On Beneš Rearrangeable Networks # By F. K. HWANG (Manuscript received July 31, 1970) V. E. Bene's considered a class of multi-stage switching networks¹ and proved that if the linkage pattern between two stages is chosen in a specific way, then the resulting networks are rearrangeable. We offer a simpler proof by pointing out the relation between Bene's class networks and the Slepian-Duquid Theorem on three-stage Clos networks. ### I. INTRODUCTION V. E. Beneš¹ considered the class, denoted here by $B(n_1, n_2, \ldots n_{t+1})$, of all connecting networks ν with the following properties: (i) ν is two sided, with N terminals on each side where $N = \prod_{i=1}^{l+1} n_i$. (ii) ν is built of an odd number s=2t+1 of stages ζ_k , $k=1, \cdots 2t+1$ connected as specified by permutations $\varphi_1, \cdots, \varphi_{2t}$. In the notation of Beneš, $$\nu = \zeta_1 \varphi_1 \zeta_2 \cdots \varphi_{2i} \zeta_{2i+1}.$$ (iii) ζ_k consists of N/n_k identical square switches of size n_k . (iv) $\zeta_k = \zeta_{2t+2-k}$ for $k = 1, \cdots t$. Beneš proceeded to prescribe a specific way of choosing φ_k (See page 113 of Ref 1): "Order the switches of each stage; to define φ_k for a given $1 \leq k \leq t$, take the first switch of ζ_k , say with n_k outlet and n_k a divisor of N, and connect these outlets one to each of the first n_k switch of ζ_{k+1} ; go on to the second switch of ζ_k and connect its n_k outlets one to each of the next n_k switches of ζ_{k+1} ; when all the switches of ζ_{k+1} have one link on the inlet side, start again with the first switch; proceed cyclically in this way till all the outlets of ζ_k are assigned." Beneš also specified $\varphi_k = \varphi_{2t+1-k}$ for $k = t+1, \cdots 2t$. We call a network $\nu \in B(n_1, n_2, \cdots n_{t+1})$ constructed in this manner a cyclic Beneš network. Beneš proved that a cyclic Beneš network is rearrangeable. The proof given by Beneš in Ref. 1 is, however, quite lengthy and involved. In the present work, we offer an alternate proof by pointing out the links between cyclic Beneš networks and the Slepian–Duguid Theorem on three-stage Clos networks. It is hoped that the simpler proof will lead to new insights into the problem of constructing rearrangeable networks. ## II. MULTISTAGE REARRANGEABLE NETWORKS We show a way to construct $\nu \in B(n_1, n_2, \dots n_{t+1})$ from $\nu' \in B(n_2, n_3, \dots n_{t+1})$ such that if ν' is rearrangeable then ν is rearrangeable. We construct a three-stage network by having the first stage and the third stage each consist of N/n_1 copies of $n_1 \times n_1$ square switches, $A_1 \cdots A_{N/n_1}$, $C_1 \cdots C_{N/n_1}$ say, where the second stage consists of n_1 copies of ν' , say, B_1 , $\cdots B_{n_1}$. Each switch in the first stage and the third stage is then linked to every B_i in the second stage. (It does not matter which inlet or outlet of B_i is linked to which A_i or which C_i .) This gives a network $\nu \in B(n_1, n_2, \dots n_{t+1})$. Now if ν' is also constructed in this manner and so on down to the three-stage network, we then call ν a Beneš network. That a Beneš network is rearrangeable will follow from a multistage version of the