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This paper describes a new method for measuring the duration of mode-
locked picosecond laser pulses. It s similar to the Two Photon Fluorescence
and Second Harmonic Generation methods in that it measures not the pulse
duration directly but rather an autocorrelaiion function of the signal. It
has the advantage in that it can be used for very low-power repetitive light
signals.

I. INTRODUCTION

Two methods for determining the duration of picosecond pulses
have been reported. The earlier method, which utilizes second har-
moniec generation (SHG) in nonlinear crystals, was reported independ-
ently and almost simultaneously by M. Maier, W. Kaiser and J. A.
Giordmaine;* J. A. Armstrong;* and H. P. Weber.? The second method,
which utilizes the two-photon fluorescence (TPF) in certain dyes, was
first reported by J. A. Giordmaine* and his co-workers. Measurements
of pulse durations based on these methods have been reported by num-
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erous authors. Extensive references to these papers are included in a
review article by A.J. DeMaria, W. H. Glenn, Jr., M. J. Brienza and
M. E. Mack.?

Neither of these methods measures pulse duration directly. Both,
in faet, measure the autocorrelation function G'(r) of the intensity
I(t), namely

G(r) = [ : 101G + 1) dt.

A careful measurement of the contrast ratio between (7 (r) at the peak
of the pulsc and G () hetween pulses is necessary in order to deter-
mine whether or not the measured values represent the duration of a
pure AM pulse. (This was first pointed out for TPF by H. P. Weber®
and independently by J. R. Klauder, M. A. Duguay, J. A. Giordmaine
and 8. L. Shapiro.)” If the contrast ratio is not the correct value for
pure AM pulses, little concerning the signal waveform can be reliably
inferred from a knowledge of G (7).

The beat frequency detection (BFD) method proposed in this pa-
per measures o different quantity, namely

Hy(r) = iFu(r) + 1Fu(—7)

where

o

T/2

= f () &t + 1) exp (—j?‘rr u k) di
T J 7 T

and &(f) is the electric field of the optical signal, 1/T is the pulse repeti-
tion rate and %/T is the frequency of the harmonic chosen for analysis.
It too suffers from the fact that if the correct “contrast ratio”* is not
observed, the result is ambiguous.

If the proper ‘“‘contrast ratio” is observed, then &(¢) is real (i.e., there
is no angle modulation of the signal) and in cases of practical interest
the pulse duration is short compared with the period T. Thus, for
small k&, kt/T << 1 over the region where &(f) contributes significantly
to the integral and

Fk(?-) =

2

1 T/2
F(=7 =P =7 [ O+ D d

Thus H,(r) is essentially the autocorrelation function of &(¢) when
there is no angle modulation. It is therefore as good a measure of pulse
duration as is the autocorrelation function of I(¢).

* This term will be defined in Section IIL.
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Under certain conditions there is reason to believe that the pulses are
“chirped.” That is, they have the form

&(t) = 8o(t) exp [i(wdt + at’)]

where &(f) is a real, slowly varying envelope function. The measured
quantity H,(r) has an interesting and distinctive behavior in this case.
This is considered in Section IIL. It should be possible in some cases to
determine by the BFD method how much, if any, “chirp” is present.
Neither TPF nor SHG is capable of providing this information.

II. DESCRIPTION AND ANALYSIS OF THE BEAT-FREQUENCY DETECTION
METHOD OF PULSE-DURATION MEASUREMENT

The output &(f) of a laser is a periodic function which can be written
in the form

&) = 2 A, cos {(nw + w)t + ¢.} (1
where 27/w = T is the period, w, is the center frequency of the spectrum
and A, is the amplitude of the nth line in the spectrum. If the phases ¢,
are related by

¢, = nd (2)

where @ is any constant, the signal &(f) is a sequence of pulses with no
angle modulation and the pulse envelope has the minimum possible
duration for the set {A,}. Such a signal is called “mode locked”. If
equation (2) is not satisfied, angle modulation (and a wider pulse)
oceurs. In general, if ¢, is a set of random numbers a ‘“noiselike” (but
periodic) signal is obtained. The pulse duration of the signal &(f) is
therefore dependent on {¢,}.

