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The data rate of a multilevel digital FM system is optimized subject
to fired RF bandwidth, signal-to-noise ratio, and output error rate. The
possibility of optimizing such a system was first considered by J. R.
Pierce at Bell Telephone Laboratories. He made the observation that it
18 possible to send many levels slowly or fewer levels rapidly for an FM
wave of fired RF bandwidth and error rate, and that there must be a choice
of signaling rate and number of levels that optimize the datae rate. The
rigorous treatment of this problem s the subject of this paper. The mathe-
matical model we analyze uses frequency-shift keying at the transmitier
and ideal discrimination detection with an integrate-and-dump circuil as
the post-detection filter. Our results are exhibiled graphically showing the
various dependencies among the perlinent system paramelers.

I. INTRODUCTION

In this paper we optimize the information rate (subject to certain
constraints) of a multilevel digital FM system. This problem of
delivering the maximum information through an FM system has
recently been formulated by J. R. Pierce.! Specifically, he considered
how one should choose the baseband signaling rate and the number
of levels to get the most information through the channel, subject to
fixed bandwidth, fixed RF signal-to-noise ratio, and fixed output error
rate. This optimization has recently been carried out under the assump-
tion that the conventional FM receiver can be linearized.? Small-noise
linear FM theory is satisfactory when analyzing analog systems, but
has its well known pitfalls in digital applications.

The purpose of this paper is to reexamine this problem more rig-
orously, paying particular attention to the anomalies (clicks) which
can result from the nonlinear character of the receiver. In order to
do this we must choose a particular mathematical model for digital
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FM which is amenable to analysis. Such a model uses frequency-shift
keying (FSK) at the transmitter and ideal discrimination detection
with an integrate-and-dump circuit as the postdetection filter. The
noise at RF is assumed to possess gaussian statistics. Although realizable
FM systems do not exactly conform to this ideal mathematical model,
we feel that the results predicted with the use of this model are applic-
cable to real FM systems. In any case, the numerical results agree
well with those derived from the linear theory. According to our present
calculations, this is due to the circumstance that the optimum number
of levels leads to small enough deviations so that the contribution
of the clicks to the error rate can be neglected.

II. ANALYSIS

Consider an n-level FSK communication system with a sample rate
N = 1/T, square-wave modulation, and a level separation (in frequency)
Af. Such a system would yield a data rate B given by

R = N log, n = 1.443 N In n bits/s, (1)
and, according to Carson’s rule, occupy a bandwidth*
B =N + (n — 1)Af. (2)

The FM signal plus gaussian noise enters a receiver consisting of an
ideal RF filter (bandwidth B), limiter, discriminator, integrator (in-
tegration time 7', and sampler (sampling rate N). The sampler out-
puts are simply the successive values of the instantaneous phase of
the modulated wave following each (rectangular) modulation pulse,
and would be separated by multiples of

Ap = 2 ?—\}; radians (3)
in the absence of noise.

The simplicity of the present system (that is, the finite-time integrator
post-detection filter) has permitted a fairly rigorous determination of
the probability of error for high RF signal-to-noise ratio.* It is shown
in Ref. 4 that the parameter A¢ given in equation (3) plays a very
important role in the theory of error rates for digital FM. In particular,
it is known that if A¢ < = (or equivalently, Af/N < %), then it is
the smooth noise at the baseband output which determines the error

* Comparison with the exact FSK spectra for n = 2, 4, 8 suggests that this
approximation is valid for present purposes.?
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rate; while if A¢ > = (Af/N > 3), then the clicks dominate, which
is the basic reason for the probability of error taking on different forms
in these two cases.

The optimum systems considered here are shown to correspond to
the Af/N < % case, for which clicks are unimportant. Therefore we
take the probability of error* P as given by twice equation (17a) of
Ref. 4, with ¢ — A¢/2 = = Af/N;

)
Af 1

Iéi)
b 1 1 cot(zN exp[ffipsinz(
)
COs 1rN
p>1, <3, )

and subsequently verify that Af/N is indeed less than § for the re-
sulting optimum systems. Here p is the RF signal-to-noise ratio in
the frequency band B. We treat the asymptotic approximation (for
large p) of equation (4) as an equality in the following.

