On Benes Rearrangeable Networks

By F. K. HWANG
(Manuseript received July 31, 1970)

V. E. Bene¥ considered a class of multi-stage switching networks' and
proved that if the linkage pattern between two stages is chosen in a specific
way, then the resulting networks are rearrangeable. We offer a simpler
proof by pointing out the relation between Bene§ class networks and the
Slepian—Duguid Theorem on three-stage Clos networks.

I. INTRODUCTION

V. E. Bene§' considered the class, denoted here by B(n, ng, . . -
n:+1), of all connecting networks » with the following properties:

() vis two sided, with N terminals on each side where N = I1in,.

(7)) v is built of an odd number s = 2t + 1 of stages &,
k=1, --- 2t + 1 connected as specified by permutations
@1, '+ @ . In the notation of Benes,

v = 11l 0 @aelaeer -

(#4%) t, consists of N /n, identical square switches of size n; .
(@) ¢ = Cavvanfork =1, - t.

Bene$ proceeded to prescribe a specific way of choosing ¢, (See
page 113 of Ref 1):

“Order the switches of each stage; to define ¢, foragiven1 = k& = ¢,
take the first switch of ¢, , say with =, outlet and n, a divisor of N,
and connect these outlets one to each of the first n, switch of {ki1 ;
go on to the second switch of {; and connect its 7, outlets one to each
of the next n, switches of {:., ; when all the switches of {%., have one
link on the inlet side, start again with the first switch; proceed cyclically
in this way till all the outlets of {, are assigned.”

Bened also specified ¢ = @011 fork =t + 1, --+ 26. We call a
network v ¢ B(n, , na , -+ M,.,) constructed in this manner a cyclic
Benes network.
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Benes proved that a cyclic Bene§ network is rearrangeable. The
proof given by Bene§ in Ref. 1 is, however, quite lengthy and involved.
In the present work, we offer an alternate proof by pointing out the
links between cyclic Bene$ networks and the Slepian-Duguid Theorem
on three-stage Clos networks. It is hoped that the simpler proof will
lead to new insights into the problem of constructing rearrangeable
networks.

II. MULTISTAGE REARRANGEABLE NETWORKS

We show a way to construct » e B(n,, ny, --- n.) from » =
B(ny,ns, - - - n,4,) such that if »’ is rearrangeable then » is rearrangeable.

We construct a three-stage network by having the first stage and
the third stage each consist of N/n, copies of n, X n, square switches,
Ay oo Awsm, 5, Cy +++ Cy,, say, where the second stage consists of
n, copies of v/, say, B,, --- B,, . Each switch in the first stage and the
third stage is then linked to every B; in the second stage. (It does not
matter which inlet or outlet of B; is linked to which A; or which C; .)
This gives a network » ¢ B(n; , na , **+ n,.1). Now if +' is also con-
structed in this manner and so on down to the three-stage network,
we then call » a Bene$ network. That a Bene§ network is rearrangeable
will follow from a multistage version of the Slepian-Duguid Theorem
on three-stage Clos networks. To be complete, we state this multistage
version and give a proof.

Theorem 1: Let ve B(ny , na, +++ Ny.1) be a Bene¥ network. Then v is
rearrangeable.

Proof: For t = 0, we have a special case of a n; X n, square switch
which is clearly rearrangeable and no construction is needed. Supposing
that Theorem 1 is true for ¢’ = ¢t — 1 = 0, we prove Theorem 1 for
i =1