Consider the circuit shown in Fig. 1. The laser output &(t) is divided
into equal parts by the 3 dB hybrid mirror (beam splitter) and the two
parts are recombined in the same mirror after one path has suffered a
delay r relative to the other. Beam transforming lenses may be required
in order to assure alignment of the phase fronts of the two interfering
beams. Mirror M, is mounted on a track so that the delay in one arm of
the device can be varied over a range corresponding to one period of the
laser signal. Mirror M, is mounted on a piezoelectric acoustic modulator
so that its position can be varied periodically over a distance of a few
microns for reasons which will be explained below. The output of the

hybrid is therefore
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Fig. 1—Diagram of the BFD apparatus.

{&() + &t — )}

o0

= 2. A,[ecos {(w 4 wo)t + ¢} + cos {(w + wo) (! — 7) + ¢a}]. 3)

n=—e0

If this signal is now applied to a product demodulator (photodetector),
one obtains as output:

V() = [&() + & — DI

= > > B cos {kwt + 6

-[cos '%- -+ cos {(n + 5)“’ + wn}-r:l (4)

B!‘l‘) = An+xAn 1 e:” = ¢n+- - ¢n

where



MEASUREMENT OF PICOSECOND PULSES 5

and terms in 2wyt have been ignored as has a time shift of amount /2.
If this signal is now passed through a bandpass filter which is cen-
tered at ke and is sufficiently narrow that only the x = k term in the
sum is passed, one obtains

V() = Z B cos {kwt + 6}

. |:(-os IfL)T + cos {(n + ;i;)w + wu}r] . (5)

It should be noted that since 8/ = 0 for all n, V,(t) is independent
of {¢.] and independent of .

Vo) = 3 BO[ + cos {(w + wo)r}]. ©)

One can readily understand this result by realizing that the V()
term in general results from the beats between all possible pairs of
lines separated by an amount ke. In particular V(t) results from
“heats” between each spectral line and itself. Since no beats between
different lines contribute to Vo (), no relative phases between lines
influence the result.

Returning to the general case, square law detection of Vi (t) gives

Ui(7) 2 | V() iz
= > > B¥BY cos (6" — 6)

.|:0052 %—!— 1 cos(n — m)wr + % cos {(n + m + K)o + 2w} 7

+ cos k% [cos {(n + g)“’ + mu}r
+ cos {(m + g)‘” + wu}r:l:l . (7

We observe that the entire w, dependence is contained in the last three
terms. If one of the mirrors in the interferometer is scanned through
an optical wavelength, the contribution of these terms is cancelled out
(since over an optical wavelength their average value is zero). This
is acecomplished by mounting one of the mirrors on a piezoelectric
transducer and vibrating it. The resultant signal (after passing through
a suitable low-pass filter) is given by

U0 = > 2. B¥BY cos {6 — 657}

) [0052 &C;—T + 1 cos(n — m)wr] . (8)
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We pause to cvaluate equation (8) for two extreme cases. Consider
the mode-locked case ¢, = n® which implies 6, — 6\ = 0. This gives

U)o = co8 L[ B + 1| T B, exp (nor) [ )
locked n

In this equation and in the remainder of this paper the superseript (k)
on B, and 6, is to be understood. The mode-locked case represents one
extreme in the sense that it provides the shortest possible pulse consistent
with a particular set of amplitudes {4,}. The “random case”, ie.,
¢, a random variable uniformly distributed on [—m, 7], represents the
opposite extreme—the expectation value of the signal power is constant
in time. The expectation value of U,(r) for this case can be obtained by
observing that the expectation value of cos {6, — 0,} when the |¢,}
are uniformly distributed on [0, 27) is given by

(cos (6, — 8,)) =1 if k=0 (foralln, m),
=1 if n=m (forallk),
= 0 otherwise.