Slepian-Duguid Theorem on three-stage Clos networks. To be complete, we state this multistage version and give a proof. Theorem 1: Let $\nu \in B(n_1, n_2, \dots, n_{t+1})$ be a Beneš network. Then ν is rearrangeable. **Proof:** For t = 0, we have a special case of a $n_1 \times n_1$ square switch which is clearly rearrangeable and no construction is needed. Supposing that Theorem 1 is true for $t' = t - 1 \ge 0$, we prove Theorem 1 for t' = t. A maximal assignment between each inlet terminal and each outlet terminal is a permutation φ of the set of numbers $\{i:i=1,2,\cdots N\}$ where $N=\prod_{j=1}^{t+1}n_j$. (Following Beneš, we need only consider maximal assignments.) A given maximal assignment can also be viewed as a set of defining relationships between each switch in the first stage and each switch in the third stage (treating the set of ν' as the second stage). Set $N_2=n_2\cdots n_3\cdots n_{t+1}$, note that $N=n_1N_2$. Let A_i be the *i*th switch in the first stage, $A=\{A_i:i=1,2,\cdots N_2\}$ and C_i be the *j*th switch in the third stage, $C=\{C_i:j=1,2,\cdots N_2\}$. Consider a particular first stage switch A_i . Suppose the n_1 inlet terminals of A_i are assigned by φ to third-stage outlet terminals, y_{i1} , y_{i2} , \cdots y_{in} . Denote by $Y_{ik}(Y_{ik} \in C)$ the third-stage switch that contains y_{ik} , $k = 1, 2, \dots, n_1$, and let $S_i = \{Y_{ik} : k = 1, 2, \dots, n_1\}$. Since $\bigcup_{i=1}^z S_i$ has a total of $x \cdot n_1$ elements and since each distinct element has only n_1 repetitions, there are at least x distinct elements in $\bigcup_{i=1}^z S_i$ for each $x = 1, 2, \dots, N_2$. Hence the condition of P. Hall's Theorem² on distinct representation of subsets is satisfied and there exists a set $Z = \{Z_i : i = 1, 2, \dots, N_2\}$ such that $Z_i \in S_i$ and Z = C. Then x_i , $i = 1, \dots, N_2$ can be chosen such that $x_i \in A_i$, $\varphi x_i \in Z_i$. Now we may choose to route the n_1 calls $x_i \to \varphi x_i$ through the first second-stage switch B_1 , which by induction hypothesis is rearrangeable. The problem is then reduced to that of a maximal assignment in a network of type $B(n_1 - 1, n_2, \dots, n_{t+1})$. By repeatedly applying the same argument, we obtain subassignments on each B_k . ## III. CYCLIC BENEŠ NETWORKS Theorem 2: Every cyclic Beneš network is a Beneš network, hence is rearrangeable. *Proof:* A single stage cyclic Beneš network is a $N \times N$ square matrix, which is a Beneš network. Suppose Theorem 2 is true for (2t-1) stage network where $t \ge 1$. We prove a (2t+1) stage cyclic Beneš network is a Beneš network. Let $\nu = \zeta_1 \varphi_1 \zeta_2 \cdots \varphi_{2t} \zeta_{2t+1}$ ε $B(n_1, n_2, \dots, n_{t+1})$ be a cyclic Beneš network. We shall show that the complex $p = \zeta_2 \varphi_2 \zeta_3 \cdots \varphi_{2t-1} \zeta_{2t}$ can be decomposed into n_1 copies of ν' where ν' ε $B(n_2, n_3 \cdots n_{t+1})$ is also a cyclic Beneš network. Furthermore φ_1 and φ_{2t} are such that each switch in ζ_1 and ζ_{2t+1} is linked to each ν' as is required by the definition of a Beneš network. By our inductive hypothesis, ν' is a Beneš network. This is enough to prove that ν is a Beneš