No. 2 ESS

Service Programs

By MARSHALL E. BARTON, NEIL M. HALLER,
and GUY W. RICKER

(Manuseript received March 6, 1969)

The programming of a large switching machine requires that many
service functions be performed on a general purpose computer. This article
describes the service program package that supports the No. 2 Electronic
Switching System. This package includes an advanced macro assembler
to convert symbolic source programs into binary object programs, a loader
to combine independent assemblies, and a simulator to provide checkout
facilities.

I. INTRODUCTION

The No. 2 Electronic Switching System is a stored program control
telephone switching system. The minimum program consists of about
75,000 instructions arranged in 22-bit words and written in more than
50 separate sections. It is clearly impractical to write such a program
without extensive computer aids.

1.1 Functions

Major steps provided by the No. 2 ESS service programs are shown
in Fig. 1. The assembler separately converts each symbolic source
program from the language written by the programmer to the binary
language of the No. 2 ESS. The loader then combines these separately
assembled sections and resolves references between them. The output
of the loader may be used by the magnet program to prepare the punched
cards used in magnetizing the actual program store, or by the simulator.
The simulator, using tables prepared by the assembler, furnishes more
powerful program checkout facilities than would be practical on a
switching machine and provides these facilities before the laboratory
model is available. :

2865

2866 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

SOURCE SOURCE I SOURCE
PROGRAM 1 PROGRAM 2 PROGRAM N
ASSEMBLER‘W

OBJECT OBJECT e OBJECT
PROGRAM | PROGRAM 2 PROGRAM N

/
\

:
/

/
\

LOADER

MAGNET

SIMULATOR
NO. 2

DEBUGGING PROGRAM

INFORMATION STORE

Tig. 1 — Major steps in program processing.

1.2 Organization

The No. 2 ESS service programs run on an IBM 360 computer
system with at least 262,144 bytes of storage. They operate as a sub-
system under Operating System 360. This gives the users a uniform
interface to all service programs and isolates them from the complexities
of System 360 job control language.

1I. ASSEMBLER

The primary purpose of an assembler is to convert a source program
written in symbolic language to an object program which is in machine
(binary) language. The switching assembler program (swap) was de-
signed to do this for No. 2 ESS and several other stored program systems.
Each machine instruction is represented by a symbolic code which the
assembler translates to the appropriate bit pattern in the object program.

SERVICE PROGRAMS 2867

A programmer may assign a symbolic representation for any location
in the object machine memory and then refer to that location sym-
bolically in an instruction. By this method of reference, the program
can be changed without regard for location changes caused by the
insertion or deletion of words.

Symbolic addressing also allows a data constant to be defined with
a symbolic name and then used in many places. If the value of the
constant is changed, all the places it is used need not be hunted and
changed. The method of defining data as well as many other functions
is done through assembler control instructions called pseudo-operations.
A pseudo-operation does not usually result in object code, but tells
the assembler how to translate symbolic information it will encounter
in the program.

2.1 Input Syntax

2.1.1 Fields

The general form of a swap input line is anchored free field. This
means that, beyond column one, there are no restrictions as to where
on the line the information appears. The four major divisions of an
input line are called fields: the location field, if present, must start in
column one; the operation field follows the location field; the variable
field follows the operation field; and the comment field is last.

Fields must be separated by one or more blanks or a single comma,
except for the comment field which must start with a sharp sign (#).
(If a sharp sign appears in column one, the entire line is treated as
commentary.) The variable field, sometimes called the address field,
may be terminated in three ways: (z) any number of blanks followed
by a sharp, (#7) the physical end of the line, or (i7z) the logical end of
line which is indicated by a semicolon. When a line is truncated by a
semicolon, the character immediately following the semicolon is con-
sidered to be column one of the next line.

2.1.2 Continuations

A continuation may be indicated by the at sign (@) used in either
of two places. If an at sign is the last nonblank character on a line,
then the next line is a continuation. If an at sign appears in column one
of a line, then the line with the at sign is a continuation of the previous
line. In both cases, the lines are joined at the at sign which is discarded
by the assembler.

2868 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

2.2 Basic Pseudo-Operations

2.2.1 EQU, SET, and TEXT Pseudo-Operations

The most basic pseudo-operations are those that define a symbolic
representation for a quantity: the EQU and sET pseudo-operations
assign a numeric value to a symbol; the TEXT pseudo-operation defines
a symbolic name for a string of characters. While symbols defined
with sET and TEXT may be redefined, those defined by EQU may not.

Either of the following lines would assign the value 10 to the symbol
SYMB:

syMmB EqQU 10

symMmB sET 10.

To define or redefine the symbol vowELs with the string of five vowels
as its value, the following statement would be used:

VOWELS TEXT ‘AEIOU’

2.2.2 Jump and Do Pseudo-Operations

The pseudo-operations that allow the normal sequence of processing
to be modified provide the real power of an assembler. In swap, the
pseudo-operations that provide that control are yump and po. yump
forces the assembler to continue sequential processing with the indicated
line, ignoring any intervening lines. As an example, consider the following
sequence of lines:

JUMP .LINE
A EQU 2
.LINE;B EQU 3

The symbol A will not be defined because that line would be skipped
under control of the sump. The symbol .LINE is called a sequence
symbol and is treated not as a normal location field but only as the
destination of a sump. The first character of a sequence symbol must
be a period. The line that is “jumped” to may be either before or after
the Jump statement.

SERVICE PROGRAMS 2869

The Jump is taken conditionally when an expression is used as the
following example shows:

INC SET O

AAGINC SET INC+1 # INCREASE COUNTER
JUMP .XX,INC>10 # 18 IT OVER LIMIT
JUMP .AA # GO AROUND AGAIN

XX

The suMP to .xx will oceur only if the value of the symbol 1Nc is greater
than ten.

The po pseudo-operation is used to control an assembly time loop
and may be written in one of three forms:

() DO .LOC,VAR=INIT,TEXP,INC
(i7) PO .LOC,VAR=INIT,LIMIT,INC
(77¢) DO .LOC,VAR=(LIST)

Types 7 and 7 assign the value of INIT to the variable symbol vAr
and then assemble all the lines up to and including the line with .rLoc
in its location field. The value of 1nc (if INc is omitted, 1 is assumed)
is added to the value of var. For type 7, the truth value expression
TEXP is evaluated; if it is true, the loop is repeated. Type 7% compares
the value of vAR with the value of LiMIT; the loop is repeated if 1Nc is
positive and the value of vAR is less than or equal to the value of LiMIT.
If 1vc is negative, the loop is repeated only when the value of var
is greater than or equal to the value of Lrvrr. Type 7 assigns to VAR
the value of the first item in LisT. Succeeding values are used for each
successive time around the loop until L1sT is exhausted.
The following is an example of the use of po

DO AA,INC=1,3
GT INC
AA TCS TBL +INC

The assembler will produce the same output from these three lines
as from the following sequence:

Gr 1
TCS TBL+1

2870 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

GT 2
TCS TBL+2
GT 3

TCS TBL+43

2.3 Symbols and Attribules

Symbolic names are limited to fewer than 250 alpha-numeric char-
acters at least one of which must be alphabetic. The alphabetic char-
acters are considered to include the 26 upper and 26 lower case letters
as well as the underscore and percent sign. A symbol may be used
to identify a program store location, call store address, or a program
parameter. The value of a symbol may be a 32-bit integer, a character
string, or another symbol. In addition, every symbol may have up to
250 attributes which are 24-bit integers. The x attribute of the symbol
A is represented by x(a). The following line, for example, sets the
ALPHA attribute of the symbol sa to ten greater than the BETA attribute
of symbol sB.

