Some Properties of a Nonlinear Model of
a System for Synchronizing Digital
Transmission Networks*

By IRWIN W. SANDBERG
(Manuscript received April 22, 1969)

J. R. Pierce has recently proposed a system for synchronizing an arbitrary
number of geographically separaled oscillators, and, under the assumption
of zero transmission delays between stattons, has shown that a certain linear
model of the system is stable in the sense that all of the station frequencies
approach a common final value as { — .

The purpose of this paper is to report on some resulls concerning the
dynamic behavior of a nonlinear version of an tmportant special case of
Pierce’s model. The nonlinear model takes into account iransmission delays.

It is proved under certain very general conditions that the nonlinear model
possesses the stability property required of a synchronization system. More
explicitly, il is proved that the model is stable for all nonnegative values of
the delays. The results show that the model possesses some additional funda-
mental properties of engineering interest, and they provide an analytical
basis for using a computer for further studies. In particular, a complete
solution to the problem of determining the final frequency of the system and
the final value of the content of an arbitrary buffer vs presented, in the sense
that it is shown that these quantities can be determined by solving a certain set
of nonlinear equations which is proved to possess a unique solution.

I. INTRODUCTION

The purpose of this paper is to report on some results concerning
properties of the solution f,(t), f2(f), -+, f.(t) of the set of equations

* This paper was presented as an invited contribution at both the Symposium on
Mathematical Aspects of Electrical Networks (sponsored by the American Mathe-
matical Society, New York City, April 1969) and the Joint Conference on Mathe-
matical and Computer Aids to Design (sponsored by the ACM, STAM, and IEEE;
Anaheim, California; October 1969).
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f-'(t) = ﬂoi{; %‘f{j; [fi(T - Tii) - f-(‘f)] dr + bl‘i(o)}} + ¢
1=1,2,---,n
0 (1)

in which n is an arbitrary positive integer such that n = 2, the ¢.(-)
and the ¢;;(-) are monotone functions that map the real interval
(— 0, =) into itself, the r,; are nonnegative constants, and the ¢; and
the b;;(0) are real constants.

The set of equations (1) governs the behavior of a nonlinear model of
the key part of a system for synchronizing digital transmission networks.
Our main result is that synchronization is possible under very general
conditions concerning the nonlinearities and the time delays =;;. In
addition, an analytical basis for computing the final frequency of the
svstem is presented; this involves proving that a certain set of nonlinear
equations possesses a unique solution. Other results are presented con-
cerning, for example, buffer requirements* and certain monotonicity
properties of the frequency functions f;(-).

t

\%

1.1 Pierce’s Model

When 7;; = 0for all { # j, when ¢;(z) = z for all 7 and all real =, and
when ¢;;(z) = a;;x for all real z and all 7 # j, in which a;; is a real con-
stant for all 7 # j, we have

f.(t) = ; flfi{_/; [fi(r) — f:(n)] dr + bn‘i(o)} + ¢
1=1,2,:,n t = 0. (2)

Equations (2) are the equations of a linear model of the principal part
of a system for synchronizing digital transmission networks recently
proposed by J. R. Pierce.! His system employs oscillators of adjustable
frequency and buffers which accept pulses at an incoming rate and which
produce corresponding output pulses at the local clock rate.

In Pierce’s model the content b;; of the buffer at station ¢ which ac-
cepts pulses from station j is assumed to satisfy the equation’

b)) = 1) — 0, t20 (3)
in which f;(#) and f;(f) are the frequencies at time ¢ at stations j and ,
* An explanation of the function of the device called a buffer is given in Section 1.1.

t As usual, a dot over a mathematical symbol denotes the derivative with respeet
to time.
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respectively, and the overall system of coupled oscillators is assumed to
satisfy equations (2) with a;; = a;; = 0 for all 7 # j. Under the natural
assumption that there is some path from each station to every other
station, Pierce has shown, by directing attention to a passive RL net-
work analog of equations (2), that the model is stable in the sense that
each frequency f; approaches the same final value as t — ».*

1.2 The Nonlinear Model

Our interest in the properties of the solution of equations (1) arises
as a consequence of Pierce’s work as follows. First, we wish to take into
account the time delay 7.; associated with transmission to an arbitrary
station 7 from an arbitrary station j # 7. Thus we replace f;(t) by f;(t —
7:;) in (3) and (2). The content b,,(f) of the 4jth buffer is then

[ 16 = 7 = 1@ dr + 5,0 @

forallt = 0.

