\nu'$  is a Beneš network. This is enough to prove that  $\nu$  is a Beneš network.

Let the notation  $\{A/\zeta_i(\sigma)\}$  denote a set of switches  $A \in \zeta_i$  in the network  $\sigma$ . Similarly, let  $\{B/\zeta_{i+1}(\sigma)\}$  denote a set of switches  $B \in \zeta_{i+1}$  in  $\sigma$ . We define a relation R on the two sets A and B and write

$$\{A/\zeta_i(\sigma)\}R\{B/\zeta_{i+1}(\sigma)\}$$

if every switch of A is linked to every switch of B in the network  $\sigma$ . For the cyclic Beneš network  $\nu = \xi_1 \varphi_1 \xi_2 \cdots \varphi_{2l} \xi_{2l+1}$ , let the switches in each stage be ordered. Note that the  $\varphi_i$ , for  $i = 1, 2, \dots, t$ , in  $\nu$  can be described by,

$${x \pmod{f_i}/\zeta_i(\nu)}R{n_i(x-1)+l_i:l_i=1,2,\cdots,n_i/\zeta_{i+1}(\nu)}$$

for

$$x = 1, 2, \cdots f_i$$
 where  $f_i = N/n_i n_{i+1}$ ,

and

$$\varphi_i = \varphi_{2i+1-i}$$
 for  $i = t+1, \cdots 2t$ .

Decompose the compex  $P = \zeta_{2\varphi 2}\zeta_3 \cdots_{\varphi 2t-1}\zeta_{2t}$  into  $\{\nu_1, \nu_2, \cdots \nu_{n_1}\}$  where  $\nu_h$ ,  $h = 1, 2, \cdots n_1$ , consists of those sets of switches:

 $\{h(\text{mod }n_1)/\zeta_2(\nu)\}$ 

$$\left\{ (h-1) \prod_{j=2}^{k-1} n_j + m_k \cdot m_k = 1, 2, \cdots \prod_{j=2}^{k-1} n_j / \zeta_k(\nu) \right\}$$
for  $k = 3, 4, \cdots 2t - 1$ 

and

$$\{h(\text{mod }n_1)/\zeta_{2t}(\nu)\}.$$

Then clearly  $\nu_h \in B(n_2, n_3 \cdots n_{t+1}), h = 1, 2, \cdots n_1$ .

In each  $\nu_h$ , let the switches in each stage be ordered as is consistent with their orderings in  $\nu$ . Suppose  $s_i$  is a switch  $\varepsilon \zeta_i(\nu_h)$  and  $g'_i$  its coordinate in  $\nu_h$  (i.e.,  $s_i$  is the  $g'_i$ <sup>th</sup> switch in  $\zeta_i(\nu_h)$ ). Then  $s_i \varepsilon \zeta_i(\nu)$  and has the coordinate  $g_i$  in  $\nu$ .

If we write  $g'_i$  uniquely as

$$g_i' = C \prod_{j=2}^{i-1} n_j + d_i' \quad \text{for } C \ge 0, \quad 1 \ge d_i' \ge \prod_{j=2}^{i-1} n_j \quad (1)$$

$$\left( \text{using the convention } \prod_{i=2}^{i-1} n_i = 1 \quad \text{if } i = 2 \right)$$

then  $g_i$  can be uniquely written as

$$g_i = C \prod_{i=1}^{i-1} n_i + d_i' + (h-1) \prod_{i=2}^{i-1} n_i.$$
 (2)

Vice versa, if  $s_i \in \zeta_i(\nu)$ ,  $i \neq 1$ , 2t + 1, has coordinate  $g_i$  as expressed in equation (2), then  $s_i$  is also a switch in  $\zeta_i(\nu_h)$  with coordinate  $g_i'$  as expressed in equation (1).

Next we show that  $\nu_h$  is a cyclic Beneš network, i.e., let  $\nu_h = \zeta_2' \varphi_2' \zeta_3' \cdots \varphi_{2t-1}' \zeta_{2t}'$ , then  $\varphi_i$ ,  $i = 2, 3 \cdots t$  can be described by

$$\{x' \pmod{f_i'}/\zeta_i'(\nu_h)\} R\{n_i(x'-1) + l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}'(\nu_h)\}$$
(3)

for

$$x' = 1, 2, \cdots f'$$

where

$$f' = N'/n_i n_{i+1}$$
 and  $N' = N/n_1$ ,

and

$$\varphi_k = \varphi_{2t+1-k}$$
 for  $k = t + 1, \cdots 2t - 1$ .

(Note that in equation (3), the two sets of switches are written in coordinates g' of  $\nu_h$ .) From equations (1) and (2),

$$g_i = n_1 g_i' - (n_1 - 1)d_i' + (h - 1) \prod_{i=2}^{i-1} n_i$$
 (4)

Let  $s_i \in \zeta'_i(\nu_h)$  be a switch having coordinate  $g'_i \equiv x' \pmod{f'_i}$ . Then we have the unique expression

$$q'_i = q \cdot f'_i + x' \quad \text{for some} \quad q \ge 0.$$
 (5)