network. Let the notation $\{A/\zeta_i(\sigma)\}$ denote a set of switches $A \in \zeta_i$ in the network σ . Similarly, let $\{B/\zeta_{i+1}(\sigma)\}$ denote a set of switches $B \in \zeta_{i+1}$ in σ . We define a relation R on the two sets A and B and write $$\{A/\zeta_i(\sigma)\}R\{B/\zeta_{i+1}(\sigma)\}$$ if every switch of A is linked to every switch of B in the network σ . For the cyclic Beneš network $\nu = \xi_1 \varphi_1 \xi_2 \cdots \varphi_{2l} \xi_{2l+1}$, let the switches in each stage be ordered. Note that the φ_i , for $i = 1, 2, \dots, t$, in ν can be described by, $${x \pmod{f_i}/\zeta_i(\nu)}R{n_i(x-1)+l_i:l_i=1,2,\cdots,n_i/\zeta_{i+1}(\nu)}$$ for $$x = 1, 2, \cdots f_i$$ where $f_i = N/n_i n_{i+1}$, and $$\varphi_i = \varphi_{2i+1-i}$$ for $i = t+1, \cdots 2t$. Decompose the compex $P = \zeta_{2\varphi 2}\zeta_3 \cdots_{\varphi 2t-1}\zeta_{2t}$ into $\{\nu_1, \nu_2, \cdots \nu_{n_1}\}$ where ν_h , $h = 1, 2, \cdots n_1$, consists of those sets of switches: $\{h(\text{mod }n_1)/\zeta_2(\nu)\}$ $$\left\{ (h-1) \prod_{j=2}^{k-1} n_j + m_k \cdot m_k = 1, 2, \cdots \prod_{j=2}^{k-1} n_j / \zeta_k(\nu) \right\}$$ for $k = 3, 4, \cdots 2t - 1$ and $$\{h(\text{mod }n_1)/\zeta_{2t}(\nu)\}.$$ Then clearly $\nu_h \in B(n_2, n_3 \cdots n_{t+1}), h = 1, 2, \cdots n_1$. In each ν_h , let the switches in each stage be ordered as is consistent with their orderings in ν . Suppose s_i is a switch $\varepsilon \zeta_i(\nu_h)$ and g'_i its coordinate in ν_h (i.e., s_i is the g'_i th switch in $\zeta_i(\nu_h)$). Then $s_i \varepsilon \zeta_i(\nu)$ and has the coordinate g_i in ν . If we write g'_i uniquely as $$g_i' = C \prod_{j=2}^{i-1} n_j + d_i' \quad \text{for } C \ge 0, \quad 1 \ge d_i' \ge \prod_{j=2}^{i-1} n_j \quad (1)$$ $$\left(\text{using the convention } \prod_{i=2}^{i-1} n_i = 1 \quad \text{if } i = 2 \right)$$ then g_i can be uniquely written as $$g_i = C \prod_{i=1}^{i-1} n_i + d_i' + (h-1) \prod_{i=2}^{i-1} n_i.$$ (2) Vice versa, if $s_i \in \zeta_i(\nu)$, $i \neq 1$, 2t + 1, has coordinate g_i as expressed in equation (2), then s_i is also a switch in $\zeta_i(\nu_h)$ with coordinate g_i' as expressed in equation (1). Next we show that ν_h is a cyclic Beneš network, i.e., let $\nu_h = \zeta_2' \varphi_2' \zeta_3' \cdots \varphi_{2t-1}' \zeta_{2t}'$, then φ_i , $i = 2, 3 \cdots t$ can be described by $$\{x' \pmod{f_i'}/\zeta_i'(\nu_h)\} R\{n_i(x'-1) + l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}'(\nu_h)\}$$ (3) for $$x' = 1, 2, \cdots f'$$ where $$f' = N'/n_i n_{i+1}$$ and $N' = N/n_1$, and $$\varphi_k = \varphi_{2t+1-k}$$ for $k = t + 1, \cdots 2t - 1$. (Note that in equation (3), the two sets of switches are written in coordinates g' of ν_h .) From equations (1) and (2), $$g_i = n_1 g_i' - (n_1 - 1)d_i' + (h - 1) \prod_{i=2}^{i-1} n_i$$ (4) Let $s_i \in \zeta'_i(\nu_h)$ be a switch having coordinate $g'_i \equiv x' \pmod{f'_i}$. Then we have the unique expression $$q'_i = q \cdot f'_i + x' \quad \text{for some} \quad q \ge 0.