Our mathematical model of a buffer does not reflect the fact that the
capacity of a real buffer is bounded; a real buffer is a device that can store
at most some fixed finite number of pulses. Therefore it makes sense to
study how a linear model of a synchronization system employing buf-
fers, such as the one governed by (2), can be modified to reduce the pos-
sibility of oceurrence of buffer overload (that is, the possibility that the
capacity of the buffers will be exceeded). It is therefore reasonable to
replace the expression (4) for the buffer content by some monotone non-
linear function ¢,,(-) of (4), with the idea in mind that ¢;;(-) is a func-
tion with moderate slope near the origin and very large slope correspond-
ing to values of (4) that are in the neighborhoods of buffer overload.
Similarly, in order to ease the requirements on the extent to which the
frequencies of the adjustable oscillators must be variable, and in order
to reduce the tendency of very large excursions in the frequencies f;
during a transient phase, it is reasonable to replace the sum

Z ©i;[b::(8)] (5)

formed at the #th station by some monotone nonlinear function ¢.(-)

* In Ref. 1 Pierce actually deals with a more general linear model than we have
described here, but treats in most detail the important case described above. In
connection with the more general model, Pierce has exploited the network analogy
further in order to obtain an expression for the final frequency, and to make asser-
tions concerning the behavior of the system when certain elements are nonlinear.
For additional material dealing with various aspeets of the problem of synchronizing
geographically separated oscillators, see, for example, Refs. 2-7. In particular,
Ref. 4 contains a short history of the problem.
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of (5), in which ¢,(-) has moderate slope near the origin and very small
slope far from the origin.

These considerations lead at once to the study of the properties of the
set of equations (1). Of course the crucial question is: “Does the system
governed by (1) possess the basic stability property required of a
synchronization system?”” Our main result concerning (1) is that, no
matter what the values of the time delays 7;; , under some conditions
which are quite trivial from the engineering viewpoint (and rather weak
from the mathematical viewpoint), it does.

II. SUMMARY OF RESULTS, AND SOME APPLICATIONS

2.1 The Main Result Concerning (1)

In order to describe the result, we first introduce some definitions and
assumptions.

Definition 1. Let M denote an arbitrary n X n matrix with elements
m,; . Let the graph of M denote the graph containing » vertices (that is,
n nodes), a directed edge (that is, a directed line segment or arc) from
node j to node 7 for every pair 7, j with 7 # j and m,; # 0, and no other
directed edges.

Definition 2: Let M denote an arbitrary » X n matrix. Then we shall
say that the graph of M is a communicating graph if and only if there is
some path (not necessarily a direct path) from each node to every other
node.

We assume throughout the paper that:

() 7:;; denotes an arbitrary nonnegative constant for all ¢+ # j.
(%) For each 7, ¢,(-) denotes a real-valued continuously differenti-
able function defined on (— «, «) such that

ki £ ol(z) £k (6)

for all z, with &, and £, positive constants.

(777) For each 7 # j, ¢;;(+) denotes a continuously differentiable real-
valued function defined on (— e, «) such that either ¢;;(z) = 0 for
all z, or

ki = oli(z) = ki (7)
for all z, with k,; and k; positive constants.*
* At the price of some additional complication, we could have replaced assump-

tions (#7) and (#77) with assumptions concerning the behavior of the ¢;(-) and the ¢;;(-)
on finite intervals. See Section 2.2.
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(z7v) The matrix M defined by
(M);; =0 forall =
(M);; = ¢4;(0) forall z#7

is the matrix of a communicating graph.

(v) Each f.(-) is defined and differentiable on [—7, ) in which
7 = MAX;.; {7},

Assumption (iv) possesses a simple physical interpretation. It is a
natural connectivity assumption of the type needed if synchronization
is to be possible in the sense that all of the station frequencies approach
a common final value as t — .

Our basic set of equations is

1.0 = e {Z¢.,{ [ v = v = 1 ar + b,-,-(O)}} teo  ®

for all7 and all { = 0. By differentiating both sides of these equations with
respect to ¢, we have

fit) = @lE(D] 2 ollE Ot — 7)) — L],  t=0  (9)

i=i

for all 7, in which of course

E Wr]{f f(T - FJ - II(T)] dr + blr(O)}

PRt

and
60 = [ T = 1) = 1O dr + b0,

Let hi () = @llt:(D)]el & (D] for all ¢ = 0 and all j 5 4. Then
f.’(t) = E hii(t)[fi(t — 1) — ff(f-)]: tz0 (10)

iFe

for all 7. According to Theorem 1 (Section III) the coefficients A;;(-)
of (10) are such that there exists a real constant p with the property that
for all 7, f:({) — p — 0 as { — . This means that the system is stable in
the sense that all of the station frequencies approach a common final
value. Note that this result does not involve assumptions concerning the
values of the nonnegative delays 7;; , that it is valid for monotone non-
linearities of a very general type, and that it does not involve symmetry
assumptions such as ¢;;(+) = ¢;(-) for all 7 # .
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2.2. A Monotonicity Property of the f:(-)

The first of the two lemmas used in the proof of Theorem 1 asserts that
the solution f,(-), fa(+), - - - , fa(+) of (10) possesses an interesting mono-
tonicity property. Let T be an arbitrary nonnegative value of time {,
and let the upper envelope and lower envelope f(f) and f({), respectively,
of the f.(f) be defined for each ¢ = —7 by f({) = max, f.(t), f(t) =
min; f;(£). Let /-(T) and f;(T), respectively, denote the largest and smal-
lest value of f({) and f(¢) for ¢ belonging to the interval [—7 + T, T.
Then, according to the lemma just referred to, f(t) = f-(T) and f() =
f+(T) forallt = T. In particular, since the f;(f) approach a common final
value, we see that the interval envelope functions f.(T) and f-(T) ap-
proach each other as T' — o,

Our assumptions (7) and (#47) on the ¢;(-) and the ¢;;(-) concern the
behavior of those functions for all, and in particular arbitrarily large,
arguments. The upper and lower bounds just described show that it
would have sufficed to have made similar assumptions on the behavior
of the ¢;(+) on any finite interval [—a, a] such that for all 2

pi(a) ¢ [_fF(O) — maxe; , F(0) — m_in ¢

for all z £ [—a, a]. On the basis of bounds of the type described in Sec-
tion 2.4, similar statements can be made concerning the pertinent range
of arguments of the ¢;;(-).

