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A class of nonlinear equations arising in transistor network analysis,
as well as in other areas, has the form

@)+ Dage —bi=0 i=1,2-,n M

i=1

or in matrix notation
F(x) + Ax — b = 0, 2)

where the nonlinearities f;(-) are continuously differentiable, strictly
monotone inereasing functions. Results by Willson' and Sandberg and
Willson®'? on nonlinear networks have included broad conditions for the
existence and uniqueness of a solution to equation (2). However, con-
vergent computational algorithms for finding the solution have been
given only for restricted subclasses of the class of equations that have
unique solutions."'**** These subclasses are characterized by a variety
of restrictions on the matrix 4 and on the type of nonlinearities. In this
brief we show that a single convergent algorithm exists for solving these
equations under conditions virtually as broad as the known existence
and uniqueness conditions. Peripherally, we obtain under these condi-
tions a coneeptually simple proof of the existence of a solution.

The approach is to use the old technique (probably due to Cauchy)
of converting a root-finding problem to a minimization problem. Let

r(x) = F(x) + 4x — b, (3)
and define the sealar valued “potential” function
Q) £ r’Br (4)

where B is an arbitrarily chosen symmetric positive definite matrix and
T denotes the transpose. Then Q(x) is positive unless z is a solution
of equation (2). Consequently, minimizing @(x) is equivalent to solving
equation (2) if in fact the nonlinear equation (2) has a solution.
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Since Q(x) is continuous, we may regard it as a continuous surface and
observe that if

Q(x) = = as |[[x[[— o (5)
the so-called “level sets”,

{x:Q(x <¢l,

are bounded for each number ¢ > 0 and there must exist a point x* where
Q(x) attains a global minimum. Under what conditions will this mini-
mum satisfy Q(x*) = 0 so that x* is a solution of equation (2)? From
equations (3) and (4) the gradient of @ is easily found to be

VQx) = 2(D, + A")Br (6)

where D, is the positive diagonal matrix whose ith diagonal element is
f4(x;) where the prime denotes differentiation. Since the gradient must
be zero at a minimum, either (z)

r(x*) = 0,
or (i7)
det {D, + A} =0 at x = x*.
If A is in the class of matrices P, characterized by the property®
det {D 4 A} = 0 for all diagonal matrices D > 0, 7"

it follows that condition (z) holds so that x* is a solution of equation (3)
for A in P, if condition (5) is satisfied. But Theorem 5 of Ref. 2 implies
that condition (5) is satisfied if A4 is in P, and the range of the non-
linearities f;(-) is the entire real line.* Uniqueness of the solution of
equation (2) is very simply shown in Ref. 2. Reference 3 shows that the
basic condition, A in P, , is satisfied for large classes of transistor net-
works.

The minimum of a continuously differentiable function with bounded
level sets can always be found by a gradient descent algorithm when the
gradient has a unique root.® No assumption regarding convexity or the
behavior of the Hessian matrix is necessary. Clearly, a sufficiently
small change in x in the negative gradient direction will always decrease
the potential Q(x) unless x is already at a minimum. A sequence of itera-
tions of this type, that is,

* Recently Sandberg® has shown that condition (5) holds without any require-
ments on the range of the nonlinearities if A is nonsingular as well as in Po.
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Xesr = Xe — 71 VQEL), (8)

monotonically reduces the potential @(x) and yields a bounded sequence
of points x, because the level sets are bounded. Convergence of the
algorithm (8) is assured if the step sizes can be made large enough so that
the potential Q(x,) approaches zero rather than a positive limit. This
can be achieved by making v, depend on the size of the gradient in such
a way that v, cannot approach zero unless the gradient is approaching
zero. Goldstein® gives the following procedure for selecting v, . Define
the normalized potential drop:

_Qx) — Qx — vy VOX)]
g(xl T) = v ” VQ(X) H:’ ’ Y > 0: (9)

a econtinuous funetion of ¥ which assumes all values between 1 and 0 as v
ranges between zero and some positive value. Then for any § with

0<d<i
choose v, so that
5§g(xk,'h-) =1-—-3 (10)

if g(x, ,v:) < 8; otherwise lety, = 1. Note that v, can be chosen by trial
and error computation in each iteration. For small 5 few trials are neces-
sary; but the resulting drop in potential in each iteration is smaller so
that more iterations are needed. With this method of choosing v, , con-
vergence of the algorithm (8) is assured for any starting point x, .

In summary, using the optimization approach and a result of Ref. 2
we have shown the existence of a solution to equation (2) and the
availability of a convergent algorithm to find the solution under the
following conditions.

(I) the nonlinearities f;(-) are continuously differentiable, strictly
monotone increasing, and map the whole real line onto itself, and

(II) the matrix A is in the class P, .

The original existence conditions given in Ref. 2 do not include the
“continuously differentiable” assumption but are otherwise identical to
conditions I and II above.
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