This gives:

(T(n) = [c o8’ (’““’T) ] S B,  k#0. (10)

Iiquations (9) and (10) are illustrated in Fig. 2.
We now return to a consideration of the general case. Equation (8)
can be written in the form

Uk('r) - o ]i‘w‘r Z (B
L1 1] & : ’
4 E ®, exp (fnwr) ’ 1 ; ®, exp (—jner) | (11)
where

®, = B, exp (j6.).
Similarly set

@, = A, exp ().
Then

B = QuirF .
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Fig. 2—Expected experimental results for the four cases discussed in the text.

Consider the expression:

| n=-=w0

where

Define

Then

Z B C\p(_w?n) .-

a

Z @ @F exp (] T)

I n=—c3

T/2
= 1%fwa E*¥(—0OE(x — 1) exp (j?wk _) dit

® 2
I = E @, exp (j —?ﬂn)

n=—o

I T/2 t 2
Fu@) = |75 f_ L EHOEC + ) exp (— i2uk T) dt ‘

Uu(r) = cos® (’“‘”)r‘(c)) + Fu(r) + F(—7).

2

(13)

(14)

(15)
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From equation (15) we can draw an interesting comparison be-
tween the BFD method and the TPF and SHG methods. It is clear
from equation (14) that Fy(0) is the power spectrum of the intensity
and therefore the autocorrelation function of the intensity is simply

o

G(r) = k_Z F(0) exp (—qurk fl_:)

Therefore the quantities measured by all three methods depend only
on the quantities Fy(r). The results of the BFD method depend on
the values for a single k& and all =; the results for TPF and SHG on
the values for » = 0 and all k. From equations (12) and (14), we have

2

Fu(r) = | X ®,exp (j21r % n)

n=-—o0

(16)

while from equation (1)

() =

] 2
> @, exp (j21rn %) ( .
Thus, Fi(r) and I(¢) are formally equivalent with the transformations

B, 4,,
BnH¢nl
T

Comparing equation (13) with (1) shows that

&(t) = Re [E(t) exp (jwut)}.
That is, E(t) is the (complex) signal from the laser with the carrier
frequency omitted.

For the mode-locked case, the pulses are very short compared with
the repetition rate 1/7. Thus for at least the first few k = 1, 2, -- - we
can write (2xkt) /T << 1 for those values of ¢ for which E(?) is significantly
different from zero. This gives (since from equation (16) F(r) is even
when the B, are all real):

1 T/2 2

T E*E(t+ 7 dt | -
-T/2

Thus the first term in equation (15) is just a raised cosine with period
T'/k, but the sum of the second and third terms is the square of the
autocorrelation function of E(t). This sum provides a good measure
of the pulse duration when the signal is mode locked.

Since this technique, like TPF and SHG, possesses some ambiguity

Fi(—1) = Fi(r) =
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if the signal is not mode locked, it is important to be able to distin-
guish mode-locked behavior from non-mode-locked behavior. In order
to do this, consider the quantity

o0

chn

n=—cg

U.0) =

o0

2
2. B,

n=—co

It

(SR DSI

mode-locked case,

[J\]

= = > B. random-phase case.

n==—o k=0
Fork = 0, 6, = 0 and ®, = B, is real for a.ny set {¢,}. Thus

ZB

n=—co

for all cases. By considering the & = 0 (de) term the quantity

] 2
2 B,

n=—c0

o

Uu 0 =5

can be measured experimentally. Then if

U,0) # Uy(0) k=1,2,3--
the signal is not mode locked.

III. SPECIAL CASES

It is instructive to consider how much U,(0) differs from U,(0) for
various cases. To this end we consider three special situations, namely,
a pure FM signal, a model of partial mode locking, and a ‘“‘chirped”
pulse. Consider first the sinusoidally modulated pure FM signal:

&(t) = cos {wof + ¢ sin wt}

= i Jo(@) cos {(wo + nw)t}.

n=—c3

This is just a special case of equation (1) with
A, = J.(¢), ¢, =0 alln.