ALPHA(SA) SET BETA(SB)+10

2.3.1 Symbol Types

Each symbol has an associated type character; a program store
location symbol, for example, has type 1. The type of each operand
in an arithmetic or logical expression is used to determine the correct
method of evaluating the expression. It is also used to check for illegal
combinations of operands and to appropriately mark the error.

2.3.2 Available Type Characters

Some of the available type characters and their meanings are:

A—absolute symbol

c—call store location symbol
p—program store data location symbol
I—truth valued symbol

L—program store location symbol
N—integer

T—text symbol

x—external symbol

2.4 Arithmetic and Logical Expressions

Arithmetic or logical expressions consist of a string of operands
separated by operators or parentheses. An operand may be an integer,
symbol, function call, attribute reference, indirect symbol, or character

SERVICE PROGRAMS 2871

string. A character string in an expression is represented by enclosing
the string in either single or double quotation marks and is converted
t0 a 32-bit binary integer when used in any operation except a com-
parison. An indirect symbol is a symbol defined by the text pseudo-
operation where the character string definition is a valid arithmetic
or logical expression.

The following is a list of the available arithmetic, logical, comparison,
and special operators, listed in the order of hierarchal preference;
the first to be evaluated are at the top of the list. The order of evaluation
may be controlled by the use of parentheses.

Special Operalors
“or” Indicates beginning or end of character string.
? Result is true when preceded by an operand.

Arithmetic Operators

**oor T Exponentiation
{* Multiplication
/ Division
unary — Negation
unary -+ No operation
+ Addition
- Subtraction

Comparison Operalors

These operators are all of the same hierarchal value and yield a
result of either true or false.

- Equals

> Greater than

< Less than

—i=or Not equal

=>,> =, or = Greater than or equal

= <, < =, or £ Less than or equal

The hierarchy of comparison operators is slightly different when they
are used in a double relation; for example, A <B<c will have a result
of true only when A is less than B and B is less than c.

Logical Operators
{& Logical intersection.
— The intersection of the left operand with the comple-

ment of the right operand.

2872 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

unary — Complement
| Logical union
! Logical exclusive or

2.4.1 Predefined Arithmetic and Logical Functions

Several built-in or predefined functions are available to aid in evaluat-
ing some of the more common or complicated expressions. The following
is a partial list of the available predefined functions:

D(EXP) Results in the value of the expression ExP with
any integers that occur interpreted as decimal.

E(EXP) The result is 2 raised to the ExXp power.

MAX(EXP, , - -+ , EXP;) Results in the maximum of xp, through Exp, .

PAR(EXP) Returns the even parity of the value of the
expression EXP.

STYP(EXP,C) Returns the value of Exp, but the type of the

result is the character c.

2.4.2 Programmer-Defined functions

To allow the programmer to define any number of new functions,
the prN pseudo-operation is provided. The general form of a function
definition is written:

DFN F(P; , Py, -~ ,Py)=A; :By , Ay i By, **, Ap : By

where r is the function name, the P, are dummy parameter names,
and the 4, and B, are any valid expressions that may contain the
P, and other variables.

To evaluate the function, the B, are evaluated left to right. The
result is the value of the A, corresponding to the first B, that has a
nonzero or true value. If B, is not present, it is assumed to be true;
also if all the B, are false, the value returned is zero. The parameter
expressions are evaluated, and these values are used whenever a dummy
parameter is encountered in the defining expression.

Two features are provided to allow an arbitrary number of arguments
in the call of a function. The first is the ability to ask if an argument
was implicitly omitted from the call (explicitly omitted arguments
are treated as zero). This feature is invoked by a question mark im-
mediately following the dummy parameter. If the argument was
present, the result of the parameter-question mark is the value true;
otherwise, the value is false. For example, the definition:

DFN INC(X, Y)=X4+Y:Y?,X +1

SERVICE PROGRAMS 2873

would yield the value 7 when called by 1§c@3,4) but the value of 1xc(@)
is 4.

The other feature is the ability to loop over a part of the defining
expression, using successive argument values wherever the last dummy
parameter appears in the range of the loop. This feature is invoked
by the appearance of an ellipsis (...) in the defining expression. The
range of the loop is from the operator immediately preceding the
ellipsis backward to the first occurrence of the same operator at the
same level of parentheses. As an example, consider the following
statement:

DFN SUM(A,B,X,Y) =A +X¥(Y +1) +. . . +B/2

The range of the loop is from the + between the A and the x to the +
following the right parentheses. The call sum(2,18,3,1,2,3) would yield
the same result as the following expression:

2-4-3%(1+41)+3**(2+1)+3**(3+1)+18/2.

The loop may also extend over the expression between two commas
as the next example shows. A function to do the exclusive or of an
indefinite number of arguments could be defined by:

DFN XOR(A,B,C) =A—1B | BT1A:—C?,X0R(XOR(A,B),C, . . .)

2.5 Macro Definitions

The real power of an assembler lies in the flexibility it provides the
programmer. The macro facilities incorporated in swap have more
than the necessary features to make it one of the most powerful as-
semblers available. A macro instruction is an abbreviated form for
a sequence of predefined instructions, pseudo-operations, or comments.
Whenever a macro is called, the predefined sequence is generated in
place of the macro call. The sequence of statements generated by a
macro may be varied by the use of any of the several conditional as-
sembly facilities provided.

The general form of a macro definition is:

MACRO
prototype statement
macro text lines
MEND

The prototype statement contains the name of the macro definition
as well as the dummy parameter names which are used in the definition.

2874 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

The macro text lines, a series of statements which make up the defini-
tion of the maecro, will be reproduced whenever the macro is called.

The following is an example of a simple macro that may be used
to move data from one call store location to another:

MACRO
LOC MOVE FROM,TO
LOC RED FROM
WRI TO
MEND

The subsequent macro call:

SAVE MOVE NEWDATA,OLDDATA
would generate the following instructions:

SAVE RED NEWDATA
‘WRI OLDDATA

2.5.1 Macro Arguments and Operators

The general forms of a macro argument are OP(ST) or PAR. OP is
called the operation part of the argument and includes all characters
up to the first left parenthesis. st is called the strip and (sT), the body
of the argument. PAR is an argument that is not of the op-strip form.
Several macro operators are available to allow the programmer to
obtain these parts as well as other pertinent information about an
argument. A macro operator is indicated by its name character fol-
lowed by a period and the dummy parameter name of the operand.
Tor example, the operation part of a parameter named ARe is obtained
by the use of 0.ARG, and the strip is represented by s.ArGc. Whenever
the op part of a argument is requested and the argument is not of the
op-strip form, a null value is returned; the strip of a non op-strip
argument is the entire argument.

2.5.2 Macro Subarguments

Many times the strip of a macro argument consists of a sublist
of parameters. Any subparameter may be accessed by subscribing the
parameter name with the number of the desired subargument. Additional
levels of subarguments are obtained with the use of multiple indexes.
As an example, let parameter ARG assume the value P(Q,R(s,T)), then:
ARG(0) represents P; ARG(1),Q; ARG(2),R(s,T); and ARG(2,2) would be
replaced by T.

SERVICE PROGRAMS 2875

The macro operators may be used on the results of each other as
well as on subparameters; for example, s.ArG(2) would refer to s,T.