2.3. Final-Frequency Delerminatton

We now turn our attention to the matter of determining the final
frequency of the model governed by (1).
Let

) = [ 1) ar (11)
for all ¢ = 0 and all 7. Then, since for all { = 0

j: filr — 1) dr = j:l_”“ fi(7) dr + f“ fi(r) dr,

—Tij

we have, using (1),

i) = @il Zsﬂn{P:'(t — 1) — (D) + M)} e (12)

b it}

for all 7 and all { = 0, in which

Mo = 0,0 + [ g dr, 13)

-Tij
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According to Theorem 2 (Section III), there exists a unique real con-
stant p and some real n-vector ¢ such that

p = @i ZW-‘:‘[—PT.-,- 4+ ¢; — ¢ + \il} +ec: forall . (14)

With p and ¢ such that (14) is satisfied, let
pit) = pt + g + 1), t=—7F (15)

for all 7, in which the g; are the components of ¢, and the r;(f) are some
functions of £. Then, using (12),

p + (1) = eil ;W;;[—PT.',' + g — ¢ + N
+ it — 1) = (@]} e (16)

for all 7 and all ¢ = 0. But, using (14) and (16),
T"s(t) = <P-'{ ; ‘Pi:‘[ri(t - Tn') - r,—(t) + sii]} - 90-'[ g qﬂii[-?ﬁ]} (17)

for all £ and all ¢ = 0, in which 8;; = —pri; + ¢; — ¢ + Aij.
Tor each i and each ¢ & [0, =), we have, by the mean-value theorem,

o ; it — i) — () + s — o Z: @ii(8:]}
= ollu.()]f gﬂﬂu[‘rf(t — 1) — ) + 8] — E iilsi]}
for some u;(f) such that w,(f) lies within the closed interval with end-
poin‘ts Ej,ﬁ (,0,-,-[6“-,'] and Z,-,“- (p,‘f[?','(t —_ ‘T,',-) — T;(t) -+ S.-,-]. Simjlarly
for each j # 7 and each ¢ e [0, =),
euiri(t — i) — ri(t) + s8] — @845
= ¢hlwi;Ollr;i¢ — 75) — (D]

for a suitably chosen w,;(¢). Therefore (17) can be written as

%n(t) = Zcﬂ'(t)[r:‘(t - Tl’:) - Tl(t)] (18)
for all Z and all t = 0, where ¢;;({) = ol[u;(@)]e!;[w:;(?)]. But, by Theorem
1, the coefficients ¢;;(-) of (18) are such that there exists a constant o
with the property that for all 7, r;({) — o as t — . It follows [see (18)]
that for all %, #;(f) — 0 as ¢ — . Since

fo f{()dr=pt+q +r(t), t=0

for all ¢, it is clear that p is the final value of the f.(-).
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According to Theorem 2: there exists exactly one real n-vector g such
that, with U = (1,1, --- , 1),

U'q = ol ; ei[—m U+ ¢; — ¢ + Mi]} + o
for all ¢, and p = U'q.

There are some simple special cases in which we can exhibit an ex-
plicit expression for p. Suppose, for example, that 7;; = 0 for all 7 # j,
that b,;;(0) = —b;,(0) for all 7 # j, and that ¢;;(z) = —¢;:(—2) for
all 7 # j and all real x. Then, using (14), we have for all ¢

ei'(p—¢) = ; eiilq; — q: + b:;(0)]

in whieh ¢;*(-) is the inverse of ¢;(-), and

Eiﬂ?l(P —c) = E ;%‘i[%‘ — ¢ — b, (0)] = 0.
Therefore, np = 3. ¢; if pi(x) = =z for all real z and all 4, orif n = 2
and ¢,(z) = @u(r) = — (—2x) for all real .

Finally, as a relevant application of the material of Section 2.2, we
have when r;; = Oforall = §

m_in (e: + eif E eii[0:;0)]}) = p = max (i + oif E @:;[0:;(0)11)

since f({) = max; f;(0) and f(¢) = min, f,(0) for all¢ = 0, and, by (1),
ff(O) =c; + 90.'{ Z Wij[bii(o)]}

for all 4.

2.4. Bounds on Buffer Conlen!

In order to analytically formulate specifications to be met by real
buffers such that buffer overload does not occur in a real synchronization
system of the type under study, it is natural to consider the problem of
obtaining useful upper bounds on the contents of the mathematical buf-
fers of our model. We do not treat this entire problem in detail in this
paper. However, we show here that under some strong assumptions, it is
possible to exploit the material of Sections 2.2 and 2.3 to obtain a simple
uniform bound on buffer content. In addition, in terms of the constant
p and the vector ¢ introduced in Section 2.3, we present a complete
solution to the problem of evaluating the final value of the content of an
arbitrary buffer.