$$ (5) Since $\prod_{i=1}^{i-1} n_i$ divides f'_i , from equations (1) and (5), there exists a unique u, $0 \le u \le \prod_{i=i+1}^{i+1} n_i$, such that $$x' = u \prod_{i=2}^{i-1} n_i + d_i'. (6)$$ From equation (4), the corresponding g_i is $$g_{i} = n_{1}(qf'_{i} + x') - (n_{1} - 1)d'_{i} + (h - 1) \prod_{j=2}^{i-1} n_{j}$$ $$= qn_{1}f'_{i} + n_{1}x' - (n_{1} - 1)d'_{i} + (h - 1) \prod_{j=2}^{i-1} n_{j}$$ $$= qf_{i} + x$$ (7) where $f_i = n_1 f'_i$ and $$x = n_1 x' - (n_1 - 1)d_i' + (h - 1) \prod_{i=2}^{i-1} n_i$$ $$= n_1 \left(u \cdot \prod_{i=2}^{i-1} n_i + d_i' \right) - (n_1 - 1)d_i' + (h - 1) \prod_{i=2}^{i-1} n_i , \quad \text{by (5)}$$ $$= u \cdot \prod_{i=1}^{i-1} n_i + d_i' + (h - 1) \prod_{i=2}^{i-1} n_i . \quad (8)$$ It can be easily verified that $0 \le x < f_i$. Equation (7) says that a switch $s_i \in \zeta_i(\nu_h)$ which has coordinate $g_i' \equiv x_i' \pmod{f_i}$ has coordinate $g \equiv x \pmod{f_i}$ in ν . Next we show that if the two sets $\{G'_{i+1}/\zeta'_{i+1}(\nu_h)\}\$ and $\{G_{i+1}/\zeta_{i+1}(\nu)\}\$ are such that $$\{x' \pmod{f_i'}/\zeta_i'(\nu_h)\} R\{G_{i+1}'/\zeta_{i+1}'(\nu_h)\}$$ (9) and $$\{x \pmod{f_i}/\zeta_i(\nu)\} R\{G_{i+1}/\zeta_{i+1}(\nu)\}$$ (10) hold, then G'_{i+1} and G_{i+1} are coordinates of the same set of switches. Equation (9) implies $$\begin{aligned} \{G'_{i+1}/\zeta'_{i+1}(\nu_h)\} \\ &= \{n_i(x'-1) + l_i : l_i = 1, 2, \cdots n_i/\zeta'_{i+1}(\nu_h)\}, \\ &= \left\{n_i\left(u \cdot \prod_{i=2}^{i-1} n_i + d'_i - 1\right) + l_i : l_i = 1, 2, \cdots n_i/\zeta'_{i+1}(\nu_h)\right\}, \\ &= \left\{u \prod_{i=2}^{i} n_i + (d'_i - 1)n_i + l_i : l_i = 1, 2, \cdots n_i/\zeta'_{i+1}(\nu_h)\right\}. \end{aligned}$$ Equation (10) implies $$\begin{aligned} \{G_{i+1}/\zeta_{i+1}(\nu)\} &= \{n_i(x-1) + l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}(\nu)\}, \\ &= \left\{n_i\left(u \cdot \prod_{i=1}^{i-1} n_i + d'_i + (h-1) \prod_{i=2}^{i-1} n_i - 1\right) \right. \\ &+ l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}(\nu)\right\}, \\ &= \left\{u \prod_{i=1}^{i} n_i + (d'_i - 1)n_i + (h-1) \prod_{i=2}^{i} n_i \right. \\ &+ l_i : l_i = 1, 2, \cdots n_i/\zeta_{i+1}(\nu)\right\}. \end{aligned}$$ But from equation (2), if $g'_i = u \prod_{i=2}^i n_i + (d'_i - 1)n_i + l_i$, $1 \le l_i \le n_i$, then its corresponding g_i is $$g_i = u \cdot \prod_{j=1}^i n_j + (d'-1)n_i + l_i + (h-1) \prod_{j=2}^i n_j$$ Therefore $\{G'_{i+1}/\zeta'_{i+1}(\nu_h)\}$ and $\{G_{i+1}/\zeta_{i+1}(\nu)\}$ are clearly coordinates of the same set of switches. That each switch in $\zeta_1(\nu)$ is linked to each ν'_h by φ_1 is a direct result of $${x \pmod{f_1}/\zeta_1(\nu)}R{n_1(x-1)+l_1:l_1=1, 2, \cdots n_1/\zeta_2(\nu)}$$ since $|\{h(\text{mod } f_1)\} \cap \{n_1(x-1) + l_1 : l_1 = 1, 2, \cdots n_1\}| = 1$ for each $h = 1, 2, \cdots n_1$. Since $\nu = \zeta_1 \varphi_1 \zeta_2 \cdots \varphi_{2t} \zeta_{2t+1}$ is symmetric with respect to its middle stage, and $\nu_k \in B(n_2, n_3, \dots, n_{t+1})$, clearly $\varphi'_k = \varphi'_{2t+1-k}$ for k = t+1, \cdots 2t - 1. And finally, again by an argument of symmetry, each switch in ζ_{2i+1} is linked to each ν'_h by φ_{2i} . #### REFERENCES Beneš, V. E., Mathematical Theory of Connecting Networks and Telephone Traffic, Chapter 3, New York: Academic Press, 1965. Hall, P., "On Representative of Subsets," J. London Math. Soc., 10 (1935), pp. 26-30.