The subargument indexes may be symbolic expressions that contain
other macro parameters as the following example of a macro with a
po loop demonstrates. A macro to copy data from one call store location
to any number of other call store locations could be written:

MACRO
COPY PARM
RED 0.PARM
DO .LOOP,K =1,N.PARM
.LOOP WRI PARM(K)

MEND

The number macro operator, N, is replaced by the number of sub-
arguments in its operand so that the po will loop as many times as
there are subarguments in pArM. The macro call:

COPY DATA(SAVE,HOLD)
will then generate the following instructions:

RED DATA
WRI SAVE
WRI HOLD

2.5.3 Macro Functions

To provide more flexibility with the use of macros, several system
parameters and macro functions have been made available. A macro
function call is replaced by the string of characters that is its result.
The arguments of a macro function may consist of macro parameters,
other macro function calls, literal character strings, or symbolic var-
iables. An example would be the pEc macro function, which has a
single argument that is a valid arithmetic or logical expression. The
result is the decimal number equal to the value of the expression;
the call pECc(7 +8) would be replaced by 1s.

The three major macro functions are:

(%) 18(expression,string) is replaced by string if the value of expres-
sion is nonzero; otherwise, the result is the null string.
(i) 1rNoT(siring) is replaced by string if the expression in the previous
1s had a value of zero; otherwise, the result is null.
(i75) STR(exp,exp.,siring) is replaced by exp, characters starting with
the exp, character of string.

2876 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

A more sophisticated example of the use of macro functions is this
version of the copy macro:

MACRO

COPY PARM

RED O0.PARM

DO .LOOP,K=1,N.PARM

.LOOP IS(‘PARM(K)’ = ‘HOLD’,HGR)IFNOT(WRI PARM(K))
MEND
Using the above definition, the call:
COPY DATA(SAVE,HOLD,LOC2)
would expand to:

RED DATA

WRI SAVE
HGR
WRI Loc2

2.5.4 Keyword Arguments

It is often convenient to be able to override the positional relation-
ship between the dummy parameters on the macro prototype line and
the arguments on a macro call. This may be done when the macro is
called by writing the parameter name followed by an equal sign and
the argument string. An argument of this form is called a keyword
argument. An example would be the following calls of the move macro.

MOVE FROM=NEWDATA,TO=0LDDATA

or

MOVE TO=OLDDATA,FROM=NEWDATA

Both calls will expand to the same instructions as the expansion of the
MoOVE macro without keyword arguments.

2.5.5 Default Arguments

Another convenience is the ability to have a standard, or default,
value for a parameter. The default value would be used whenever the
argument was omitted from the call. The default value must be assigned
on the macro prototype line by an equal sign and the default value
after the dummy parameter name. Another version of the MovE macro
is an example of assigning default values.

SERVICE PROGRAMS 2877

MACRO

MOVE FROM =TEMP, TO=TEMP +14
RED FROM

WRI TO

MEND

The call:
MOVE TO=OLDDATA
would then expand to:

RED TEMP
‘WRI OLDDATA

2.6 Automatic Instruction Insertion

No. 2 ESS instructions are put in the format of one or two per word.
The half-word instructions of the No. 2 ESS occasionally cause a no-
operation (NoP) instruction to be required. When there are an odd
number of half-word instructions between full-word instructions or
when the destination of a transfer would otherwise be in the middle
of a word, a Nop is inserted by the assembler.

The half-word transfer commands specify a five bit address. The
destination of such a transfer is thus limited to the same block of
32 words as the transfer. An instruetion (r1n) is available to extend the
addressing range to 1024 words by leaving five bits in a buffer. The
assembler will give an error message each time a short transfer is used
that: (7) requires but does not have an associated rrv, (74) has a FIL
that was not needed, or (777) is insufficient even when a FIL is used.

When the programmer adds or deletes an instruction, a short transfer
may require a FIL where it was not previously needed. swaP inserts
the appropriate FiL instruction wherever it is needed and attempts
to place it where a ~Nop was required in the right half of a word. It is
extremely difficult to have only the minimum number of FiL’s and,
therefore, some extra Fin commands will be inserted in the program.
The automatic FIL insertion feature may be turned off if the programmer
so desires.

2.7 Text Manipulaling Facilities

Some of the more exotic features provided by the switching assembler
program are the character string pseudo-operations and the dollar
functions, so called because the function names all start with a dollar
sign.

2878 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

2.7.1 HUNT and SCAN Pseudo-Operations

The HUNT pseudo-operation allows the programmer to scan a string
of characters for any break character in a second string. It will then
define two TEXT symbols consisting of the portions of the string before
and after the break character.

The scan pseudo-operation provides the extensive pattern matching
facilities of sNoBoL3 along with success or failure transfer of control.’
These features, too diverse to be discussed here, are covered in the
references.

2.7.2 Dollar Functions

Dollar functions are very similar to maero functions in that the
result of a dollar function call is a string of characters that replace
the call. The dollar functions may be used on input lines as well as
in macros. For example, $(rsyM) would be replaced by the character
string which is the value of the text symbol Tsym. A very useful feature
of the dollor functions is in the ability to call a one-line macro anywhere
on a line by preceding the maecro name with a dollar sign and following
it with the argument list in parenthesis. For example, the macro:

MACRO
CHECK A,B

18(A <B,DEC(B—A) MORE)IFNOT(DEC(B— A)OVER)

MEND

could be called by:

X BET 5
LGR X # $CHECK(X,8)

but the line would appear in the assembly listing as:

LGR X # 3 MORE

2.8 The Assembly Listing

Since the input line format for swap is free field, the assembly list-
ing of the source lines may appear quite unreadable. Therefore, the
normal procedure is to have the assembler align all the fields when
a line is printed. For example, a programmer may punch his cards:

TRA LOC # GO BACK
REST LGR 7; GRXAA # LOAD AA

SERVICE PROGRAMS 2879

but the assembly listing would show the lines thus:

TRA LOC # GO BACK
REST LGR 7
GRXAA # LOAD AA

The position of the fields as well as the position of the line is a pro-
grammer option. Some of the other options that are available to control
the format of the listing are: double spacing, titling at the top and
bottom of each page, and several classes of lines that may be printed
at the programmer’s discretion.

2.0 Inputs

SWAP may receive its original input from a card, disk, or tape data
set. The source pseudo-operation allows the programmer to change
the input source at any point within a program. Another source of
input is the EpITOR program, which provides extensive facilities for
making changes or corrections in a program.

2.9.1 The EpiTOR Program

Any swap input line that contains a colon in column one is assumed
to be an EpITOR control card and, therefore, invokes the EDITOR program.
The EprTOR is then responsible for retrieving a source data set, making
the indieated changes, and passing each line back to swar to be as-
sembled. The mpIiTOR provides facilities for inserting, replacing, or
removing lines as well as modifying a part of a line and moving or
copying a group of lines to another position within the data set. Since
the normal output of the EprTOR goes directly to the assembler, the
original data set is not changed unless the programmer explicitly re-
quests that the changes be permanently incorporated in a new copy
of the data set.

2.9.2 Libraries

swAP also has facilities to save symbol, instruction, or macro defini-
tions in the form of libraries which may be loaded later in another
assembly. When, for example several programs make use of a common
set of macros, it is desirable to obtain them from the same source.
The sourceE pseudo-operation could be used for this, but it would
require that each symbol, instruction, or macro be completely processed
by the assembler. As this is relatively slow and inefficient, a method
of producing a library which contains the processed definitions is
provided. Later, if a program requires it, those definitions may be loaded
and used, bypassing the costly definition process.

2880 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

2.10 Outputs

The output of the assembler normally consists of the assembly
listing and the object program module (see below) but other outputs
may be obtained upon request. The libraries are one example. Special
outputs can be produced from stylized comments included in each
No. 2 ESS program. One type of comment provides information so
that a flowchart of the program can be generated by machine. Another
type of comment is used to produce a manual explaining all the tele-
typewriter messages that the program might issue.