According to Theorem 2, the vector ¢ that satisfies (14) is unique to
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within an additive n-vector of the form «U, in which « is a real constant
and U is the transpose of (1, 1, --- , 1). In particular, the quantity
A, = (max; g; — min; g;) associated with any solution pair p, g of (14)
is unique. In this section it is shown that when

Tij — b”(O) = 0 fOl‘ a-ll T #= j, (19)

then the magnitude of the content

[ v = 1 an 20)

of an arbitrary buffer is bounded for all ¢ = 0 by 24,.
Let (19) be satisfied. As in Section 2.3, let

pi(t) = f f:(7) dr, t=0

for all 7. Then with p;(t) = pt + ¢q; + r:(f), ¢ = 0 for all ¢, in which p and
q satisfy (14), we find as in Section 2.3 that for suitably chosen functions
u;(+) and wi;(+),

P = 2 ea@®() — ],  tz0 (21)
for all 7, in which ¢;;(f) = ¢/[ui(t)]e};[w;;(t)]. Since (21) is an equation
of the same type as (10) (more precisely, see Lemma 1 of the proof of
Theorem 1), it follows that for all ¢ = 0, r,({) = max; »;(0) and r;(f) =

min; 7;(0). But r,(0) = —g. for all . Thus, for any j and 7 with j # ¢
pi(t) —p() = ¢; — ¢ + r(1) — ri(D), tz0
< 2A t=0

a2

and, similarly, p;(t) — p:(f) =2 —24,,t = 0.

Concerning the problem of evaluating A, , there are some cases in
which it is possible to obtain simple and useful upper bounds. In one
simple case we can obtain an explicit expression for A,. For example,
suppose that (19) is satisfied and that n = 2. Suppose also that ¢,(z) =
¢a(z) = —@o(—2) for all z, and that ¢2(z) = en(x) = —eu(—2) for
all z. Then p = ¢i[e12(g: — q)] + ¢, p = ol ea (@i —g2)] + c2 , and, using
the fact that ¢.(-) and @, (+) are odd, 2¢i[e1(g: — )] = €2 — €.
Therefore, in this case A, = |2 — @1 | = | ¢nafer '[3ea — e)]} |-

We now consider the matter of (proving the existence of and) evaluat-
ing the final value lim,.., b;;(t) of the content of an arbitrary buffer.
With p, g, the 7,(+), and the p,(-) as defined in Section 2.3, we have for
t = 0and any 7 # j
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b = [ Utr = 7 = 1] dr + b4(0)

Il

pi(t — =) — Pi(t) + b:;(0) + f fi(r) dr

—-Tij

—pr 4 — = ) — @+ ba@ + [ 1) dr.

—rif

Sinee 7;(t — 7:;) — r:(f) — 0 as { — ©, we have the result

lim b;;(t) = —pri; + ¢; — ¢ + b:;(0) + f“ fi(r) dr. (22)

t—o0 —Tif
Finally, if (19) is satisfied, then, using (22),

max | lim b;;(f) | = max | ¢; — ¢: | = A,

i -0 i=i

which shows that our uniform bound 24, is not unreasonable.

2.5 Discussion

The results presented in this paper are concerned with a reasonably
realistic strongly-nonlinear model of an important type of synchroniza-
tion system. They answer several key questions concerning the dynamie
behavior of the system, and provide an analytical basis for using a com-
puter for further studies in so far as we have proved, for example, that a
solution pair p, ¢ of the set of equations (14) exists, that this pair is
unique in the sense indicated, and that it can be determined by com-
puting the unique solution g of a related set of equations.

On the other hand, although we have proved that under very general
conditions our nonlinear model possess the basic properties of a syn-
chronization system, in this paper we have not considered the next
natural problem, that of determining the extent to which the system
performance can be improved as a result of the presence of the non-
linearities. There are several other important practical problems that
are not considered here, such as the problem of predicting the effects of
variable transmission delays (due to temperature changes). There is a
clear need for much more work in this area, especially in connection with
the problem of comparing the performance of alternative synchroniza-
tion systems.

III. THEOREMS 1 AND 2
Throughout Sections III and IV:

(7) n denotes an arbitrary fixed positive integer such that n = 2;
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the statement “for all ¥’ means for all ¢ = 1, 2, --- , n, and “for all
j # 77 means forall je {1, 2, --- , n} except j = 1.

(#) With v an arbitrary n-vector, v denotes the transpose of v.
The zero n-vector is denoted by 8.

(#3i) If z denotes a differentiable function of ¢, then & indicates the
derivative of x with respect to ¢

(&) All functions and constants considered are real valued.

The following two theorems are proved in Section IV.

Theorem 1: Suppose that the following conditions are satisfied:

(2) For each i # j, a;;(+) denotes a nonnegative bounded measurable
function defined for all t € [0, ).

(47) With g and @ positive constants such that a = a, for each © # j,
a:;(-) satisfies either a;;(t) = 0 for all te [0, ©) or g < a;;(t) = @ for
all te [0, ).