The resulting expression for U,(r) is therefore

U.(7) = cos’ ;EE |: 2 J (¢)Jn+k(¢):|

n=—c0

@

> Ju@)niile) exp (mr)

n=—0o0

4+ 1
*3
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This can be reduced, by means of a well-known Bessel function
1dentity to

0) = 173265 T).

Note that U,(0) = 1 whereas Up(0) = 0,k = 1,2, 3, --- . Also, the
largest value that U,(r) k¥ = 1, 2, --- can assume is more than 9 dB

below U,(0) for the FM signal.

The simplest model for partial mode locking is to let the phase ¢, of
the nth spectral line of the laser be uniformly distributed on the interval
[—a, a] = [—em, ex]. Both a Monte Carlo calculation and an analytical
calculation were made. The analytical calculation is described below.
The results of both caleulations are presented in Fig,. 3.

Consider equation (8). In order to determine the expectation value
(ensemble average) (U(r)) we must compute the values of {cos (8., — 6,)).
Three cases arise (for k& # 0):

CaseI:n =m
{cos (8, — 6,)) = 1.
Case II: n = m =k
{cos (6, — 8,)) = (cos (Dnrzx — 2¢n+z + ¢.)) = a.
Casge III: All subscripts distinct
(cos (6, — 0,)) = (S (Puss — ®n + Pmsr — G0)) = b.
Then

Ur) = b ,,2 Zm: B,,B,,,[cos2 (k&;) + 3 cos(n — m)wr}

nEm
n#mzk

+ |:COS (ffm?’) :| Z B;
+ 2a Z: B B,,H[cos (kgr) + % cos (kwr)]-
This can be rewritten in the form
() = G, cos® (i";’)

+ G2 + 3b[(X] B, cosnwr)® + (25 B, sin nwr)’]
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Fig. 3(a)—U(r)) and (P(¢)) for ideal mode locking. (b)—(T(7)), (P(¢)) and
three representative curves from the Monte Carlo calculation of U(r) and P(t)

for e = 05. (¢)—(U(7)), (P(t)) and three representative curves from the Monte
Carlo ealculation of U(7) and P(t) for e = 0.7. (d)—(U(7)), (P(¢)) and three
representative curves from the Monte Carlo calculation of U(r) and P(t) for

e=1.
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where

G =b2B) + (1 -1 XBi+ 4@ —b) X B.B,.:,
11— b) ;Bi — (@ —b) O B.Bu.x .

We now turn to the problem of evaluating a and b. It can be shown*
that

G,

(cos () = H ilg—e-‘

i=1

where z = .7, 1.,
t; is uniformly distributed on [—e; , €],
{t:] is a set of statistically independent random variables.

From this, one immediately obtains:

- (52 - (5 s

) - (@),

[+

In particular
(U0) = G+ G+ 3b | 2 B. |
=§b| 2B "+ 31 —b) X Bi+3(a— b) 2 B.Buwr. (17)

Let
R A0
R = (0G| X B.) = 708
(1 _ b) ZB'L: ZB“BH+1=
=b+-—(—-¥§:)~;—-+2(a—b)m- (18)

Note that for « = 0 (mode-locked case) Ry = 1 while for « = =
(random-phase case)

> B?