Also provided as an optional output of the assembler are the results
of the macro expansions and dollar substitutions. The programmer
controls the format of each line as well as the deletion of undesired
lines. This allows the assembler maero facilities to be used to produce
an input data set for any of the No. 2 service programs or IBM 360
support programs.

III. LOADER

The LOADER program accepts output from swap assemblies. The
assembled programs are combined and placed on disk storage as a
paged image of the program store. All interprogram linkage is per-
formed; that is, all external symbolic references are resolved. The
program store image is in the form required by the simulator or twistor
card preparation program.

3.1 Object Program Module

The output of a swaP assembly is called an object program module.
All object program module’s of a project are normally contained in
a single partitioned data set. They may exist only on a direct access
device, although they may be saved on magnetic tape. There may be
a number of object program module’s for any program, reflecting
various stages of development. The assembler creates a PRIVATE, or
working copy. A utility program creates a puBLIC copy from a relatively
debugged PRIVATE copy (and pushes down the other PuBLIC copies).
The LoapER normally loads the most recent PUBLIC copies but may
load others as described later under the Loap verb.

3.2 Ouiputs of LOADER

3.2.1 Program Store I'mage

The primary output of the LOADER is a paged image of the program
store. Tt is made up of a 2048-byte record for each two planes (512

SERVICE PROGRAMS 2881

ESS words) loaded, plus a directory to indicate which plane is on
which record.

3.2.2 Printed Oulput of LOADER

The LoADER produces four printouts. These are shown in the Appendix.

All control eards processed by the LoADER are listed. Diagnostics
are self-explanatory; any error flags are explained at the end of the
control card listings.

Unless suppressed, a loading map is generated. This map includes,
for each program loaded, the version (PUBLIC or PRIVATE), time and
date of assembly, first and last locations in the program, the number
of a tape (if any) on which the assembly listing is stored, and a remark.
The remark indicates whether the program was implicitly or explicitly
loaded (see Section 3.3). If a program could not be found in the object
program module data set, it is marked undefined. Printed below the
loading map is a statement of whether any areas of the program store
were loaded more than once. If overwrites were present, they are listed.

If a cross-reference table is requested, it lists all external references
that were resolved by the loader. This may be a very large list. If the
listing is not requested, only those references for which a diagnostic
is generated are listed. The cross-reference table may be sorted by
symbol name.

3.3 Implicit Loading

Unless Expricit loading is specified, mvpricrr loading is assumed.
This means that any program that is referred to by one that has been
previously loaded is also loaded. It is, therefore, possible to load all
programs by explicitly mentioning only one. Programs not wanted
may be excluded from the loading,.

3.4 LOADER Fealures

The function of the LoADER is best deseribed by describing some
of the primary verbs.

3.4.1 LOAD Stalement

The roap statement deseribes which programs, and what versions,
are to be loaded. An unqualified program name indicates the latest
PUBLIC version. Program names may be qualified by PRIVATE or a
date. When the privaTe qualification is used, the PRIVATE version is
loaded. When a date is specified, the latest version assembled not
later than that date is loaded,

2882 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

Example: LOAD BLMM IOMAINT(PRIVATE) IOTEST(6/12/69)

3.4.2 EXCLUDE Statement

The EXCLUDE statement lists programs to be excluded from implicit
loading.

Ezxample: EXCLUDE CSUB PCMAINT

3.4.3 SET Statement

The sET statement defines or changes the value of a PuBLIC symbol;
that is, a symbol to which an external reference is made. In Example 1,
the symbol RETURNI in the program BLMM is given the value 10436
octal. Example 2 equates the symbol sus23 in the program 10sUB to
the value of suBA2 in csUB.

Example 1: SET BLMM.RETURN1 = 10436

Example 2: sET 108UB.8UB23 = CSUB.SUBA2

IV. SIMULATOR

The No. 2 ESS simulator, sMiLg,* provides a powerful program
checkout, or debugging, facility. It is also a vehicle for investigating
the effects of proposed system changes.

4.1 Swmulation

A typical user assembles his program, loads it along with related
programs, and simulates it to find errors (see Fig. 1). He requests
printouts of pertinent data at points where he expects specific results.
If the results are not right, he examines all of the outputs. If he fails
to find the trouble, he will simulate again, producing more output
around the problem area. In this way, he can close in on the error.
A map of the path taken by the program at each branch and a printout
of the contents of the registers are tools for finding out what went
wrong.

Proposed system changes can be evaluated using the simulator.
For example, the effect on system capacity of changes in command
timing can be studied by incorporating the changes into the simulator
and observing the effects by simulating the call processing programs.

SMILE is an acronym for switching machine interpreter for lazy engineers!

SERVICE PROGRAMS 2883

4.2 Objectives of SMILE

The main objectives in the design of sMiLE were completeness of
simulation, ease of use, and speed. It is thus possible to simulate a
complete call using few control statements in a reasonable amount
of IBM 360 time.

4.2.1 Coverage

SMILE simulates most processor commands, some No. 2 ESS input-
output, but no internal wired logic. All commands used by the non-
maintenance programmer are simulated. To perform No. 2 ESS input-
output, special control statements have been developed. These enable
one to place digits into originating registers at specified times. Other
more general control statements allow loeations in call store to be
changed based on the reaching of specified program store locations
or the passing of a specified amount of No. 2 ESS time. Special No. 2
ESS output messages are produced on certain external commands.
All of these features are discussed in more detail in the following
paragraphs.

4.2.2 Fase of Use

In order to make SMILE easy to use, default values on everything
possible have been set to the most eommon value. For example, call
store words are initially zero, and all scanners are initially ones. Each
input to sMILE is written in the natural language for that item. Time,
for example, may be written in eycles, microseconds, or milliseconds.
Program store addresses and call store addresses are assembled and
specified symbolically.

4.2.3 Speed

To be useful in a practical environment, a simulator must be fast.
The simulation of a typical ESS instruction takes less than 30 micro-
seconds on an IBM 360 model 65. This basic simulation ratio of better
than 10 to 1 (elapsed time to simulated IESS time) is achieved by trading
space for speed in the more common routines.

Another contributor to sMILE’s speed is the preprocessing of econtrol
statements that will be performed during simulation. Control state-
ments are converted to interpretive code which is executed each time
the function is performed. The interpretive code produced must run
fast, with little consideration given to how long it takes to produce
the code. The interpretive code produced must not use a lot of core

2884 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

because this would greatly limit the number of control statements
possible.

Generation of outputs consumes a large portion of running time,
S0 SMILE limits unnecessary printing. Unless told otherwise, sMILE
only prints a final dump of the nonzero registers and call store, and
a few error and special messages. Error messages are automatically
turned off after ten of a kind have been printed. To produce more
output, the user must explicitly ask for it.

4.3 Control Language

4.3.1 Initializing Statements

The control language that has been developed is natural and easy
to use. To initialize a register, one merely writes an ‘="’ statement
as follows: () name of register, (i7) =, and (#) value to be stored
in the register. For example, GR = 1243. Since No. 2 ESS programmers
are accustomed to octal code, data constants are interpreted as oetal
numbers. Counts and time are interpreted as decimal numbers. To
initialize a word in call store, one writes an ‘="' statement as follows:
() symbolic name of area in call store or octal address, (iz) =, and ()
value to be stored. For example, cSTBL = 421 or 2310 = 1337.

Of the two groups of scanners in the No. 2 ESS, one is primarily
used for lines and the other for trunks. “TRUNK(,4)” refers to row
number 4 in trunk seanner number 3. “LINE(2,5,3)" refers to bit number 3
of row number 5 of line scanner number 2. These functions may be
used on the left side of ‘“='' statements to initialize the scanners.
For example, TRUNK(3,7,2) = 1 Or LINE(5,4) = 176777.