(ii1) For te [0, ©), the n X n malriz A, with (A);; = a(t) for all
i # jand (A);; = O for all 4, is the mairiz of a communicating graph.*

() For each i # j, v;; denoles a monnegative constant and 7 =
maxX;.; T;j«

(v) For each i, z;(-) denotes a differentiable function defined on [—7, =)
such that

&) = 20 au(Oz;(t — i) — 2], tz0
for all 7.
Then there exists a constant p such that x(t) — pU — 6ast — =, in
which U = (1,1, --- , 1)".

Theorem 2: Suppose that assumptions (i) through (iv) in Seclion 2.1 are
satisfied. Let U denote the n-vector (1,1, -+, 1)"". Then (a) there exists a
unique n-vector q such that

U”q = qo.-{ Z (p;,'[_T;,‘U”q + q,; - q.' + )\,’,’]} + C; fOI‘ all ’i,
Pt
in which the \;; and the c; are constants, and (b) concerning the solution
pq O.f

p = el 2 eil—prii + ¢ — ¢i + ]} + e forall o,
i
the value of p is unique, and q is unique to within an additive n-vector aU,
in which « 18 an arbitrary real constant.

* See definitions 1 and 2 in Section 2.1.
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IV. PROOF OF THEOREMS 1 AND 2
In this section:

(2) 1, denotes the identity matriz of order n.
(7) The transpose of any matriz M 1is denoted by M''.
(¢7) If v is an n-vector, then || v || denotes (v'"v)%.
(iv) If F denotes an m-vector-valued function, then (F); denotes the
2** component of F.

4.1. Proof of Theorem 1

We first prove the following lemma.

Lemma 1: Suppose that (¢), (i), and (v) of Theorem 1 are satisfied.
For all t e [—7, =), let (t) and z(l) denote max, x,(t) and min, z,(f),
respectively. Let T be a nonnegative constant. Then, for allt = T, &(t) =
SUp;_r.p,; E(t) and x(t) = infi_sip ) 2(0).

Proof: (upper bound) We have for all ¢
(1) = E a;;(O[z;(t — 7:;) — x(D)], t=0. (23)

Thus
() + -151‘{0 Z a'ii(i) = Z a-’;‘ﬁ)-’»"f(i - Tn'f); tz20

]

and
z,(8) = z:(T) exp [—f > a:(h) dt]
T =i
+ [ e [—f Y au) dt] > au@ar — r)dr, =T (24)
T T i=i i
for all 1.
It is convenient to introduce the function 7(-, -, -) defined by

Tw,v, k) = exp [—f > a,(b) dt]

ik

for all real u = v and all positive integer £ = n. Thus, for example, (24)
is equivalent to

z,(t) = x,(DI(T, t, 1) + /‘l I(r, ¢, 7) E a;;(r)x(r — 7:;) dr,

i#d

t=1T. (25
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Let #, denote an arbitrary positive constant. There exist an index k
and a t, e [T, T + t,] such that

(t) = sup &(0).

IT.T+tal

Clearly
w(t) = 2 (MIT, 1, k) + f I, 6, ) T (e = m) dr.
Therefore, since the a,; are nonnegative,
rt) S oI, 4, F) + [ 166, 1) T (o) dr

-max sup x;(1)
irk [ T—7tkj ta—TEjl

< I, 6,8+ [ 10,6, 0 Tau@) dr swp &0,
T =k -7,
But
by
[( 16, H Danmdr =1 - 10,4, B,
T i#k
Thus
w(t) < w(MIT, 6, k) + (1 — I(T, 4, , k)] sup  &(1).
[T—=7F.041
Either
sup () £ sup &) (26)
[ T-7.T] [T.t.]
or
sup #(f) > sup Z(1). (27)
[T-7.7TI [T.t,]

If (26) holds, then
ap(t) < a(TI(T, 4, k) + (L — I(T, &, k)le(t)
[since z,(t,) = sup(r,.; &(t)], and hence
w(t) £ x(T),

which implies that z.(t,) = sup r_;.;y &(f). If (27) holds, then [since
=(T) = Sup(r-7,7 53(5)]
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z(t) = I(T, 6, , k) sup (@) + [1 — I(T, t, , k)] sup ()
[T-7.T] [T-7F.T]

< sup &(b).
Ir-7.T1
We have shown that
sup () < sup &(f). (28)
[T, T+tal [T=7,T1

But ¢, is an arbitrary positive number. Therefore
sup #(t) = sup Z(f).
2T [T-7,T]
(lower bound) Our proof of the inequality
inf g(f) 2 inf 1 (1) (29)

tz2T [r-7.T

parallels the derivation of the upper bound, and is outlined below.
There exists an index [ and a t, ¢ [T, T + {,] such that