Ri=-a—a=np.
(X B) P

* This result, even though it is not new, is derived in the Appendix.
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R. can be thought of as the “contrast ratio” in analogy with the TPF
case. Consideration of the above results shows that B, &~ 1 for a« < 0.5
rad. If we assume p. = 0.1 (a reasonable value for about 10 spectral
lines contributing to the signal) and neglect the third term in equation
(18) [Note that this term is always negative—therefore its omission
makes the result somewhat pessimistic] we obtain the following results

a(rad) R,
0 1
0.5 0.86
1 0.55
1.5 0.28
2 0.14
2.5 0.10

Thus the “degradation” in “contrast ratio” becomes quite pronounced
by the time « exceeds one radian. In this model the expectation value
of the actual pulse power is given by

)

=2 o0 .2 o
P() = %{(1 —S‘—”#) > Ai+’i‘%ﬂ{ 3 A, exp (jnwl)
o n=—o 24 n=—o0
Thus as & departs from zero the expectation value of the power separates
into two terms, one a constant term proportional to > A?, the other a
replica of the mode locked pulse diminished in amplitude by the factor
sin® @/a’. At @ = 1 radian (where R, is beginning to fall off as sin* a/a’)

the pulse term in (P(2)) is down only 1.5 dB and falling half as rapidly.
The expectation values of U,(r) and P(t) are plotted in Fig. 3 for

the gaussian case
2
A, = exp [—(ﬂ) ]
fo

where f is the pulse repetition frequency and f, is related to the band-
width of the pulse. For this figure a value of 0.1 was used for the
quantity f/fo. The results of a Monte Carlo type calculation are also
illustrated in this figure.

Finally we consider the case of “chirped” gaussian pulses, ie., a
repetitive train of pulses of the form

50 = oo [ -3 () ] ew o).

T




14 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1071

This can be represented by the series

E(t) = 3 A, exp [j(nwt + vn")]
where A, = exp[—3(nw/0)?]. The following result is derived for
arbitrary 4,, however. Here ¢, = yn® and 8, = y(n* + 2nk + k* — n?)
= yk(2n + k).
Consider

i ®, exp (3’ M)

f=—o0

2

wsk €Xp [k(2n + k)] exp ( 2““)

n=—og

-] . 2 2
> AuA,.exp (3 *%@) I

n=—00 |

where x = [¢ + (T /=) ky].

Comparing this with equation (12), we see that this “chirping” results
in a decrease in the amplitude of the raised cosine term and a splitting
in the r term in equation (15). In fact

0u(7) = cos® (MT)FE(T]W) + }F,‘(Tk"’ + ) + %Fk(f _ zjﬂr_?)

where in this result Fy(z) is evaluated using the unchirped pulse since
the phase term was handled explicitly.

This result is readily understood when one recalls that F(r) is
formally equivalent to I(¢) with this substitution

A, B,,

Gn > 0, .

When A, is gaussian, B, is also, but when ¢, is quadratic in n, 8, is
linear. A phase shift which is linear in frequency corresponds to a
shift of the origin in the “time” domain. This result is illustrated
in Fig. 4.

The curve for y = 0.05 corresponds to the case in which the pulse
duration is ten times the reciprocal bandwidth of the signal. This is
comparable to the observed values of pulse duration and bandwidth
for Nd-Glass lasers. Thus this technique might provide a useful tool
for investigating the amount of chirp on pulses from these lasers.

It is of interest to consider the second-order statistics of U(7) in order
to estimate the amount of fluctuation to be expected in the random
non-mode-locked case. In order to derive the second-order statistics,
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v =0 (NO CHIRP)

7T =04
Fig. 4—U(s) for a gaussian pulse with various amounts of chirp.

it is necessary to compute [U/,(r)]* and to observe that

(cos {(8, — 0n) + (B — 02)}) =1 n=m, o' =m/,
=1 n=m m=mn
= 0 otherwise.

(cos {(8, — 8,) — (6. — 0.)}) =1 n=m, n' =m,
=1 n=n" m=m,
= (0 otherwise.