4.3.2 Plants in Program Store

Simulation can be interrupted when specified program store loca-
tions are reached. At a location, a set of features can be planted. These
would be performed each time that location is reached. Initialization
statements as well as other features can be “planted’ at a location.

4.3.3 Time and Automatic Interrupis

As each command is simulated, the timer is incremented by the
amount of time the command takes in the No. 2 ESS. Concurrently,
a check is made to see if the user has requested an interrupt at this
point. There are three ways a user can request such an interrupt:

(¢) The TIME control statement says to perform the “‘range” (control

SERVICE PROGRAMS 2885

statements after the TiME and before the next TIME or plant) when
the timer reaches the time specified by the first operand. If there is
a second operand, the range will be performed again when that amount
of time has elapsed, and each time thereafter. If a third operand exists,
it tells when to stop processing this TiME.

(#7) The AFTER control statement is similar to the TmME control
statement except that it is planted at a loeation. Its first and second
operands correspond to the second and third operands of the TIME
control statement. It enables a programmer to interrupt after a certain
amount of time has passed after reaching a certain location.

(7727) The 1vouT control statement generates other control statements
which create an 1NouT interrupt at the time indicated by the first
operand. For ease of use, 25 milliseconds is assumed if the first operand
is missing,

4.3.4 Digit Insertion into Originaling Register

A digit control statement places digits into an originating register
in call store, one for each time the control statement is encountered.
The verb pigpP, DIGMF, or DIGTT indicates how the second operand
list is to be interpreted—dial pulse, multifrequency, or Touch-Tone®-
dialing, respectively. The first operand indicates which originating
register receives the digit. The second operand is a list consisting of
symbolic codes indicating which digits are to be deposited.

If, as is usually the case, the digit control statement is used in the
range of a TIME, the first digit is deposited at the time indicated by
the first operand of the TiME, and successive digits are deposited at
increments of time indicated by the second operand of the TivE. If
the digit control statement is planted in a range at a program store
location, the digits are deposited one at a time each time that program
store word is simulated.

4.3.5 Symbolic Input

sMILE has been designed to allow symbolic reference to program
store locations. A program may thus be changed without modification
of the control statements. The swap assembler produces a symbol table
with equivalences which the simulator uses. When symbols from several
programs are referred to, it is necessary to indicate to which program
each symbol belongs. The prefix notation is one way to do this.
INI.LOOPMORE is used to refer to the location LooPMORE in program
nT. Prefix notation is used when a small number of symbols are needed
from a given program.

2886 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

The sYMBOLS PRNAME control statement informs smiLe that all
nonprefixed symbols between here and the next symBors control
statement are to be found in the symbol table from the program PRNAME.

4.3.6 Conditions

The ability to conditionally perform various control statements
dependent on the comparison of variables is an essential part of the
simulator control language. The 1r and UNLEss verbs enable one to
perform these comparisons in a natural manner.

“rp GrR = 2" means to perform the next control statement if the
contents of the general register (Gr) is 2. Four relations are permitted:
= (equal), < (less than), > (greater than), and — (not—used as
a prefix). Combinations are also permitted: <=, >=, —1=, 7>,
—< =, and so on. The not sign (—) negates the entire relation regard-
less of where it occurs.

“yNLBEss LR=4" does the same thing as “r LR —1= 4. A condition
applies to the single control statement that follows it, unless that
statement is a BEGIN. Then the condition applies to the “block” of
control statements starting with the BEGIN and ending with a paired
END. Blocks may be nested up to a maximum depth of ten.

The expressions used on both sides of relations and “="" statements
may include registers, constants, call and program store symbols,
scanner funections, and the special dummy registers xo through x20
combined with the following operators:

@ indirection (constant refers to call store)
** integer exponentiation

{* multiplication

{/ integer division (truncated)

+ addition

— subtraction
& logical AND
| logical or

() parentheses may be used to alter the above hierarchy (opera-
tions on top are performed first).

For an example, consider: “IF GR = @(CSTBL+X0)*2+5&3740.”" The
contents of dummy register xo (which was previously set by something
like X0 = 12 or X0 = x0+1) is first added to the address csTBL. This
sum is used to index into call store. The word thus obtained is saved
while 2 is raised to the fifth power. Next, the saved word is multiplied

by the power and the result is masked by 3740.

SERVICE PROGRAMS 2887

For another example, consider: ““1r AA = LR|GR&AA —CA* LW*@CSEXP."”
The operations will be performed in the exact reverse order of the way
they are written since each successive operator is higher in the above
list than its predecessor.

4.3.7 Normal Sequence Breakers

In the process of using conditions, it is often desirable to jump over
a set of control statements. This can be done by using the sump verb
followed by a sequence symbol and by placing that sequence symbol
just before the control statements with which processing should con-
tinue. This is a branch among control statements. Sequence symbols
are by definition symbols which start with a period. For example,
in the following input stream: “.casE1” and ‘‘.casme” are sequence
symbols:

IF GR 1236 JUMP .CASEl

IF LR = 42 JUMP .CASE2

JUMP .0OUT

.CASE1l GR = 12 SNAPTR JUMP .OUT
.CASE2 LR = 1232 SNAPTR JUMP .OUT

“yump .ouT” naturally means to jump out of this range and go back
to simulation at the point it was interrupted.

It is often desirable to skip over a section of program or go to some
other place. This can be done by using the goro verb followed by a
program store address (symbolic or constant). For example, coTo
LOOPMORE +2, OT GOTO LOOPMORE —1. This is a branch from performing
control statements to the simulation of a particular program store word.

The verb which specifies the end of control statement processing
and the start of simulation is sTArRT followed by the program store
address where simulation is to begin. No address means simulation
starts at the origin of the first program loaded.

4.4 Outputs

4.4.1 Transfer Trace

Transfer tracing is the process of following the flow of a program
by printing out a line every time an instruction is executed out of
sequence. Each line of trace output includes the type of branch and
ten data words. The different types of branches are:

ADV advance command (when progress mark found)
GoT0 GOTO control statement

2888 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

PA= = control statement

PIBn program interrupt begin command

piEn program interrupt end command

TrRACE all transfer commands (when transfer is taken).

There are two eontrol statements used with tracing:
TRACE N
FORMAT LIST.

The TRACE N control statement starts tracing and continues until
N lines have been printed. It may be placed in the initial input stream,
at a loeation, or in the range of a TiMe. In the FormAT control state-
ment, nLisT indicates which registers, call and program store words,
seanner rows, and special registers xo0-x20 are to be printed. Further-
more, the rorMAT statement is dynamic; it can be used not only in
the initial input stream but also as a plant or in the range of a TIME.
If a FORMAT statement is not encountered first, a default rorMaT is
automatically generated whose LisT is “GR, €A, @CA, AA, KM, LR, LM,
LW, RF, TB.”

4.4.2 DSNAP and SNAPTR

A handy debugging device is the psnaP statement which prints out
all registers and eall store words that have changed since the last psxap.
The first pDsNaP prints out all nonzero words. This type of output
is slow since it has to compare the current contents of all of call store
with the previous contents and also save the current as the new previous
and print several lines showing changes. This kind of tool, although
slow, can find errors that would otherwise go undetected. A wild write
into call store shows up very quickly.

Whenever it is encountered, the sNapTR feature causes the printing
of a TRACE line. It and all the other features can be planted at a program
store location or caused to happen at a given time.