,(t) = inf 2(t).
[T, T+tal
Thus
() 2 w(DIT, &, )+ 1 — I(T, &, D] [ inf ] x(f).  (30)
T—F,ta
Either
inf z(t) = inf z(t)
[T-7.TI] [T.tal
or

inf gz() < inf z(?).
Ir-=,Tl [T.tal
In either case, we find using (30), that (29) is satisfied. O
We note that it is a consequence of Lemma 1 that the components of
z(+) are bounded on [0, «), and, since z(-) and (- ) are related by (23),
that the components of %(-) are bounded on [0, «).
Assume that
sup Z(f) — inf ()
[u=7F,ul [u—7,u]
[£(-) and z(-) are defined in the statement of Lemma 1] does not ap-
proach zero as u — <. We shall show that this assumption implies that
the components of z(-) are not bounded on [0, =), a contradiction.
Since, by assumption, sup(u-s. #(f) — inf_7. #(f) does not ap-
proach zero as u — o, there exist a positive constant e and a set {u,}%
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with u, e [0, ©) and sup, u, = ¢ such that

sup #(t) — inf g(t) = 2e

[ug—7,uql lug—7,ugql

for all . For each g let t, € [u, — 7, u,] and ;e [u, — ¥, u,] be such that

x(t) = inf 2()

[ug—7,uql

i(t)) = sup ] Z(t).
[uqg—7.uq

Of course sup, f, = @ and | {, — ;| < 7. Thus there exists a set {\.}7
of real constants such that | A\,| < 7 for all g, with the property that
(1, + N\) — z(t,) = 2e for all ¢. It follows from the definition of z(-)
and Z(-) that for each ¢ there exist indices I(g) and s(g) such that
ml(e)(tq + )\a) - xa(c)(tu) Z 2e.

Tinally, since the components of #(-) are bounded on [0, =), there
exists a positive constant § such that for all g Z; (f + No) — T (t) = €
for all te [t, — %5, t, + 36].

At this point we need the following lemma.

Lemma 2: If the hypotheses of Theorem 1 are satisfied, if T is a non-
negative constant, and if there exist three positive constants t, , €, and § and
indices 1(q) and s(q) such that t, — 36 > T + 7 and 2, (t + N) —
Tooy(l) = eforallte[t, — 38, ¢, + 38], with \, a constant and | \, | =
7, then there exist posilive constants £ and A such that, with Z(t) as defined
in the statement of Lemma 1,

sup () = sup E(t) — A
1

tzE (7-7,T
and A depends only on g, @, 7, €, and §.
Proof:

As in the proof of Lemma 1, it is convenient to introduce the function
I(-, -, +) defined by

I(u,v, k) = exp [—f Z a;;(7) d‘r]
u ik
for all real = » and all positive integer & = n. The relation between
T, 7, t,, and 6 is indicated in Fig. 1.
From (23)
2() = 2 (DIT, 4,9 + [ 16,49 T a@atr — 72 dr
r r—

iFi

forallt = T and all <. By Lemma 1, £(¢) < sup;r--.m () forall{ = T.
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i B

T T tq

| ——

Fig. | — Relation between 7', 7, {,, 8.

Therefore
sup ‘f(t) - -Tu[u!(t) g € (31)

forall t e [t, — %3, t, + 13].
Let &, be an mdex such that a;,,, () # 0 for all { = 0. Then for

t=zt,+36+7
2 ) = w I, 6 k) + [ 16,6,k T ausele — 7)) dr

i#ky

S IT,t k) sup (1)
(7-7.7]

+ [ 1648 2wt = ) dr

=k
iZsla)

to—Ri+7E,000)
+ f I(T: t: kl)akxn(a)(T)I:(ul(T - Tk;l(v)) dr
7

ta+ 3047, a0
+ f I(Tr tl kl)akna(a)(f)zl(u)(f - Tk:n(a)) dr
t

a—k+7k, 0 ()

t
+ f I(T, 3 kl)akla(q)(T)xa(q)(T = Trieter) dr.
ot 33+ TE 0 ()

By Lemma 1, for each j,
it — 70) £ sup (1) (32)

[T-7.T]
forall7 = T + 7.,; . But (32) is obviously satisfied also for 7¢ [T, T +
7x.:i]. That is, (32) holds for all = T and all j. Thus, using (31),

xe () = (T, t, k) sup ()

[T-7F

+ [ 16,6 8) Ta) dr sup_ (1)

ik, ([T-7

totid 4T a()
- Ef I(TJ t: kl)ahl(e)(f) dr

=55+ TE, 500

totib+ria(a)
sup j(t) — € f I(T) L, kl)aku(q) dT
¢

[7=7.71 Lt SAAL T Y

1A
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forallt = t, + %6 + 7, since
t
f Ir, 6, k) X an () dr = 1 — I(T, t, k).
T ik,

But, for all &, ,

tq+3d47k,000)

tothé+rhata) 7
f I(Tr tv kl)ak.a(q)('f) dr = a f e_("_”"('T"} dr
t

i LA TRIL )] to—36+7k, 0 (m
= Kexp {—.B[t - tu T Tkoste) '12_.6];
in which = (n — Daand K = a{1 — exp [—(n — Dad]}[(n — Da]™".