After some tedious manipulation one obtains the variance

=2 [cos2 (k%) + % cos (n — m)wr]B.’.B?.. .

n#m
This result is plotted in Fig. 5 for the signal illustrated in Fig. 3a.
It is also instructive to consider a somewhat different experiment.
If we repeat the above experiment for the case where either the phase
fronts of the signals do not coincide or the beams do not overlap at
the photodetector we obtain, instead of equation (4),

Viy=|ed "+ |&t—n

Il

> > B, cos {kot + 6.} cosk-%
n k -
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Fig. 5—Fractional rms deviation for the two statistical cases discussed in the text.

and

Vi) = 3 B, cos {ket + 6,) cos’%

which upon square law detection becomes

Uk(f) = 2 l Vfc’) 12 = cos’ I—“—;I Z ZB"B'" cos (8, — 3,,.).

This gives the following result.
Uniformly distributed random phase:

cos’ (&;_r) > B

o° = cos' (MTT)[E’ >’ B.B.).

-

(Ux(r))

Mode-locked case ¢, = nd)

Uy(r) = cos’ (’“"7)(2 B.Y.

This ecase is identical in form with the Hanbury Brown and Twiss®
experiment.

The results for the mode-locked case and the random-phase case are
summarized in Table I and illustrated in Fig. 2.
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1V. EXPERIMENTAL VERIFICATION OF THE METHOD

A scaled experiment was performed using a He-Ne laser with a ¢/(2¢)
frequency of 100 MHz. The pulse duration was measured by the BFD
technique and compared with the actual pulse shape as observed by
means of a high-speed photodiode and a sampling oscilloscope. Figure 6
shows the results of the experiment and Fig. 7 shows the oscilloscope
display of the pulse. The pulse duration of 0.7 ns as determined from
the BFD experiment is in excellent agreement with the value measured
with the oscilloscope.

V. CONCLUSIONS

The experiment proposed here should be capable of distinguishing
between mode-locked and non-mode-locked behavior of the laser. If
mode-locked behavior is observed, a measure of the pulse width is
available from the shape of the de voltage U(r) versus 7 curve,

The experiment is relatively simple to instrument and should be
readily applicable to any CW laser whose pulse repetition rate is
sufficiently low to allow construction of narrowband “IF” circuits at
that frequency.

100

0.8Ns

B (] o
(=] o o

DETECTED CURRENT IN ARBITRARY UNITS
n
o

1 | ] | ] 1 1
-60 -40 -20 0 20 40 60
28£ IN CENTIMETERS

Fig. 6—Experimental results for a mode-locked He-Ne laser.
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——)lo.e ns je—

Fig. 7—Mode-locked pulse from He-Ne laser.
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[ig. &—Contrast ratio and pulse degradation as functions of epsilon.
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APPENDIX

A general form for the expectation values of cos(z) such as the
ones required for the calculation in the text is derived below. In par-
ticular, it is shown by induction that

(oos (@) | ny = [T 2L (19)

where: z = Z‘,-‘_l i,

each ¢; is uniformly distributed on an interval [—e;, ], the density
function

fi(t) = 1/(2e), te[—e, 5"]
= 0 otherwise

all of the t;s are statistically independent.

(cos (z) | n) is the expectation value of cos ().

We calculate the n = 1 case:

(cos (z) | 1) = é fﬂ cos (z) dx = ELIDE@. (20)

We now assume the form (19) and show that it can be extended to the
n + 1 case:

(cos (z) |n + 1) = f cos (2)F,1(z) dzx
where F,; (x) is the distribution function of z for n + 1 terms. But

Fn-!-l(x) = F.,,(Z) f‘l‘H-l(x)v

1 Ent1

F.(z — 7) dr.

26M-l = €n+1
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Thus

(cos () | n + 1)

1 - -] En+1
=5 f_w cos () f-em F.lx — 7)drdx

1

2En+1

but the second term vanishes because F,(z), being generated by the

successive convolution of even functions, is even. The integral reduces
to

f fj" {cos () cos (1) + sin (z) sin (1)} F.(z) dz dr

o0

cos (2)F.(x) dx

(cos (z) |m + 1) = L[ cos (1) d'rf

€ns1 —Ent1 -

_ sin (e,.;) yysin (&)

€nsi1 i=1 €

which completes the proof.
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