A maximal assignment between each inlet terminal and each outlet
terminal is a permutation ¢ of the set of numbers {:7 =1, 2, --- N}
where N = || }Z] n; . (Following Bene, we need only consider maximal
assignments.) A given maximal assignment can also be viewed as a
set of defining relationships between each switch in the first stage and
each switch in the third stage (treating the set of »' as the second
stage). Set N; = ny - ny + -+ m,,,, note that N = n,N, . Let 4, be
the 7th switch in the first stage, A = {4, :7 = 1,2, .-+ N,} and C;
be the jth switch in the third stage, C = {C; :j = 1,2, -+ N,}. Con-
sider a particular first stage switch 4, . Suppose the 7, inlet terminals of
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A; are assigned by ¢ to third-stage outlet terminals, .1, Yi2, *** Yin -
Denote by Y.(Y € C) the third-stage switch that contains y. , k =
1,2 ---n,andlet 8; = {Yi:k = 1,2, --- n}. Since Uk, 8. has
a total of z-m, elements and since each distinct element has only n,
repetitions, there are at least z distinet elements in \UE., S: for each
z=1,2, -+ N,. Hence the condition of P. Hall's Theorem” on distinct
representation of subsets is satisfied and there exists a set Z=1\Z :i=
1,2, --- N,} such that Z; ¢ S;and Z = C. Then z; , ¢+ = 1, --- N,
can be chosen such that z, e A, , pz; ¢ Z; . Now we may choose to route
the n, calls 2; — oz, through the first second-stage switch B, , which
by induction hypothesis is rearrangeable. The problem is then reduced
to that of a maximal assignment in a network of type B(n, — 1,71z, +*
Nes1). By repeatedly applying the same argument, we obtain sub-
assignments on each B, .

III. CYCLIC BENES NETWORKS

Theorem 2: Every cyclic Bene$ nelwork is a Bene§ network, hence 18
rearrangeable.

Proof: A single stage cyclic Bened network is a N X N square matrix,
which is a Bene$ network. Suppose Theorem 2 is true for (2t — 1)
stage network where { = 1. We prove a (2t + 1) stage cyclic Benes
network is a Bene$ networl.

Let » = Eioits *++ @oilaesr e B(ny, na, -+ n.0a) be a cyclic Bened
network. We shall show that the complex p = {agals -+ @ae-1f2
can be decomposed into n, copies of » where »' &€ B(na , 13 - Tps1)

is also a cyclic Bene¥ network. Furthermore ¢, and ¢, are such that
each switeh in ¢, and ty,,, is linked to each » as is required by the
definition of a Bene$ network. By our inductive hypothesis, »' is a
Bened network. This is enough to prove that » is a Bene§ network.

Let the notation {A/f:(¢)} denote a set of switches A ¢ {; in the
network o. Similarly, let {B/¢:.:(¢)} denote a set of switches B & {1
in o. We define a relation R on the two sets A and B and write

}A/fd(a}}R‘rB/fiﬂ(U)}

if every switch of A is linked to every switch of B in the network o.

For the cyclic Benef network v = £igals =+ - parlory1, let the switches
in each stage be ordered. Note that the ¢;, fori=1,2, -+ f, in v can
be described by,

{z(mod fi)/f-(”)]R{ni(x -n+L:L=12 .- i/ Tira ()}
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for
z=1,2 ---f, where f. = N/nn.,
and
Pi = Pags1-i for 1= t+ 1, <o 28
Decompose the compex P = {opals * " pot—1far Into {1, va, *--
v, where v, h = 1,2, - -+ n,, consists of those sets of switches:
{h(mod n,)/¢(»)}

{(h -1 ﬁn,. + meem, =1,2, - En,-/g'k(v)}

j=2
for k=3,4,---2t—1
and

{h(mod n,)/ta.(v)}.

Then clearly v, e B(ne , Ma +++ iy}, h = 1,2, +++ 1, .

In each », , let the switches in each stage be ordered as is consistent
with their orderings in ». Suppose s, is a switch £ {;(v,) and g/ its co-
ordinate in », (i.e., s; is the g/** switch in {;(».)). Then s, e {:(v) and
has the coordinate g; in ».