Since  $\prod_{i=1}^{i-1} n_i$  divides  $f'_i$ , from equations (1) and (5), there exists a unique u,  $0 \le u \le \prod_{i=i+1}^{i+1} n_i$ , such that

$$x' = u \prod_{i=2}^{i-1} n_i + d_i'. (6)$$

From equation (4), the corresponding  $g_i$  is

$$g_{i} = n_{1}(qf'_{i} + x') - (n_{1} - 1)d'_{i} + (h - 1) \prod_{j=2}^{i-1} n_{j}$$

$$= qn_{1}f'_{i} + n_{1}x' - (n_{1} - 1)d'_{i} + (h - 1) \prod_{j=2}^{i-1} n_{j}$$

$$= qf_{i} + x$$
(7)

where  $f_i = n_1 f'_i$  and

$$x = n_1 x' - (n_1 - 1)d_i' + (h - 1) \prod_{i=2}^{i-1} n_i$$

$$= n_1 \left( u \cdot \prod_{i=2}^{i-1} n_i + d_i' \right) - (n_1 - 1)d_i' + (h - 1) \prod_{i=2}^{i-1} n_i , \quad \text{by (5)}$$

$$= u \cdot \prod_{i=1}^{i-1} n_i + d_i' + (h - 1) \prod_{i=2}^{i-1} n_i . \quad (8)$$

It can be easily verified that  $0 \le x < f_i$ .

Equation (7) says that a switch  $s_i \in \zeta_i(\nu_h)$  which has coordinate  $g_i' \equiv x_i' \pmod{f_i}$  has coordinate  $g \equiv x \pmod{f_i}$  in  $\nu$ .

Next we show that if the two sets  $\{G'_{i+1}/\zeta'_{i+1}(\nu_h)\}\$  and  $\{G_{i+1}/\zeta_{i+1}(\nu)\}\$ 

are such that

$$\{x' \pmod{f_i'}/\zeta_i'(\nu_h)\} R\{G_{i+1}'/\zeta_{i+1}'(\nu_h)\}$$
(9)

and

$$\{x \pmod{f_i}/\zeta_i(\nu)\} R\{G_{i+1}/\zeta_{i+1}(\nu)\}$$
 (10)

hold, then  $G'_{i+1}$  and  $G_{i+1}$  are coordinates of the same set of switches. Equation (9) implies

$$\begin{aligned} \{G'_{i+1}/\zeta'_{i+1}(\nu_h)\} \\ &= \{n_i(x'-1) + l_i : l_i = 1, 2, \cdots n_i/\zeta'_{i+1}(\nu_h)\}, \\ &= \left\{n_i\left(u \cdot \prod_{i=2}^{i-1} n_i + d'_i - 1\right) + l_i : l_i = 1, 2, \cdots n_i/\zeta'_{i+1}(\nu_h)\right\}, \\ &= \left\{u \prod_{i=2}^{i} n_i + (d'_i - 1)n_i + l_i : l_i = 1, 2, \cdots n_i/\zeta'_{i+1}(\nu_h)\right\}. \end{aligned}$$

Equation (10) implies

$$\begin{aligned} \{G_{i+1}/\zeta_{i+1}(\nu)\} &= \{n_i(x-1) + l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}(\nu)\}, \\ &= \left\{n_i\left(u \cdot \prod_{i=1}^{i-1} n_i + d'_i + (h-1) \prod_{i=2}^{i-1} n_i - 1\right) \right. \\ &+ l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}(\nu)\right\}, \\ &= \left\{u \prod_{i=1}^{i} n_i + (d'_i - 1)n_i + (h-1) \prod_{i=2}^{i} n_i \right. \\ &+ l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}(\nu)\right\}. \end{aligned}$$

But from equation (2), if  $g'_i = u \prod_{i=2}^i n_i + (d'_i - 1)n_i + l_i$ ,  $1 \le l_i \le n_i$ , then its corresponding  $g_i$  is

$$g_i = u \cdot \prod_{j=1}^i n_j + (d'-1)n_i + l_i + (h-1) \prod_{j=2}^i n_j$$

Therefore  $\{G'_{i+1}/\zeta'_{i+1}(\nu_h)\}$  and  $\{G_{i+1}/\zeta_{i+1}(\nu)\}$  are clearly coordinates of the same set of switches.

That each switch in  $\zeta_1(\nu)$  is linked to each  $\nu'_h$  by  $\varphi_1$  is a direct result of

$${x \pmod{f_1}/\zeta_1(\nu)}R{n_1(x-1)+l_1:l_1=1, 2, \cdots n_1/\zeta_2(\nu)}$$

since

 $|\{h(\text{mod } f_1)\} \cap \{n_1(x-1) + l_1 : l_1 = 1, 2, \cdots n_1\}| = 1$ 

for each  $h = 1, 2, \cdots n_1$ .

Since  $\nu = \zeta_1 \varphi_1 \zeta_2 \cdots \varphi_{2t} \zeta_{2t+1}$  is symmetric with respect to its middle stage, and  $\nu_k \in B(n_2, n_3, \dots, n_{t+1})$ , clearly  $\varphi'_k = \varphi'_{2t+1-k}$  for k = t+1,  $\cdots$  2t - 1. And finally, again by an argument of symmetry, each switch in  $\zeta_{2i+1}$  is linked to each  $\nu'_h$  by  $\varphi_{2i}$ .

#### REFERENCES

Beneš, V. E., Mathematical Theory of Connecting Networks and Telephone Traffic, Chapter 3, New York: Academic Press, 1965.
 Hall, P., "On Representative of Subsets," J. London Math. Soc., 10 (1935), pp. 26-30.