For fixed error rate P and RF signal-to-noise ratio p, equation (4)
determines Af/N. Rewriting equation (2),

=2

(SR

%:1+(71—1)§Ni; (5)
substituting equation (5) into equation (1),
g = —Liﬁl%bits/cycle. (6)
IL+0—-Dy

We set the derivative of equation (6) equal to zero, determining the
optimum number of levels 7, and maximum rate I, .

1

no(lnn, — 1) = m — 1. (7
R, 1443
B T m(af/N) ®

Alternatively, once the optimum number of levels n, has been de-

* For multilevel output samples, most errors will be to adjacent levels. Assuming
that something like the Gray code is used, the symbol probability of error P of
equation (4) will be approximately the bit probability of error for the final recon-
structed binary signal.
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termined via equations (4) and (7), we may express the other parameters
of the (optimum) system in terms of n, only:

Af 1
N n(nng — 1) F1° @)
R, 1 .
— = 1443 | Inn, + — — 1 | bits/eycle, (10)
B Mg
B _ oy In 7y )
N = mnn, — 1) F 1 (1)
Note that the restriction Af/N < 1 implies via equation (7) that
Ny = 4. (12)
Finally, the Shannon capacity for the RF channel is
% — 1443 In (1 + p) bits/cycle. (13)

III. RESULTS

Figures 1 to 7 illustrate the parameters of optimum multilevel
FM systems using a finite-time integrator as a post-detection filter
for two representative error rates (P = 107°, 107°),

The solid curves of Fig. 1 show the optimum number of levels n,
versus the RF signal-to-noise ratio in dB, 10 log,, p, for the two values
of P. The curves terminate at n, = 4, according to equation (12).
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Fig. 1 —Number of levels for maximum data rate versus RF signal-to-noise ratio.
Dashed lines indicate small-angle approximations.
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Fig. 2 — Bandwidth expansion factor for maximum data rate.

n, increases rapidly as p increases, for fixed P. The small-angle approx-
imation for the trigonometric functions in equation (4) is shown by
the dashed curves of Fig. 1; in this approximation changing P simply
translates the curves of Fig. 1 horizontally. This is a reasonable ap-
proximation for the smallest 7, permitted [by equation (12)], for the
values of P of interest here.

TFigures 2, 3, 4, and 5 show optimum system parameters plotted
against two horizontal scales:

(7) 10 log,cp—the RF signal-to-noise ratio in dB. Two plots are
shown, for P = 107% 107%. Using the small-angle approximation in
equation (4), changing P translates these curves horizontally. This
horizontal axis is the parameter of most direct physical interest.
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Fig. 3 — Maximum data rate per unit RF bandwidth.
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Fig. 4 — Relative phase shift per level in one sample interval for optimum systems.

(i3) ng—the optimum number of levels, determined from Fig. 1.
Here a single universal plot suffices rigorously for all P [That is, without
small-angle approximations in equation (4)].

The vertical axes show:

Figure 2—B/N, the bandwidth expansion factor, roughly* one-half
the ratio of RF to base-bandwidth. This factor varies from about 2 at
small p or n, , to an asymptotic limit of 1 as p, np — . For large p, 7o
we have small-index phase modulation, with only the first sideband
significant. Even for the smallest p, n, considered here the bandwidth
expansion is moderate.

Figure 3—R,/B, the normalized maximum rate in bits per cycle.
This quantity inereases monotonically with p, n, .

Figure 4—360- Af/N represents the relative phase change in degrees
corresponding to a change in modulation of one level.

Figure 5—360 (n — 1) Af/N represents the maximum relative
phase change in degrees in one sampling interval, corresponding to a
change in modulation from the lowest to the highest level. The maximum
value for this quantity, occurring for the smallest p, no (that is, no = 4)
is not far from 360°. As p, n, increase, the maximum phase change be-
comes small for optimum systems.