If we write g/ uniquely as

i—1

i—-1
gb=CJln,+d for c20, 1=2diz][n (O
i=2 =2

i—1
(using the convention [ n;, =1 if ¢ = 2)
f=2
then g, can be uniquely written as

i—-1

g,-:cij:n,-+d:+(h—1>nn,-. @

Vice versa, if s; e {.:(v), 2 # 1, 2t + 1, has coordinate g; as expressed
in equation (2), then s, is also a switeh in {,(»,) with coordinate g}
as expressed in equation (1).

Next we show that », is a cyclic Bene§ network, ie., let », =
Chohlt o0 b5, then ¢; , 72 = 2,3 -+  can be deseribed by

{z'(mod £1)/¢IIR{n(z" — D) + L 1L =1,2, .- n/FiaG)} ()

for
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where
f = N'/nn:,, and N’ = N/n,,
and
Or = Qusx for k=141, - 2t — 1.

(Note that in equation (3), the two sets of switches are written in
coordinates g’ of », .) From equations (1) and (2),

i—1
gi =mgl — (m — Ddi + (= 1) JIETE 4)
i=2
Let s, e {i(v) be a switch having coordinate gi = z’ (mod f!). Then
we have the unique expression

g = q-fi + 2’ forsome ¢ = 0. (5)

Since J] iz} n; divides f/, from equations (1) and (5), there exists
a unique %, 0 = u < J]ii., n;, such that
i—-1
o =u[ln; +di. 6)
i=2

From equation (4), the corresponding g; is

0o = mlaft + ) — @ — D+ G — 1) T m

i—1
= gfl + ' — @, — Ddi + (b — 1) Hn

=Q'fa+$ (7)

where f; = n,f! and

i—1

z=mz' — @ — Ddl + ¢ —1) =
=2

i=1

cn(u I+ @)~ - i+ @ =D IIn, by ©

i=1 i—1
=u[[n;+di+G—-1]]n. ®
i=1 i=2
It can be easily verified that 0 = = < f: .
Equation (7) says that a switch s; e {:(va) which has coordinate
¢! = z! (mod f}) has coordinate g = = (mod f;) in ».
Next we show that if the two sets {GZ,,/¢%.,(n)} and {Gi1/Cina(0)}
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are such that
{’(mod f1)/ i) }R{G! .. /11 (on)) (©))
and
{z(mod 1.)/£:0))R{G: .1/ $ i)} (10)

hold, then G7,, and G,, are coordinates of the same set of switches.
Equation (9) implies

{G$+1/r:+l(]"h)}
= {ﬂ;(l" - 1) + 11 = 1,2, --- nf/f&’n(”h)];

= {n‘(uﬁn: + di — 1) +L:lk=12-- ﬂ-‘/f"‘n("h)} )

i=2

~ I @ - 12, i/t o)}

Equation (10) implies
{Gin/ffu(l’)} = {n(x - 1) +L:L = 1,2, - n-/j';ﬂ(v)],

{ ( Hn +d’+(h—1)H'n —1)

i=1

+L:L=12 “'ni/fiﬂ(l’)}:
= {u T+ @ = w6 = 1 [T

+1:L=1,2, ---n.-/i'nx(i’)}'

But from equation (2),if g, = u[[%oam; + (@ — Dne + 1,1 <1, < ng,
then its corresponding g, is

gi = u Hn +(d’—l)n,+l—l—(h—l)Hn,.

Therefore {G7,,/¢],,(v)} and |[G;.,/¢t...()} are clearly coordinates
of the same set of switches.
That each switch in {,(») is linked to each » by ¢, is a direct result of

fz(mod £,)/6:()}R{ma(z — 1) + 1, : 1, = 1,2, -+ ny/2(0)}

since
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| {h(mod f)} M {mu(x — 1) + Ll =1,2, - m)|=1
foreachh = 1,2, ---n,.
Since » = {1@ifa - @220+ 1S symmetric with respect to its middle

stage, and v, &€ B(na , na , *** Nys1), clearly of = @l fork =t -+ 1,
... 9t — 1. And finally, again by an argument of symmetry, each
switeh in ¢z, is linked to each v by @3, .
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