Therefore

2., () £ sup #(l) — el exp {—8[t — l, — Teovw — 36]}
]

| T-7.T
forall ¢ = t, + 36 + 7. In particular,

sup F(t) — x,,(0) = Ke "7

[T-7.T]

forallte[t, + 36 + 7,1, + 36 + 7]. Similarly, if the index k, is such that
i, (t) # 0 forall ¢ = 0, we have forall t = ¢, + $6 + 27

() = a0, (TI(T, 4 k)

+ f I(T, £, k) Z ., (Tt — T.k:i) dr

i=ka

1A

sup &(l) — K% PO
| T—-7.,T]

cexp [ =Bl — t, — 7, — 36 — 7]} (33)
In particular, for te [t, + 36 + 27, {, + 86 + 27]

sup E(l) — z, (1) = K% P,
[T-7.T]

Since the graph of A is a communicating graph, we may continue in
this manner to obtain an upper bound of the type (33) for all of the
x,(+). More explicitly, for each k, & {1, 2, --- , n}, let {k;, ko, -+ , K}
denote a finite set of positive integers, with the integer p dependent on
k., such that {k,, ko, --- , k,} D {1,2, --- , n} and

Qpokey Apeykey " " Qipk(p_y) # 0, t = 0.

—B(5+7)

Then, with B = sup ;_z. (i), u = e , and

T,=1l,+3%+7+¢—1G+7 forall r=1,2"--,p,
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we have
z,,(l) £ B — Ke PP, t=T,
2, () £ B — eKue e 77T t=T,
() £ B — K e e T t=T,

Now let ¢ = Tn + 7 with nE [0, 1"]_ Then
2., (1) £ B — eKe—ﬁFg—B(p—ll(H?)e—ﬁq

.’.E;,,(t) < B — eKﬂw—ﬁ?efB(p—'zl(d‘rF)e—ﬁu

() £ B — K" e e,
Thus, for all te [T,, T, + 7,
7., (1) £ B — A,
forallr = 1,2, -+, p, in which

A,. = min {eK"uf—le—Zﬂ'T‘e—ﬂfu—r)(6+?)].
Let A = min,, A, , and observe that A depends only on g, d, 7, ¢ and
5. By Lemma 1,

i) =B — A

forallt = T, + 7. O

Since as indicated earlier, there are an infinite number of é-intervals
with centers #, such that sup {{,} = o, and such that there exist in-
dices I(g) and s(g) with the property that

xl(u)(t + Aq) — Ta(a) (t) ; € (34)

for all t e [t, — 38, ¢, + %08], with the constants A\, such that | A, | = 7
we see that Lemma 2 and the assumption that
sup &(f) — inf z(f) (35)

[u—7,u] [u—F,ul

does not approach zero as u — e« imply that £(f) » — o as t — o,
which contradicts the fact that #(-) is bounded on [0, «). Therefore
(35) approaches zero as u — . But, by Lemma 1, sup(,—z..; &(t) is
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monotone_nonincreasing in u and bounded from below. Thus there is a
constant L such that

sup #(f) — L

lu—7,ul
as w — . Similarly, by Lemma 1, inf,,_s ., z(f) is monotone non-
decreasing in u and bounded from above. Thus there is a constant
L such that

inf z(t) — L

[u—7,ul
as 4 — . But we have proved that L = L. Therefore #(f) and z(f)
both approach L as ¢t — <, which means that there is a constant p such
that

z(t) — pU — 0 as t— . 0O

4.2. Proof of Theorem 2

In part (a) of this proof we employ a theorem of R. 8. Palais* ac-
cording to which: if F(-) is a continuously-differentiable mapping of
real Euclidean n-space E" into itself with values F(g) for g ¢ E" such that

(i) det J, # O for all ¢ e E", in which J, is the Jacobian matrix of
F(-) with respect to ¢, and

(%) limyge || F(@) || = =,
then F(-) is an invertible mapping of E" onto itself and F(-)7! is con-
tinually differentiable on E".

We have

U"q = ol Z‘i"ii[_TiiU“q;'l' q; — q: + Ny} 4+ e¢; foralle.
PRk
Let F(-) denote the mapping of E” into itself defined by the condition
that for all 7 and all g e E™
(F(9): = U'q — ol ; eil—m:U"q+ ¢ — ¢: + Niil}-

Our objective is to show that F(-) satisfies conditions (7) and (%) of

Palais’ theorem.
We have, with F; denoting [F(-)]:,

%g_.‘ =14+ ¢! Z (1 + 7))l for all ¢

* See Ref. 8 and the appendix of Ref. 9.
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and
oF, _ 14 ¢f 2 riel; — il forall k=1
9qx iei
in which
of = ol Z@si[*”'-‘iv‘rq + ¢ — ¢+ N\l}
and

ol = olil—m;U"q + ¢; — ¢ + N\ijl.
Let 8:; = ol!, for all 7 & 4, let V be the n-vector defined by

Vo= (1 + ;5”7!; 1+ ;ﬁszzi R v ;ﬁnﬂm’);
and let B denote the n X n matrix defined by
(B),, = 2. B:; foralli, (B);; = —B;; forall 1 j.
PR
Then J, = B + VU".