Within the small-angle approximation, discussed in connection with
Fig. 1, changing P merely shifts the horizontal (dB) axes of Fig. 1
and Figs. 2(a) to 5(a). Let us adopt the P = 107° curves as standard,

* This is because the square-wave modulation assumed here is not strictly band-
limited; in fact, its spectrum falls off so slowly that its rms bandwidth is infinite.
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Fig. 5 — Maximum relative phase shift in one sample interval for optimum systems.

and plot the number of dB to be added to the 10 log;, p axes a sa function
of P. This is shown in Fig. 6. We remark that this is only an approxi-
mation, and will begin to fail sooner as P decreases.

Tinally, Fig. 7 compares the maximum data rate for the multilevel
FM system with the Shannon capacity of the RF channel. The optimum
data rate ranges from about 19 to 27 percent of the ideal RF channel
capacity, for error probabilities P between 107 and 107"

We have so far dealt with optimum systems. However, the number
of levels may be fixed by other constraints, so that suboptimum systems
are of interest. I'or example, it may not be practical to have the large
number of levels required for optimum systems at large RF signal-to-
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Fig. 6 — Correction for modifying P = 107 curves to other error probabilities.
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Fig. 7 — Ratio of maximum data rate to Shannon capacity.

noise ratios p; we may be restricted to 8 (or 16) levels, and it is necessary
to determine how much the data rate will be reduced. Now rather than
maximizing R by varying N and n in equation (1) subject to the con-
straints of equations (2) and (4), we fix n in equations (5) and (6).
Figures 8 and 9 show the optimum rate R,/B versus 10 log,, p [given
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Fig. 8 — Best data rate for suboptimum systems with two, four, and eight levels
compared to maximum data rate for optimum system. Dashed line—maximum data

rate for optimum system, E./B (see Fig. 3).
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Fig. 9 — Best data rate for suboptimum systems with two, four, and eight levels
compared to maximum data rate for optimum system. Dashed lined—maximum
data rate for optimum system, Ro/B (see Fig. 3).

also in Fig. 3(a)], together with the rates for two, four, and eight levels,
determined from equation (6) withn = 2,4, and 8 for P = 107, 10 in
equation (4). While eight levels is strictly optimum only at the point
of tangency between the By and the R, curves, we see that the optimum
is fairly broad. The corresponding bandwidth expansion factors are
found from equation (5).

IV. DISCUSSION

We have presented the results of Figs. 1 through 9 as continuous
curves. Actually, only isolated points of these curves are significant,
since the number of levels must be integral. These continuous curves
should consequently be replaced by appropriate “staircase” functions,
but the difference will be significant only for small numbers of levels
(that is, at low RF signal-to-noise ratios).

The present theory excludes two- and three-level systems. Naively,
one might try to extend the present results to these cases by equation
(17¢) and Fig. 5 of Ref. 4. This may not be accurate for the error rates
considered here (P = 107% 107%), because the RI' signal-to-noise ratio
p becomes small, and the basic results of Ref. 4, that is, equations
(17), (26), and (27), are asymptotic as p becomes large. However, for
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very much smaller error rates, for example, P =~ 107", it is possible
that this approach would be productive.

It would be desirable to extend the present results to binary and
ternary systems; this will require a different or improved approach
from the asymptotic evaluation of Ref. 4 for the error probability. It
seems likely that clicks will dominate the error behavior for optimum
two- and three-level systems.

The principal limitation in the present treatment (aside from the
assumptions of the model, such as a finite-time integrator post-detection
filter) lies in our lack of knowledge of the precise way in which the basic
result for the probability of error P (equation (4) above) fails. We have
merely assumed that this result holds for signal-to-noise ratios down to
about 10 dB, independently of P or Af/N. This provides additional
motivation for further study of the asymptotic theory of Ref. 4.
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