The paTATR feature is a special feature which causes the printing
of a TracE line after each occurrence of the paTa command. The pATA
command is used to retrieve data, such as translations, from the program
store. A paTA trace effectively records the progress of a call by monitoring
the translators. DATATR is usually placed in the initial input stream
but can also be planted or put in the range of a TIME.

4.4.3 Special Messages

Most of the external commands are accompanied by special printouts.
These printouts give pertinent information so the programmer can

SERVICE PROGRAMS 2889

see if the program produces the necessary outputs to perform the desired
switching. Several other special messages are associated with the
hold-get counter and transfers.

PRINT control statements control the printing of the above messages.
The default case is to print each message ten times and then suppress
the message. The pRINT control statement can turn a message OFF,
or oN, or oN for a certain number of times. This statement is also
dynamic—the oN-OFF-COUNT status of any message can be changed
during simulation.

4.4.4 Final Dump

At the completion of each simulation, an automatic dump of all
nonzero registers and nonzero call store locations is given. The dump
takes the form of a DSNAP assuming the previous nsnap was all zeros.

4.4.5 Symbolic References to Program Slore

With each request for output, the following header prints on the
left side of each line:

(7) The current No. 2 ESS time.

(77) The current contents of the program address register. (The
location of the plant. On transfers, the from location.)

(i72) The symbolic equivalent of the program address which includes
the symbolic name of the program, the nearest previous symbol, and
the increment from the symbol.

(iv) The name of the feature.

On features requiring multiple line output (like psxap), the header
information appears only on the first line. The remaining fields are a
function of the feature requested. For example, while tracing, there
are ten data fields. For special messages, it may be a sentence with
a variable inserted. Examples are shown in the appendix.

4.4.6 Teletypewriter Oulpul

During simulation, a user’s program may request the printing of
No. 2 ESS teletypewriter messages. This is done by having the No. 2
ESS teletypewriter program produce printing and control characters,
one at a time, during the 25 millisecond interrupt. This stream of
characters is saved on a scratch data set. When the simulation of the
user’s program is complete, control may be passed to a special set
of control statements which will cause the teletypewriter program, via
a fast simulation, to generate all characters in any remaining messages.

2890 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1069

When all simulation is complete, the teletypewriter post processor sorts
by teletypewriter number and prints all the saved characters. This
last step is omitted if the user never starts any teletypewriter messages.

4.5 Internal Structure

SMILE consists of three basic divisions: input control statement
interpreter, command simulator, and teletypewriter message processor.

During the first phase, all control statements are scrutinized. Flags
are planted where indicated functions are to be accomplished, the
interpretive code required to evaluate expressions is generated, and
a queue of all time-based interrupts is formed.

When the last control statement, sTART, is encountered, phase two,
the actual simulation, commences. Each command from the program
is simulated by a subroutine selected by using its operation code as
an index into a transfer table. Input and output functions are performed
when flags requesting them are encountered. The interrupt list is
checked each time a command subroutine increases the timer. Ranges
are executed whenever they are reached. Expressions are dynamically
evaluated each time they are encountered and conditions are performed
based on these results. Whenever a ‘‘sTop” or an unrecoverable error
oceurs, the simulation phase stops, and post processing takes place.
Any teletypewriter messages generated during simulation are finally
printed.

V. SUMMARY

The service programs described in this article comprise about 50,000
words, about two-thirds of which are the assembler. These programs
are now in use for the No. 2 ESS project. The assembler was designed
to be common to several projects at Bell Laboratories, and the authors
wish to acknowledge the contribution of Messrs. R. E. Archer, A. J.
Emrick, and E. Walton to the design and implementation of this
program.

Typical execution times are one minute for assemblies (up to two
minutes for 250 page assemblies), one minute to load all programs,
and one to three minutes for simulations. The use of the powerful
facilities of swap varies greatly among programmers. Some make
extensive use of the macro features; others, almost no use. This appears
to be caused by the difficulty of learning these features well enough
to use them effectively. Once a programmer overcomes this obstacle,
he uses the tools often.

Most system programs have been extensively simulated; as a result,

SERVICE PROGRAMS 2891

they were relatively debugged before being tested in the laboratory
model. For example, only five program bugs were found using the
laboratory model before the first call was completed. The simulator is
expected to continue to be a valuable tool for the life of No. 2 ESS
program development.

REFERENCES

1. Farber, D. J., Griswold, R. E., and Polonsky, I. P., “sNoBoL, A String Manip-
ulation Language,” J. of the Association for Computing Machinery,
11, No. 1 (January 1964), pp. 21-30, and “The snoBoL3 Programming Lan-
guage,” BS.T.J,, 45, No. 6 (July 1966), pp. 895-944.

APPENDIX
Computer Samples

The tables on the following pages are photographic reproductions
of computer printouts.

THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

2802

NE Vaival

®Z 39vd 17 anssl BALL 39vd X308I NO 3D1LON 3AILDI&1S3Y 13¥D3S 3AWHL 335 slllm._t._.
H3BWNN ONILSIT WYHOOHd —— =51 OHZ-¥d _— HY¥D0d 3dAL3TAL SS3 T ON 3HL 0 7 1¥¥d =dALL
JON 031d3SNI JYMS——— o ———————————————— ———3NIT 40 3dAL
HEITVIVS vl | 051098 nENZno nERZNO Lt 95EZNO
(97AL’L SDTAL'L)¥I¥d w11 | 6n -L00- winiL0 12 L SSEZNO
TANNYHO ALL ‘INO3TLIL #3 H411=d0 IS0 NT¢ | ALII &% E98 SSEZND
HHI VIV S walL | Ln 198 hERTHO nENZNO 13 hSEZNO
(0AL*L sOTAL'L)¥Ovd 411 9n -100- ninLLo LZ L ESEZNO
3214835 40 N0 ST TINNVHD SIHL 11 ¥17=do 0sDl NI¥ | SO Sn Q98 ESEZNO
HATINLVS ¥§L | nh 858 nENZNO nENZNO 1L ZSEZNO
(47AL“L SDTALL)NIvE 11/ £n -100- oEhLLO LZ L LSEZNO
d0HY3 LVWHOd " d4711=40 4501 NV 34 Zn LS8 LSEZRO
OINNVL vuL/ Lh S50 £onZno £0RZN0 L 0SEZHO
aonn1” ob doo zE E..:m.uw..“
JOMNd TILYd » LKS 6(ns8 [Y LoEZN
(37AL*L SO”AL’L)HOv4 ¥17 86 -100- 0ENLLO vzl u:ﬁn._a.mm_m,oﬂ:.w__n_ﬁu_
AY13Q ON ‘HOWMI LVWHOA 13 dT7=do SSO| NTY ON33 (f 158 9neETNO
9NNV ¥ IA ONISNH N3G AVH 3O¥SSIW LOdNI 3HL s SE LS8
SY 1M 3WVS 3HL K1 S3W 'd0Oudd¥ 3HI QVOT AIHL ‘Q3TIVD NIHM e8 hE 0SB
“S19¥SSAN LE@WINAIIMONNIY JHL 3@V SANILNOY ONIMOTIOS IHI 4 €0 6n8
o SS3HAQY HISSNVHL 313TdWOD
f .“.,J\JOmE»m Q3 NY3LX3
1NN0D H3AGYO ILI¥MIM 'd3LS NI MOK FHY ATHL ‘S3A 1 LELTdm wiL 67 LN 000000 _,l 000000 LL L SNEZNOD
JLIUMY BT 9NE ¥ SHEZHO
43040 LXAN HI3HD ‘ONg+ LasKI SHOL Lz uni LEgzno dif mo ¥hnEZN O
!’ LASKI ZII4NI 9z LEEZNO d 90 ni ::mu._u
Q7314 SHHYWSH - YR 5T nn@ 1t HENEZN
2d¥ED nZ ing aal\\wmwwﬁ\.mlumlmala.m__m%%DEmz_
NY OONY Jd JUCLSIH » HOXW1 ET Ihe ume LE HZHEZN O JVH LHOIY
n 10 ZT Luk 9L L €l Znrzho
400D JOLE Bad LHAL 8 HOXMT LT onE dig of HLREZH O
AULNE TTHLGHO 13D v v1va 0Z BEY e s? LnEZno
WIHED 61 9E8 dzo Lt HONEZH O
dd HAYS ¢ HOXAY HL L8 0 LE [Liz4]
AHING 18LOEO d0 SS340aV » ¥ AU LL SEE diLoer MLEEZNO
5$53400¥ JI0 YO 3AYS _LE L tELzno N4 A31HISNI
378Y1 LVWH0J HIOHO NOWKWOD 350 'S3A » TELHOD HO SL hER 000000 LT 9rFzng dvms
| dOHNT | ni doo ¢ ¥SEETH O
7161040 3S0 ‘ON HdON sNoL/ £l EEB LEEZNO LE nO SEEZND d«— SOV
Zheon zI1ant’ 7L tEzno d9o ni HNEEZNO
IVHEQd HOWWOD SIHL SI1 # LGk LL e sf ZE nEEZNO
43040 SIHL d04 AMINI T6E10¥0 QWY » 1810%0 o oL LE® 000000 00 L EEEZRO
¥aoa3g WSl 60 -L00- GOSEND S0SEnD e TEEZNQ
¥OOUIE IT¥D 80 0£8 A _ zerzng NOLONBASNI
Y300 XA N NITHD A wwiav L0 678 | diz 92 ¥ THLEEZn o JHOM
AINOJ ¥30d0 OL L Q4d¥ = \ ¥380¥ LdSNI 90 8Z8 |\ __.. 9L 9Z L LEEZnO 47vH 1337
L \ fo—— kA
*(17%Ws doOT IHL 43N\ \ | *? 0 9ZB | | 3007 do \ —S5350Qv
1N6 10N S1 3NO 1NISIHd FHL MONN 3M 35u000 dol | \ \ ! £0 T8 / /Illlltm vl
IAVYN WYEOOHG - *ION 41 ANO 1X3N Tl 139 ONV WICH0 d01S ¥ SI L1 4T ¥IIHD | \ o0 ZOnZE L
g O T~ _'M3040 IN3SEHd 3HL 0¥3Y OL YOOOIH ¥OJ dn IIS MON FWV 3 | \ ,.v. L0 €28 \ ——(0 HO | Y3IHLIZ) L8 ALEvd
AHYHEIT 0EWAS ..n.fm. fvn:.n.irmr: Qi3 3TaviHvA—— \ i ﬂ r, L NOISNYIXT OHDVYN
NOISHIA d¥mS— T NOILONYISNI——- Wby <——(ANY 41) 3LILENS
e 89/60/L TLIGE T QOBWAS NOILYIOT-—— ' | | Wveoowd 10dNT 13A37 35v3 ALL - ITEALI<——37LIL
wigwnn A -, Ly QyvDd INZWWOD—— \ |
3dVL ONILSIT \ \ yIBANN aNm—-2 L
AIBWISSY =0 31v0 ONY JWIL——————— 4 HISWAN NOILYDIHIQOW—--

NOANTTOTIT IMMOgOIWVIooLr

TTIJINVYOl——T r1av T

SERVICE PROGRAMS 2893

TasLE I1I—LoapEr CoNTROL CARDS

PRINT XREF
LOAD 10
LOAD TESTPRIIPRIVATE)
LOAD TESTPR2 TESTPRS
L EXCLUDE TESTPR4,TESTPRS & PRGMS NOT YET DEFINED.
]
L] UGLY NOT AVATLABLE, USE TESTPRI

AL1AS TESTPRL UGLY
EXCLUDE UGLY

u MISTAKE
SET TESTPR2,5YM12 = 5236
SET PR13,ALPHA = TESTPRZ.BETA
SET CPDIG.IOSTOP = IOMAINT.I10PAUSE
SET CPOIG.NSTORES = 3
ALIAS 10, IOMAINT
ENDL

L FLAG MEANS PROGRAM TO BE EXCLUDED WAS EXPLICITLY LOADED ABOVE.
U FLAG MEANS INVALID VERB - IGNORED.

TaBLE 1II—LoapiNGg MAP

VERSINN PROGRAM ORIGIN LAST ASSEMBLED REMARKS TAPE

palvate (0O 17600 17664 11:33:33 2726769 EXPLICIT FOT2
PRIVATE TESTPRIL 03002 05012 17:35:00 1/20/69 EXPLICIT Al05

PUBLIC O TESTPRZ 10000 15002 10:47:i44 1/15/769 EXPLICIT (B850
PUBLIC O TESTPRS UNDEF INED
PUBLIC O CPDIG UNDEF INED
PUBLIC O TESTPR3 20130 20145 Gil&a:idb 12/06/648 IMPLICIT 1326

OVERWRITES WERE ENCOUNTERED. SEE FOLLOWING PAGE.

THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

2894

S00010
ooooto
290600
790800
290500
690500

INTYR Wil AYETS0Ed NI ONNOZ

28al1531
ZudlS3l
T8d153L
THd1531L
ledlS3L
1dd1531

290500
290500

0E10c0
$00010
500010
ooos1ta
000s10
000sTO
000s10
ooosla
0Qos10
000s10
ooos1o
000510
000s10
000s10
000s10
ooosio
ooos10
000519
000s10
000s10
ooosl1o
000510
goosio
100010
100010
ooo0T10
Qoooto
oooo1tlo
£00000
£00000
0EFLT10

AT90

AT9n

A79N0

AT9n0
CediS3l
édd1S3l
ZddlS3l
cudlS3l
€¥d1S31
cudl1S3l
24d1S3l
Z¥d1531
cudlS3l
2dd1531
Zud1S3l
2udl1S3l
Zdd1S31
2ddisS3l
ZyudlsS3l
€dd1S3l
ZHdlS3l
Z¥d1S3l
cud1sS3l
Zdd1531
Zudis21
Z¥disS3l
2udis3l
Zdd1531
2dd1531
Zdd1531
2dd1S3l
2441531
Zdd1S31
Zudl1S3l
Z2¥d 1531
2¥d1531

91042

91043

91042

0

1: = JWIL

isd
1Sd
THWVD
THd Y
Z2Sd
2sd
T15d
ERH
vHE3?
VWY D
VHWYD
v1130
vi13a
vi13n
vi13ag
V1130
vil3ao
vil3ao
vii3a
v17130
vil3o
v1130
v173d
¥113a
vi13d
v113a
v113¢0
v1713d
vi13c
vi7l3c
vil3g
vi3a
vi3g
YHd IV
YHd IV
YHd v
S3YOLSN
SI¥DILISH
d01S01