Suppose now that det J, = 0 for some n-vector g. For that g, there
would exist an n-vector x # 0 such that J'z = (B + UV')z = 6.
Since the column space of B'™ is orthogonal to U, we must have B'"x = 6
and V"z = 0. But B is of rank (n — 1) and the eofactors of B are non-
negative.*

Thus Bz = 6 implies that 2 = &y, in which y is any column of the
matrix of cofactors of B and £ is some real nonzero constant.” But we
must have V'"z = §V*'y = 0, which is a contradiction, since at least one
element of v and all of the elements of V are positive. Therefore F(-)
meets condition (7) of Palais’ theorem.

We now show that F(-) satisfies condition (i) of the theorem of Palais.

It is a simple matter to verify that for all

F, = U"q - r ET";[—T”U”Q + q; — Q’-‘] - ‘P-‘[Z‘Pn‘()\u’)]

in which
e Z%f[*"uU”q + g — ¢ + Nil} — @il Z eii[Nill
r, = et tr Iz
;‘P-‘i[_TﬁU g+ a; — ¢+ M| — ;ﬁoii[)\n‘]

* See Ref. 10 for a proof that B is of rank (rn — 1) and that the cofactors of all of
the (B):; elements of B are positive. Since BU = 6, each of the columns of the
transposed matrix of cofactors of B is proportional to the vector U (see the footnote
that follows). Therefore all of the cofactors of B are positive.

t This follows from the well-known proposition that M*C' = 1, det M, in which
M 1is any square matrix and C is the matrix of cofactors of M.
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and

eul—7,U g + a5 — g + Nl — el
_Tii'{fqu + q; — 4:

Ty = 3
with the understanding that r; is unity when the corresponding numera-
tor is zero, ;; is zero for all ¢ and all 7 # j for which ¢,; is identically
zero, and r; is unity for all 7 # j for which ¢, is not identically zero and
for all ¢ for which the corresponding numerator is zero. Therefore, for
allge E", F(q) = Mg + s, in which the n X n matrix M is obtained from
J, by replacing ¢’ by r; and ¢/, by r,; for all Z and all 7 # j, respectively,
and the 7th component of s is — @i 2 imi @ii(Ni;)] for all 7. In particular,
det M 5 0 for all g. Therefore det (M*"M) > 0 for all ¢. Since all of the
r; as well as all of the nonidentically zero r;; are bounded above and
below by positive constants uniformly for g e E”, there exists a positive
constant e such that det (M'"M) = e for all gz E".

Let Ay, Az, - -+ , A\, denote the eigenvalues of M*"M. Then My -+ A,
> efor all ge E". Assume that \; £ A, £ --- = \,. Since all of the r;
and all of the r;; are bounded from above uniformly for ¢ e E", there
exists a positive constant A such that \, = X for all g & E". Thus, for all

qe E" we have A, = ex™ """, Therefore,

F@ Il = Mg+sllz Il Mgll—Ils]l
= NV g = s ]

Il

for all g e E", from which it is clear that || F(g) || — « as [[g[| — =
This completes the proof of part (a) of our theorem.

Next we show that there is at most one p with the property that there
exists a g ¢ K" such that for all ¢

p = ¢if E‘P-‘:‘[_p'rif + ¢ — g + N} e
i

Let p and p® be two constants, and ¢’ and ¢'*’ two n-vectors, such

that for all 7
(a) __ (a) (a) (a)
p —W;[Z&Oif[—.ﬂ it — @ Al Fe

FE

ot = ‘pi{zqg”[—pmn; + ¢ — Q'f‘b) + Nl +e

iEi

Then with ¢*’ = ¢’ + «U, in which the constant « is chosen so that

p — p® = U"(¢" — ¢*), we have for all ¢

0 = o 2 eil—p Ty + @i — i + N1} F e

i
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where p**' = p™®. Thus
p @ — 07 = g ;%;[ o+ 4 — ™ 4+ NG
- 90.'{ #E'_@-'i["ﬂmﬂi + Q’:c} m + ?\n]}
and

pla) _ p(c) — Ulr(q(a) — q(C))-

Therefore we can define nonnegative ratios p; and p;; similar to the
r; and r;; above, such that

Utr(q(a) _ q(c)) = p: Z#:p”[_ U!r(g(a) _ q(c])‘r”

+ (@ = ¢) — (@ — ¢ forallq,

and such that these equations are equivalent to M'(¢'” — ¢‘”) = @
in which the n X n matrix M’ is obtained from J, by replacing ¢! by
p. and ¢!, by p;; for all 7 and all ¢ # j, respectively, so that det M’ # 0.
But this implies that ¢* = ¢' and hence that '@ = p'’.

We shall how prove that ¢ is specified to within an additive vector
of the form aU in which « is a real constant.

Suppose that, with ¢' and ¢* two n-vectors,

P ‘;0.'{ E ‘F’i: —PTi; q(d) (a) A1:']]
PR
=p ‘P! Z‘Ft:[ pTi; 1 q[H (b) ?\!J}

iFd

for all 2. Then, with the p; and p;; as introduced above,
pe 2ol — ¢”) = (@ — ¢™)] =0
for all 7. Thus, since p; # 0 for all 4, and the n X n matrix P defined by

P)i; = gp,-,-, for all ¢
(P)n‘ = —Dii, for all t#Z ]

is of rank* (n — 1), and PU = 6, we have ¢" — ¢’ = aU for some real

constant «. [

* See Ref. 10.
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