0354%73

@14V, @ONTHATAY SSOH)—AT ETAV],

"ONIS

fud1S3L
frdisS3l
ErdlS3L
£dd1S3L
ZHd1S3l
Z¥dl1531
eud1S3Il
2HdlS3L
ludlS3l
Tod1531
Ted1S3L
T¥d1531
T¥d1S31
T¥d1S31
1Wel1531
Tedl1S31
T¥d1531
Tyd1S3L
THd1S31
TudlS31
1Hd1541
Tud153L
T¥d1S3L
T¥d1531
THdiS3al
TndlS3L
T¥d1S31
14d1S3L
THd1S3L
14d1531
1¥d1s3L
T¥d1S31
THd1S31
T4d1531L
THd1531
Ted1S3L

al

o1

01

$330dd

335

=]

a»1020
terozo
selpac
SE1020
0d0s10
ocoeto
S00010
200010
590500
L0Qk 00
£00§ 00
feocoo
¢E0t00
Te0wL00
DEotoC
L£0E00
S2oe 00
5Z0fou
220E00
FZ0ED00
2720e0C
1zogocC
nzZoeoo
LTI0E 00
619200
c10foC
210800
£10t00
210t 00
11otoc
olgeoc
£001C0
#00E00
Zoolco
£00eE00
Z00E00
QE9L10
009410
215110

40

an3

aacaaaa

3INIVA H11m RYET0ST N1 TOURAS 0L S¥343w RYHD0SI N1 ROTIFIOT S3973

SERVICE PROGRAMS 2895

TaBLE V—SIMULATOR INPUT

& SIMULATOR CONTROL STATEMENISE
FORMAT GR,CAsaCA AR LINF(S544) 4 X04PSYMCSYM,LMKM
SYMBOLS MYPRGM
TRACE 400

2000 = ORID
INOUT 3MS
Loop SNAPTIR
AIXPRGM.MID SNAPTR
RET SNAPTR
CHECK DSNAP GR=1243

IF CF=1 BEGIN CF=0 1F CA<120 GOTO NEXT END
ELSE BEGIN CF=1 IF CAC200 GOTO AGAIN END
IF LR=~=200 C5TBL=621
2310=1337
TEST X0=x0+1
1F x0=1 BEGIN TRUNKI(3,7,21=1 CA=2100|3 GOTO TEST1 END
IF X0=2 BEGIN LINEIS,4}=176777 LOTU TESTZ END
1F x0>=3% STOP

MIDWAY AFTER 6US GOTO INTPRGM,INT3
TIME 14M5,10M5 DIGDP DRID 6484242421749
TIME 6S0MS STup

sTard MYPRGM,BGN

THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1969

2896

Le: = 3WIl gisdvTa

000000 000000 000000 OO0DODL 000000 000000 000000 000000 DOZEL
ZaLiot hLD0%0 0DZLw0 000000 000E0D LITEDD Z00ZED EnnZOL ooowo
000000 000000 000000 000000 000000 000000 0000LD 000000 0h900
goo000 000000 000000 ZOOLED 000000 000000 000000 w9LL0L 09€00
000000 000000 000000 ooooo0 000000 000000 000000 LLOLOL 0sSE00
gooooo 000000 000000 000000 000000 Do0DOO 0%Z000 000000 00000

SZSISD L
LLeLes ¥s L0000 EL] TOnLLL ¥T E0NLLL W1
900000 41 LEOOOD OH 00ZLwO o ESLOLO i
S00N00 WSO Looooo 12 S00 %00 ¥ L9ZEDD ww

dHOLS TIVD ONY SHILSIOIY JO SLNILWNOD IVAId
“TLLLOL WOHd SYM MAJISNVHEL QIININNIS ISVT FHL “dOLS
F0Q3ILVHEINGD SWA dOLS “03M3LNOJONE SWM VIVO QINIVINGD HO QIAVOINA S¥M LVHL NOILVDOT FHOLS WVES0Hd ¥

000000 o1 LeLLel 91 0000LO va II5LX

00000 000000 oow30L LiLLeL 000000 000000 oooo00 LoLioL LOORODO ooooLo JovaL
000000 oooo00 009901 LLLLLL 000000 ooeoo0 000000 wLioL LOO®DO 000000 3OWHL
008000 #00000 oon90L LLLLLL 000000 000000 000000 LoLioL L00BO0 000000 JOVEL
000000 000000 0ons0L LLLLie oL9SEL 000000 000000 LoLLoL L00b00 opoobo 3OVHL
QooooD 000000 00R90L Leeeer oL9sSLL 000000 SLL9SLE LoLioL LOORDD 000000 3OVl

ooooc0 000000 oowsoL LLeeen 0L9SLL opoooo SLL9SL LoLiol LOONOD LoLLol oL09

oooooD 000000 ooopoc o00QQoOOL 000000 000000 000000 000000 DOZEL
LOLLOL w0010 LooL9L 000000 oooooe L9ZEOOD TOOTZED EnLZIOL 00000
ooooco oooooo 000000 Z00ZEOD 000000 000000 000000 599.L01 09€E00
gooooo ooo000 000000 000000 000000 000000 owZooo 000000 00000

ozzooo oL 00u90L MI 0L9SLL 1
LLLLLL NI 910000 A1 LEODOOD o LOLLDL - &
oowsoL ¥i LOD®OD ¥s2 LOO%DO ¥ SLL9SL Al

-d¥Nsa

000000 000000 0ons0lL LLLLLL 0L9SLL 000000 SLLI9SL ZOOZED LoOO®OOD SLLISL FIVHL
000000 000000 ooasol LLLcer T2 1198 00t000 SLL9SL Z00ZED LOOROO SLL9SL FIVEL

SLL9SL 9 ooocoo Bl oLo000 ul SLL9SL H1 o001 i 2304 XN

00®000 000000 00000 900000 oons0L 000000 SLL9GL TO0ZLO LOO®D0 000004 AOVHL
oow00D 000000 zooooo 00000 00RO L 000000 SLL9SL ZOOZED Loon0O 000000 2OVaL
Q0®000 Z00000 Z00000 900000 00w90L 000000 GLL9SL TOOZED LO0BDO opoood IOVEL
004000 EDODOO OL9ELD LLOOOO L0951 oooooo ELLOSL Z00ZE0 LOOBOO ZOOZED FoVL
Qo¥000 E00000 oL9E L0 LLDOOO ELO9SL 000000 LEOLOL TOOZED LOO®DO ZDDZED JIVHL
000000 900000 0L9ELO LLOOOD 000000 000000 LEOLOL wiooLo 900%00 LooLst IIvAL

000000 900000 0L9ELD £LL0000 000000 000000 LEOLOL wilooko 900800 LOOLYL viva
000000 oooooD 000000 Qooo000 oo0o00 Dooo00 000000 L1413 pooroD hEDLOL Eel]}
19vls

EFA 4d AT WI H1 Wl Yoe 2 ¥o LYHEO3

L a9vd viva ELETS

L0drn() YOLVIOWIS—TA 14V],

oLo00L
oLoooL
oLODOL

L19SZ0
(311114
LTISZO
S195Z0
9LoLol
ToLioL

oLILOL

oL9LOL

DBZ9EL
SEZ9EL

SET9EL
THTIEL
nuZ9EL
9ETILL
LITIEL
99101
EBELOL
teELOL
LS9l0L

959101

20T 122

“ONISS3ID0Bd 1D3s 40 A

*ansx

L+%2

Z+320209
 +0"3Z
Z+11INOD°3I0S)
L*NYIST
L+ZL14d "JASdO

oLILoL

nSZaY
SsXLad

beXLD0d
Z+aasn
E+13nOHL
9+INALTY
t+5L01d" 453201
9+L1LLad
L+¥1dadd
9 +¥1dQHD
bl ildd

L1LdH *DOASd0

22T 10ENWRS

99S8E0D
9858E00
9858€00

£550000
EwS0000
zZ50000
6880000
0520000
SENDDOD

ZEN0000

ZENDODD

Z0w0000
06E0000

S0E0ODO
L9TGO00
LEZODDD
LOZO000
6510000
0ziL 0000
eL00000
8Lo0000
9000000

0000000

INIL

